1
|
Zhang YY, Yao M, Zhu K, Xue RR, Xu JH, Cui XJ, Mo W. Neurological recovery and antioxidant effect of erythropoietin for spinal cord injury: A systematic review and meta-analysis. Front Neurol 2022; 13:925696. [PMID: 35928137 PMCID: PMC9343731 DOI: 10.3389/fneur.2022.925696] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundTo critically evaluate the neurological recovery effects and antioxidant effects of erythropoietin (EPO) in rat models of spinal cord injury (SCI).MethodsThe PubMed, EMBASE, MEDLINE, ScienceDirect, and Web of Science were searched for animal experiments applying EPO to treat SCI to January 2022. We included studies which examined neurological function by the Basso, Beattie, and Bresnahan (BBB) scale, as well as cavity area and spared area, and determining the molecular-biological analysis of antioxidative effects by malondialdehyde (MDA) levels in spinal cord tissues. Meta-analysis were performed with Review Manager 5.4 software.ResultsA total of 33 studies were included in this review. The results of the meta-analysis showed that SCI rats receiving EPO therapy showed a significant locomotor function recovery after 14 days compared with control, then the superiority of EPO therapy maintained to 28 days from BBB scale. Compared with the control group, the cavity area was reduced [4 studies, weighted mean difference (WMD) = −16.65, 95% CI (−30.74 to −2.55), P = 0.02] and spared area was increased [3 studies, WMD =11.53, 95% CI (1.34 to 21.72), P = 0.03] by EPO. Meanwhile, MDA levels [2 studies, WMD = −0.63 (−1.09 to −0.18), P = 0.007] were improved in the EPO treatment group compared with control, which indicated its antioxidant effect. The subgroup analysis recommended 5,000 UI/kg is the most effective dose [WMD = 4.05 (2.23, 5.88), P < 0.0001], although its effect was not statistically different from that of 1,000 UI/kg. Meanwhile, the different rat strains (Sprague-Dawley vs. Wistar), and models of animals, as well as administration method (single or multiple administration) of EPO did not affect the neuroprotective effect of EPO for SCI.ConclusionsThis systematic review indicated that EPO can promote the recovery of the locomotor function of SCI rats. The mechanism exploration of EPO needs to be verified by experiments, and then carefully designed randomized controlled trials are needed to explore its neural recovery effects.
Collapse
Affiliation(s)
- Ya-yun Zhang
- Department of Orthopaedics, LongHua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Min Yao
- Department of Orthopaedics, Spine Disease Institute, LongHua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ke Zhu
- Department of Orthopaedics, Spine Disease Institute, LongHua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Rui-rui Xue
- Department of Orthopaedics, LongHua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jin-hai Xu
- Department of Orthopaedics, LongHua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Xue-jun Cui
| | - Xue-jun Cui
- Department of Orthopaedics, Spine Disease Institute, LongHua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Jin-hai Xu
| | - Wen Mo
- Department of Orthopaedics, LongHua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Wen Mo
| |
Collapse
|
2
|
Dadgostar E, Rahimi S, Nikmanzar S, Nazemi S, Naderi Taheri M, Alibolandi Z, Aschner M, Mirzaei H, Tamtaji OR. Aquaporin 4 in Traumatic Brain Injury: From Molecular Pathways to Therapeutic Target. Neurochem Res 2022; 47:860-871. [PMID: 35088218 DOI: 10.1007/s11064-021-03512-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/14/2021] [Accepted: 12/16/2021] [Indexed: 12/22/2022]
Abstract
Traumatic brain injury (TBI) is known as an acute degenerative pathology of the central nervous system, and has been shown to increase brain aquaporin 4 (AQP4) expression. Various molecular mechanisms affect AQP4 expression, including neuronal high mobility group box 1, forkhead box O3a, vascular endothelial growth factor, hypoxia-inducible factor-1 α (HIF-1 α) sirtuin 2, NF-κB, Malat1, nerve growth factor and Angiotensin II receptor type 1. In addition, inhibition of AQP4 with FK-506, MK-801 (indirectly by targeting N-methyl-D-aspartate receptor), inactivation of adenosine A2A receptor, levetiracetam, adjudin, progesterone, estrogen, V1aR inhibitor, hypertonic saline, erythropoietin, poloxamer 188, brilliant blue G, HIF-1alpha inhibitor, normobaric oxygen therapy, astaxanthin, epigallocatechin-3-gallate, sesamin, thaliporphine, magnesium, prebiotic fiber, resveratrol and omega-3, as well as AQP4 gene silencing lead to reduced edema upon TBI. This review summarizes current knowledge and evidence on the relationship between AQP4 and TBI, and the potential mechanisms involved.
Collapse
Affiliation(s)
- Ehsan Dadgostar
- Behavioral Sciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
- Student Research Committee, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shiva Rahimi
- School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Shahin Nikmanzar
- Department of Neurosurgery, Iran University of Medical Sciences, Tehran, Iran
| | - Sina Nazemi
- Tracheal Disease Research Center (TDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mojtaba Naderi Taheri
- Students' Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Alibolandi
- Anatomical Science Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| | - Omid Reza Tamtaji
- Students' Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Bloodletting Puncture at Hand Twelve Jing-Well Points Relieves Brain Edema after Severe Traumatic Brain Injury in Rats via Inhibiting MAPK Signaling Pathway. Chin J Integr Med 2021; 27:291-299. [PMID: 33515398 DOI: 10.1007/s11655-021-3326-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/11/2019] [Indexed: 10/22/2022]
Abstract
OBJECTIVE To investigate whether blood-brain barrier (BBB) served a key role in the edema-relief effect of bloodletting puncture at hand twelve Jing-well points (HTWP) in traumatic brain injury (TBI) and the potential molecular signaling pathways. METHODS Adult male Sprague-Dawley rats were assigned to the sham-operated (sham), TBI, and bloodletting puncture (bloodletting) groups (n=24 per group) using a randomized number table. The TBI model rats were induced by cortical contusion and then bloodletting puncture were performed at HTWP twice a day for 2 days. The neurological function and cerebral edema were evaluated by modified neurological severity score (mNSS), cerebral water content, magnetic resonance imaging and hematoxylin and eosin staining. Cerebral blood flow was measured by laser speckles. The protein levels of aquaporin 4 (AQP4), matrix metalloproteinases 9 (MMP9) and mitogen-activated protein kinase pathway (MAPK) signaling were detected by immunofluorescence staining and Western blot. RESULTS Compared with TBI group, bloodletting puncture improved neurological function at 24 and 48 h, alleviated cerebral edema at 48 h, and reduced the permeability of BBB induced by TBI (all P<0.05). The AQP4 and MMP9 which would disrupt the integrity of BBB were downregulated by bloodletting puncture (P<0.05 or P<0.01). In addition, the extracellular signal-regulated kinase (ERK) and p38 signaling pathways were inhibited by bloodletting puncture (P<0.05). CONCLUSIONS Bloodletting puncture at HTWP might play a significant role in protecting BBB through regulating the expressions of MMP9 and AQP4 as well as corresponding regulatory upstream ERK and p38 signaling pathways. Therefore, bloodletting puncture at HTWP may be a promising therapeutic strategy for TBI-induced cerebral edema.
Collapse
|
4
|
Weerasinghe-Mudiyanselage PDE, Kim J, Choi Y, Moon C, Shin T, Ahn M. Ninjurin-1: a biomarker for reflecting the process of neuroinflammation after spinal cord injury. Neural Regen Res 2021; 16:1331-1335. [PMID: 33318413 PMCID: PMC8284292 DOI: 10.4103/1673-5374.301033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Previous studies have shown that Ninjurin-1 participates in cell trafficking and axonal growth following central and peripheral nervous system neuroinflammation. But its precise roles in these processes and involvement in spinal cord injury pathophysiology remain unclear. Western blot assay revealed that Ninjurin-1 levels in rats with spinal cord injury exhibited an upregulation until day 4 post-injury and slightly decreased thereafter compared with sham controls. Immunohistochemistry analysis revealed that Ninjurin-1 immunoreactivity in rats with spinal cord injury sharply increased on days 1 and 4 post-injury and slightly decreased on days 7 and 21 post-injury compared with sham controls. Ninjurin-1 immunostaining was weak in vascular endothelial cells, ependymal cells, and some glial cells in sham controls while it was relatively strong in macrophages, microglia, and reactive astrocytes. These findings suggest that a variety of cells, including vascular endothelial cells, macrophages, and microglia, secrete Ninjurin-1 and they participate in the pathophysiology of compression-induced spinal cord injury. All experimental procedures were approved by the Care and Use of Laboratory Animals of Jeju National University (approval No. 2018-0029) on July 6, 2018.
Collapse
Affiliation(s)
- Poornima D E Weerasinghe-Mudiyanselage
- Department of Veterinary Anatomy, College of Veterinary Medicine and Veterinary Medical Research Institute, Jeju National University, Jeju; Department of Veterinary Anatomy, College of Veterinary Medicine and BK21 Plus Project Team, Chonnam National University, Gwangju, Republic of Korea
| | - Jeongtae Kim
- Department of Veterinary Anatomy, College of Veterinary Medicine and Veterinary Medical Research Institute, Jeju National University, Jeju; Department of Anatomy, Kosin University College of Medicine, Busan, Republic of Korea
| | - Yuna Choi
- Department of Veterinary Anatomy, College of Veterinary Medicine and Veterinary Medical Research Institute, Jeju National University, Jeju, Republic of Korea
| | - Changjong Moon
- Department of Veterinary Anatomy, College of Veterinary Medicine and BK21 Plus Project Team, Chonnam National University, Gwangju, Republic of Korea
| | - Taekyun Shin
- Department of Veterinary Anatomy, College of Veterinary Medicine and Veterinary Medical Research Institute, Jeju National University, Jeju, Republic of Korea
| | - Meejung Ahn
- Department of Veterinary Anatomy, College of Veterinary Medicine and Veterinary Medical Research Institute, Jeju National University, Jeju; Department of Animal Science, College of Life Science, Sangji University, Wonju, Republic of Korea
| |
Collapse
|
5
|
Zheng T, Yuan Y, Yang H, Du J, Wu S, Jin Y, Wang Z, Liu D, Shi Q, Wang X, Liu L. Evaluating the Therapeutic Effect of Low-Intensity Transcranial Ultrasound on Traumatic Brain Injury With Diffusion Kurtosis Imaging. J Magn Reson Imaging 2020; 52:520-531. [PMID: 31999388 DOI: 10.1002/jmri.27063] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/08/2020] [Accepted: 01/09/2020] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Low-intensity transcranial ultrasound (LITUS) has a therapeutic effect on traumatic brain injury (TBI). Diffusion kurtosis imaging (DKI) might be able to evaluate the effect changes of injured brain microstructure. PURPOSE To evaluate the therapeutic effect of LITUS in a moderate TBI rat model with DKI parameters. STUDY TYPE Prospective case-control animal study. ANIMAL MODEL Forty-five rats were randomly divided into sham control, TBI, and LITUS treatment groups (n = 15). FIELD STRENGTH/SEQUENCE Single-shot spin echo echo-planar imaging and fast T2 WI sequences at 3.0T. ASSESSMENT DKI parameters were obtained on days 1, 7, 14, 21, 28, 35, and 42 after TBI. STATISTICAL TESTS For the mean kurtosis (MK), axial kurtosis (Ka), and radial kurtosis (Kr) values, groups were compared using a two-way analysis of variance (ANOVA). RESULTS LITUS inhibited TBI and caused MK values to increase significantly during the early stage (LITUS vs. TBI, day 7, adjusted P < 0.0001) and decrease during the late stage (LITUS vs. TBI, day 42, adjusted P = 0.0156) in the damaged cortex. In the thalamus, the MK value of the TBI group began to rise on day 7, with no change observed in the LITUS group. TBI increases Ka value during the early stage in the cortex and decreases during the late stage in the cortex and thalamus. LITUS inhibited these Ka changes (LITUS vs. TBI, day 7, adjusted P = 0.0014; LITUS vs. TBI, day 42, adjusted P = 0.0026 and 0.0478, respectively, for cortex and thalamus). The Kr value increased slightly during the early stage in the cortex (TBI vs. Sham, day 1, adjusted P = 0.0016). DATA CONCLUSION The DKI parameter, particularly the MK value, evaluates primary cortical injury as well as the secondary brain injury that could not be detected by conventional T2 WI. LEVEL OF EVIDENCE 1 Technical Efficacy Stage: 4 J. Magn. Reson. Imaging 2020;52:520-531.
Collapse
Affiliation(s)
- Tao Zheng
- Department of Magnetic Resonance Imaging, Qinhuangdao Municipal No. 1 Hospital, Qinhuangdao, China
| | - Yi Yuan
- Institute of Electrical Engineering, Yanshan University, Qinhuangdao, China
| | - Haoxiang Yang
- Department of Cardiovascular Medicine, Qinhuangdao Municipal No. 1 Hospital, Qinhuangdao, China
| | - Juan Du
- Department of Magnetic Resonance Imaging, Qinhuangdao Municipal No. 1 Hospital, Qinhuangdao, China
| | - Shuo Wu
- Department of Magnetic Resonance Imaging, Qinhuangdao Municipal No. 1 Hospital, Qinhuangdao, China
| | - Yinglan Jin
- Peking University Health Science Center, Beijing, China
| | - Zhanqiu Wang
- Department of Magnetic Resonance Imaging, Qinhuangdao Municipal No. 1 Hospital, Qinhuangdao, China
| | - Defeng Liu
- Department of Magnetic Resonance Imaging, Qinhuangdao Municipal No. 1 Hospital, Qinhuangdao, China
| | - Qinglei Shi
- Scientific Clinical Specialist, Siemens Ltd., Beijing, China
| | - Xiaohan Wang
- Department of Magnetic Resonance Imaging, Qinhuangdao Municipal No. 1 Hospital, Qinhuangdao, China
| | - Lanxiang Liu
- Department of Magnetic Resonance Imaging, Qinhuangdao Municipal No. 1 Hospital, Qinhuangdao, China
| |
Collapse
|
6
|
Dinet V, Petry KG, Badaut J. Brain-Immune Interactions and Neuroinflammation After Traumatic Brain Injury. Front Neurosci 2019; 13:1178. [PMID: 31780883 PMCID: PMC6861304 DOI: 10.3389/fnins.2019.01178] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Accepted: 10/18/2019] [Indexed: 01/04/2023] Open
Abstract
Traumatic brain injury (TBI) is the principal cause of death and disability in children and young adults. Clinical and preclinical research efforts have been carried out to understand the acute, life-threatening pathophysiological events happening after TBI. In the past few years, however, it was recognized that TBI causes significant morbidity weeks, months, or years after the initial injury, thereby contributing substantially to the overall burden of TBI and the decrease of life expectancy in these patients. Long-lasting sequels of TBI include cognitive decline/dementia, sensory-motor dysfunction, and psychiatric disorders, and most important for patients is the need for socio-economic rehabilitation affecting their quality of life. Cerebrovascular alterations have been described during the first week after TBI for direct consequence development of neuroinflammatory process in relation to brain edema. Within the brain-immune interactions, the complement system, which is a family of blood and cell surface proteins, participates in the pathophysiology process. In fact, the complement system is part of the primary defense and clearance component of innate and adaptive immune response. In this review, the complement activation after TBI will be described in relation to the activation of the microglia and astrocytes as well as the blood-brain barrier dysfunction during the first week after the injury. Considering the neuroinflammatory activity as a causal element of neurological handicaps, some major parallel lines of complement activity in multiple sclerosis and Alzheimer pathologies with regard to cognitive impairment will be discussed for chronic TBI. A better understanding of the role of complement activation could facilitate the development of new therapeutic approaches for TBI.
Collapse
Affiliation(s)
- Virginie Dinet
- INSERM U1029, Angiogenesis and Neuroinflammation Group, University of Bordeaux, Bordeaux, France
| | - Klaus G. Petry
- INSERM U1029, Angiogenesis and Neuroinflammation Group, University of Bordeaux, Bordeaux, France
| | - Jerome Badaut
- CNRS UMR 5287, INCIA, Brain molecular Imaging Team, University of Bordeaux, Bordeaux, France
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, United States
| |
Collapse
|
7
|
Gatto RG, Amin M, Finkielsztein A, Weissmann C, Barrett T, Lamoutte C, Uchitel O, Sumagin R, Mareci TH, Magin RL. Unveiling early cortical and subcortical neuronal degeneration in ALS mice by ultra-high field diffusion MRI. Amyotroph Lateral Scler Frontotemporal Degener 2019; 20:549-561. [DOI: 10.1080/21678421.2019.1620285] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Rodolfo G. Gatto
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA,
| | - Manish Amin
- Department of Biochemistry and Molecular Biology, National High Magnetic Field Laboratory, University of Florida, Gainesville, FL, USA,
| | - Ariel Finkielsztein
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA,
| | - Carina Weissmann
- Institute for Physiology, Molecular Biology and Neurosciences (IFIBYNE CONICET-UBA), Buenos Aires, Argentina,
| | - Thomas Barrett
- Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA, and
| | - Caroline Lamoutte
- Department of Microbiology, University of Florida, Gainesville, FL, USA
| | - Osvaldo Uchitel
- Institute for Physiology, Molecular Biology and Neurosciences (IFIBYNE CONICET-UBA), Buenos Aires, Argentina,
| | - Ronen Sumagin
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA,
| | - Thomas H. Mareci
- Department of Biochemistry and Molecular Biology, National High Magnetic Field Laboratory, University of Florida, Gainesville, FL, USA,
| | - Richard L. Magin
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA,
| |
Collapse
|
8
|
Szczygielski J, Glameanu C, Müller A, Klotz M, Sippl C, Hubertus V, Schäfer KH, Mautes AE, Schwerdtfeger K, Oertel J. Changes in Posttraumatic Brain Edema in Craniectomy-Selective Brain Hypothermia Model Are Associated With Modulation of Aquaporin-4 Level. Front Neurol 2018; 9:799. [PMID: 30333785 PMCID: PMC6176780 DOI: 10.3389/fneur.2018.00799] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Accepted: 09/04/2018] [Indexed: 12/19/2022] Open
Abstract
Both hypothermia and decompressive craniectomy have been considered as a treatment for traumatic brain injury. In previous experiments we established a murine model of decompressive craniectomy and we presented attenuated edema formation due to focal brain cooling. Since edema development is regulated via function of water channel proteins, our hypothesis was that the effects of decompressive craniectomy and of hypothermia are associated with a change in aquaporin-4 (AQP4) concentration. Male CD-1 mice were assigned into following groups (n = 5): sham, decompressive craniectomy, trauma, trauma followed by decompressive craniectomy and trauma + decompressive craniectomy followed by focal hypothermia. After 24 h, magnetic resonance imaging with volumetric evaluation of edema and contusion were performed, followed by ELISA analysis of AQP4 concentration in brain homogenates. Additional histopathological analysis of AQP4 immunoreactivity has been performed at more remote time point of 28d. Correlation analysis revealed a relationship between AQP4 level and both volume of edema (r2 = 0.45, p < 0.01, **) and contusion (r2 = 0.41, p < 0.01, **) 24 h after injury. Aggregated analysis of AQP4 level (mean ± SEM) presented increased AQP4 concentration in animals subjected to trauma and decompressive craniectomy (52.1 ± 5.2 pg/mL, p = 0.01; *), but not to trauma, decompressive craniectomy and hypothermia (45.3 ± 3.6 pg/mL, p > 0.05; ns) as compared with animals subjected to decompressive craniectomy only (32.8 ± 2.4 pg/mL). However, semiquantitative histopathological analysis at remote time point revealed no significant difference in AQP4 immunoreactivity across the experimental groups. This suggests that AQP4 is involved in early stages of brain edema formation after surgical decompression. The protective effect of selective brain cooling may be related to change in AQP4 response after decompressive craniectomy. The therapeutic potential of this interaction should be further explored.
Collapse
Affiliation(s)
- Jacek Szczygielski
- Department of Neurosurgery, Faculty of Medicine, Saarland University Medical Center, Saarland University, Homburg, Germany.,Institute of Neuropathology, Faculty of Medicine, Saarland University Medical Center, Saarland University, Homburg, Germany.,Faculty of Medicine, University of Rzeszów, Rzeszów, Poland
| | - Cosmin Glameanu
- Department of Neurosurgery, Faculty of Medicine, Saarland University Medical Center, Saarland University, Homburg, Germany
| | - Andreas Müller
- Department of Radiology, Faculty of Medicine, Saarland University Medical Center, Saarland University, Homburg, Germany
| | - Markus Klotz
- Working Group Enteric Nervous System (AGENS), University of Applied Sciences Kaiserslautern, Kaiserslautern, Germany
| | - Christoph Sippl
- Department of Neurosurgery, Faculty of Medicine, Saarland University Medical Center, Saarland University, Homburg, Germany
| | - Vanessa Hubertus
- Department of Neurosurgery, Faculty of Medicine, Saarland University Medical Center, Saarland University, Homburg, Germany.,Department of Neurosurgery, Charité University Medicine, Berlin, Germany
| | - Karl-Herbert Schäfer
- Working Group Enteric Nervous System (AGENS), University of Applied Sciences Kaiserslautern, Kaiserslautern, Germany
| | - Angelika E Mautes
- Department of Neurosurgery, Faculty of Medicine, Saarland University Medical Center, Saarland University, Homburg, Germany
| | - Karsten Schwerdtfeger
- Department of Neurosurgery, Faculty of Medicine, Saarland University Medical Center, Saarland University, Homburg, Germany
| | - Joachim Oertel
- Department of Neurosurgery, Faculty of Medicine, Saarland University Medical Center, Saarland University, Homburg, Germany
| |
Collapse
|
9
|
Di Pietro V, Yakoub KM, Scarpa U, Di Pietro C, Belli A. MicroRNA Signature of Traumatic Brain Injury: From the Biomarker Discovery to the Point-of-Care. Front Neurol 2018; 9:429. [PMID: 29963002 PMCID: PMC6010584 DOI: 10.3389/fneur.2018.00429] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 05/22/2018] [Indexed: 12/21/2022] Open
Abstract
Traumatic brain injury (TBI) is a serious problem that causes high morbidity and mortality around the world. Currently, no reliable biomarkers are used to assess the severity and predict the recovery. Many protein biomarkers were extensively studied for diagnosis and prognosis of different TBI severities such as S-100β, glial fibrillary acidic protein (GFAP), neuron-specific enolase (NSE), neurofilament light chain (NFL), cleaved tau protein (C-tau), and ubiquitin C-terminal hydrolase-L1 (UCH-L1). However, none of these candidates is currently used in the clinical practice, due to relatively low sensitivity, for the diagnosis of mild TBI (mTBI) or mild to moderate TBI (MMTBI) patients who are clinically well and do not have a detectable intracranial pathology on the scans. MicroRNAs (miRNAs or miRs) are a class of small endogenous molecular regulators, which showed to be altered in different pathologies, including TBI and for this reason, their potential role in diagnosis, prognosis and therapeutic applications, is explored. Promising miRNAs such as miR-21, miR-16 or let-7i were identified as suitable candidate biomarkers for TBI and can differentiate mild from severe TBI. Also, they might represent new potential therapeutic targets. Identification of miRNA signature in tissue or biofluids, for several pathological conditions, is now possible thanks to the introduction of new high-throughput technologies such as microarray platform, Nanostring technologies or Next Generation Sequencing. This review has the aim to describe the role of microRNA in TBI and to explore the most commonly used techniques to identify microRNA profile. Understanding the strengths and limitations of the different methods can aid in the practical use of miRNA profiling for diverse clinical applications, including the development of a point-of-care device.
Collapse
Affiliation(s)
- Valentina Di Pietro
- Neurotrauma and Ophthalmology Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom.,Surgical Reconstruction and Microbiology Research Centre, National Institute for Health Research, Queen Elizabeth Hospital, Birmingham, United Kingdom.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Illinois, IL, United States
| | - Kamal M Yakoub
- Surgical Reconstruction and Microbiology Research Centre, National Institute for Health Research, Queen Elizabeth Hospital, Birmingham, United Kingdom
| | - Ugo Scarpa
- Surgical Reconstruction and Microbiology Research Centre, National Institute for Health Research, Queen Elizabeth Hospital, Birmingham, United Kingdom
| | - Cinzia Di Pietro
- BioMolecular, Genome and Complex Systems BioMedicine Unit, Section of Biology and Genetics G Sichel, Department of Biomedical Sciences and Biotechnology, University of Catania, Catania, Italy
| | - Antonio Belli
- Neurotrauma and Ophthalmology Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom.,Surgical Reconstruction and Microbiology Research Centre, National Institute for Health Research, Queen Elizabeth Hospital, Birmingham, United Kingdom
| |
Collapse
|
10
|
Gatto RG. Diffusion tensor imaging as a tool to detect presymptomatic axonal degeneration in a preclinical spinal cord model of amyotrophic lateral sclerosis. Neural Regen Res 2018; 13:425-426. [PMID: 29623925 PMCID: PMC5900503 DOI: 10.4103/1673-5374.228723] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Rodolfo Gabriel Gatto
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|