1
|
Natale G, Colella M, De Carluccio M, Lelli D, Paffi A, Carducci F, Apollonio F, Palacios D, Viscomi MT, Liberti M, Ghiglieri V. Astrocyte Responses Influence Local Effects of Whole-Brain Magnetic Stimulation in Parkinsonian Rats. Mov Disord 2023; 38:2173-2184. [PMID: 37700489 DOI: 10.1002/mds.29599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 08/11/2023] [Accepted: 08/21/2023] [Indexed: 09/14/2023] Open
Abstract
BACKGROUND Excessive glutamatergic transmission in the striatum is implicated in Parkinson's disease (PD) progression. Astrocytes maintain glutamate homeostasis, protecting from excitotoxicity through the glutamate-aspartate transporter (GLAST), whose alterations have been reported in PD. Noninvasive brain stimulation using intermittent theta-burst stimulation (iTBS) acts on striatal neurons and glia, inducing neuromodulatory effects and functional recovery in experimental parkinsonism. OBJECTIVE Because PD is associated with altered astrocyte function, we hypothesized that acute iTBS, known to rescue striatal glutamatergic transmission, exerts regional- and cell-specific effects through modulation of glial functions. METHODS 6-Hydroxydopamine-lesioned rats were exposed to acute iTBS, and the areas predicted to be more responsive by a biophysical, hyper-realistic computational model that faithfully reconstructs the experimental setting were analyzed. The effects of iTBS on glial cells and motor behavior were evaluated by molecular and morphological analyses, and CatWalk and Stepping test, respectively. RESULTS As predicted by the model, the hippocampus, cerebellum, and striatum displayed a marked c-FOS activation after iTBS, with the striatum showing specific morphological and molecular changes in the astrocytes, decreased phospho-CREB levels, and recovery of GLAST. Striatal-dependent motor performances were also significantly improved. CONCLUSION These data uncover an unknown iTBS effect on astrocytes, advancing the understanding of the complex mechanisms involved in TMS-mediated functional recovery. Data on numerical dosimetry, obtained with a degree of anatomical details never before considered and validated by the biological findings, provide a framework to predict the electric-field induced in different specific brain areas and associate it with functional and molecular changes. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Giuseppina Natale
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Micol Colella
- Department of Information Engineering, Electronics and Telecommunications, Sapienza University of Rome, Rome, Italy
| | - Maria De Carluccio
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
- Department of Neurosciences and Neurorehabilitation, IRCCS San Raffaele Pisana, Rome, Italy
| | - Daniele Lelli
- Department of Information Engineering, Electronics and Telecommunications, Sapienza University of Rome, Rome, Italy
| | - Alessandra Paffi
- Department of Information Engineering, Electronics and Telecommunications, Sapienza University of Rome, Rome, Italy
| | - Filippo Carducci
- Neuroimaging Laboratory, Department of Physiology and Pharmacology "Vitorio Erspamer", Sapienza University of Rome, Rome, Italy
| | - Francesca Apollonio
- Department of Information Engineering, Electronics and Telecommunications, Sapienza University of Rome, Rome, Italy
| | - Daniela Palacios
- Department of Life Sciences and Public Health, Section of Histology and Embryology, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Maria Teresa Viscomi
- Department of Life Sciences and Public Health, Section of Histology and Embryology, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Micaela Liberti
- Department of Information Engineering, Electronics and Telecommunications, Sapienza University of Rome, Rome, Italy
| | - Veronica Ghiglieri
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Department of Human Sciences and Quality of Life Promotion, San Raffaele University, Rome, Italy
| |
Collapse
|
2
|
Rothärmel M, Quesada P, Husson T, Harika-Germaneau G, Nathou C, Guehl J, Dalmont M, Opolczynski G, Miréa-Grivel I, Millet B, Gérardin E, Compère V, Dollfus S, Jaafari N, Bénichou J, Thill C, Guillin O, Moulier V. The priming effect of repetitive transcranial magnetic stimulation on clinical response to electroconvulsive therapy in treatment-resistant depression: a randomized, double-blind, sham-controlled study. Psychol Med 2023; 53:2060-2071. [PMID: 34579796 DOI: 10.1017/s0033291721003810] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Electroconvulsive therapy (ECT) is one of the most effective treatments for treatment-resistant depression (TRD). However, due to response delay and cognitive impairment, ECT remains an imperfect treatment. Compared to ECT, repetitive transcranial magnetic stimulation (rTMS) is less effective at treating severe depression, but has the advantage of being quick, easy to use, and producing almost no side effects. In this study, our objective was to assess the priming effect of rTMS sessions before ECT on clinical response in patients with TRD. METHODS In this multicenter, randomized, double-blind, sham-controlled trial, 56 patients with TRD were assigned to active or sham rTMS before ECT treatment. Five sessions of active/sham neuronavigated rTMS were administered over the left dorsolateral prefrontal cortex (20 Hz, 90% resting motor threshold, 20 2 s trains with 60-s intervals, 800 pulses/session) before ECT (which was active for all patients) started. Any relative improvements were then compared between both groups after five ECT sessions, in order to assess the early response to treatment. RESULTS After ECT, the active rTMS group exhibited a significantly greater relative improvement than the sham group [43.4% (28.6%) v. 25.4% (17.2%)]. The responder rate in the active group was at least three times higher. Cognitive complaints, which were assessed using the Cognitive Failures Questionnaire, were higher in the sham rTMS group compared to the active rTMS group, but this difference was not corroborated by cognitive tests. CONCLUSIONS rTMS could be used to enhance the efficacy of ECT in patients with TRD. ClinicalTrials.gov: NCT02830399.
Collapse
Affiliation(s)
- Maud Rothärmel
- University Department of Psychiatry, Centre d'Excellence Thérapeutique- Institut de Psychiatrie-Centre Hospitalier du Rouvray, Sotteville-lès-Rouen, France
| | - Pierre Quesada
- University Department of Psychiatry, Centre d'Excellence Thérapeutique- Institut de Psychiatrie-Centre Hospitalier du Rouvray, Sotteville-lès-Rouen, France
| | - Thomas Husson
- University Department of Psychiatry, Centre d'Excellence Thérapeutique- Institut de Psychiatrie-Centre Hospitalier du Rouvray, Sotteville-lès-Rouen, France
- Rouen University Hospital, Rouen, France
- INSERM U 1245 University of Rouen, Rouen, France
| | | | - Clément Nathou
- UNICAEN, ISTS, EA 7466, GIP Cyceron, Caen 14000, France
- CHU de Caen, Service de Psychiatrie adulte, Caen 14000, France
- UFR Santé UNICAEN, 2 rue des Rochambelles, Caen 14000, France
| | - Julien Guehl
- University Department of Psychiatry, Centre d'Excellence Thérapeutique- Institut de Psychiatrie-Centre Hospitalier du Rouvray, Sotteville-lès-Rouen, France
| | - Marine Dalmont
- University Department of Psychiatry, Centre d'Excellence Thérapeutique- Institut de Psychiatrie-Centre Hospitalier du Rouvray, Sotteville-lès-Rouen, France
- Rouen University Hospital, Rouen, France
| | - Gaëlle Opolczynski
- University Department of Psychiatry, Centre d'Excellence Thérapeutique- Institut de Psychiatrie-Centre Hospitalier du Rouvray, Sotteville-lès-Rouen, France
| | - Iris Miréa-Grivel
- University Department of Psychiatry, Centre d'Excellence Thérapeutique- Institut de Psychiatrie-Centre Hospitalier du Rouvray, Sotteville-lès-Rouen, France
| | - Bruno Millet
- Department of Adult Psychiatry, boulevard de l'Hôpital, Hôpital Universitaire de la Pitié-Salpêtrière, Assistance Publique-Hôpitaux de, Paris 75013, France
| | - Emmanuel Gérardin
- Department of Neuroradiology, Rouen University Hospital, Rouen, France
| | - Vincent Compère
- Department of Anaesthesiology and Intensive Care, Rouen University Hospital, Rouen, France
| | - Sonia Dollfus
- UNICAEN, ISTS, EA 7466, GIP Cyceron, Caen 14000, France
- CHU de Caen, Service de Psychiatrie adulte, Caen 14000, France
- UFR Santé UNICAEN, 2 rue des Rochambelles, Caen 14000, France
| | | | - Jacques Bénichou
- Department of Biostatistics, Rouen University Hospital, Rouen, France
- INSERM U 1018, University of Rouen, Rouen, France
| | - Caroline Thill
- Department of Biostatistics, Rouen University Hospital, Rouen, France
| | - Olivier Guillin
- University Department of Psychiatry, Centre d'Excellence Thérapeutique- Institut de Psychiatrie-Centre Hospitalier du Rouvray, Sotteville-lès-Rouen, France
- Rouen University Hospital, Rouen, France
- INSERM U 1245 University of Rouen, Rouen, France
- Faculté de Médecine, Normandie University, Rouen, France
| | - Virginie Moulier
- University Department of Psychiatry, Centre d'Excellence Thérapeutique- Institut de Psychiatrie-Centre Hospitalier du Rouvray, Sotteville-lès-Rouen, France
- EPS Ville Evrard, Unité de Recherche Clinique, Neuilly-sur-Marne, France
| |
Collapse
|
3
|
da Costa CC, Martins LAM, Koth AP, Ramos JMO, Guma FTCR, de Oliveira CM, Pedra NS, Fischer G, Helena ES, Gioda CR, Sanches PRS, Junior ASV, Soares MSP, Spanevello RM, Gamaro GD, de Souza ICC. Static Magnetic Stimulation Induces Changes in the Oxidative Status and Cell Viability Parameters in a Primary Culture Model of Astrocytes. Cell Biochem Biophys 2021; 79:873-885. [PMID: 34176101 DOI: 10.1007/s12013-021-01015-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/14/2021] [Indexed: 11/24/2022]
Abstract
Astrocytes play an important role in the central nervous system function and may contribute to brain plasticity response during static magnetic fields (SMF) brain therapy. However, most studies evaluate SMF stimulation in brain plasticity while few studies evaluate the consequences of SMF at the cellular level. Thus, we here evaluate the effects of SMF at 305 mT (medium-intensity) in a primary culture of healthy/normal cortical astrocytes obtained from neonatal (1 to 2-day-old) Wistar rats. After reaching confluence, cells were daily subjected to SMF stimulation for 5 min, 15 min, 30 min, and 40 min during 7 consecutive days. Oxidative stress parameters, cell cycle, cell viability, and mitochondrial function were analyzed. The antioxidant capacity was reduced in groups stimulated for 5 and 40 min. Although no difference was observed in the enzymatic activity of superoxide dismutase and catalase or the total thiol content, lipid peroxidation was increased in all stimulated groups. The cell cycle was changed after 40 min of SMF stimulation while 15, 30, and 40 min led cells to death by necrosis. Mitochondrial function was reduced after SMF stimulation, although imaging analysis did not reveal substantial changes in the mitochondrial network. Results mainly revealed that SMF compromised healthy astrocytes' oxidative status and viability. This finding reveals how important is to understand the SMF stimulation at the cellular level since this therapeutic approach has been largely used against neurological and psychiatric diseases.
Collapse
Affiliation(s)
- Caroline Crespo da Costa
- NeuroCell Laboratory, Universidade Federal de Pelotas Campus Universitário, S/N, Capão do Leão-RS, 96160-000, Brasil
| | - Léo Anderson Meira Martins
- Department of Physiology, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 500, Bairro Centro Histórico, Porto Alegre, Rio Grande do Sul, 90050-170, Brasil
| | - André Peres Koth
- NeuroCell Laboratory, Universidade Federal de Pelotas Campus Universitário, S/N, Capão do Leão-RS, 96160-000, Brasil
| | - Jéssica Marques Obelar Ramos
- NeuroCell Laboratory, Universidade Federal de Pelotas Campus Universitário, S/N, Capão do Leão-RS, 96160-000, Brasil
| | - Fátima Theresinha Costa Rodrigues Guma
- Department of Biochemistry, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, Bairro Santa Cecília, Porto Alegre, Rio Grande do Sul, 90035-000, Brasil
| | - Cleverson Moraes de Oliveira
- Department of Biochemistry, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, Bairro Santa Cecília, Porto Alegre, Rio Grande do Sul, 90035-000, Brasil
| | - Nathália Stark Pedra
- Laboratory of Neurochemistry, Inflammation and Cancer, Universidade Federal de Pelotas Campus Universitário, S/N, Capão do Leão-RS, 96160-000, Brasil
| | - Geferson Fischer
- Laboratory of Virology and Immunology, Universidade Federal de Pelotas Campus Universitário, S/N, Capão do Leão-RS, 96160-000, Brasil
| | - Eduarda Santa Helena
- Department of Physiological Sciences, Universidade Federal de Rio Grande Avenida Itália, Km 8, Bairro Carreiros, Rio Grande, Rio Grande do Sul, 96203-900, Brasil
| | - Carolina Rosa Gioda
- Department of Physiological Sciences, Universidade Federal de Rio Grande Avenida Itália, Km 8, Bairro Carreiros, Rio Grande, Rio Grande do Sul, 96203-900, Brasil
| | - Paulo Roberto Stefani Sanches
- Laboratory of the Research and Development Service in Biomedical Engineering- Hospital de Clínicas de Porto Alegre Rua Ramiro Barcelos, 2350- Bairro Santa Cecília, Porto Alegre-RS, 90035-903, Brasil
| | - Antonio Sergio Varela Junior
- Institute of Biological Science, Universidade Federal do Rio Grande Avenida Itália, Km 8, Bairro Carreiros, Rio Grande, Rio Grande do Sul, 96203-900, Brasil
| | - Mayara Sandrielly Pereira Soares
- Laboratory of Neurochemistry, Inflammation and Cancer, Universidade Federal de Pelotas Campus Universitário, S/N, Capão do Leão-RS, 96160-000, Brasil
| | - Rosélia Maria Spanevello
- Laboratory of Neurochemistry, Inflammation and Cancer, Post-Graduate Program in Biochemistry and Bioprospection, Universidade Federal de Pelotas Campus Universitário, S/N, Capão do Leão-RS, 96160-000, Brasil
| | - Giovana Duzzo Gamaro
- NeuroCell Laboratory, Universidade Federal de Pelotas Campus Universitário, S/N, Capão do Leão-RS, 96160-000, Brasil
| | - Izabel Cristina Custódio de Souza
- Coordinator of NeuroCell Laboratory, Laboratory of Histology, Department of Morphology, Post-Graduate Program in Biochemistry and Bioprospection, Universidade Federal de Pelotas Avenida Duque de Caxias, 250, 96030-000, Pelotas, Rio Grande do Sul, Brasil.
| |
Collapse
|
4
|
Madore M, Poh E, Bolland SJ, Rivera J, Taylor J, Cheng J, Booth E, Nable M, Heath A, Yesavage J, Rodger J, McNerney MW. Moving back in the brain to drive the field forward: Targeting neurostimulation to different brain regions in animal models of depression and neurodegeneration. J Neurosci Methods 2021; 360:109261. [PMID: 34146593 PMCID: PMC8349553 DOI: 10.1016/j.jneumeth.2021.109261] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 05/22/2021] [Accepted: 06/13/2021] [Indexed: 01/28/2023]
Abstract
BACKGROUND Repetitive transcranial magnetic stimulation is a promising noninvasive therapeutic tool for a variety of brain-related disorders. However, most therapeutic protocols target the anterior regions, leaving many other areas unexplored. There is a substantial therapeutic potential for stimulating various brain regions, which can be optimized in animal models. NEW METHOD We illustrate a method that can be utilized reliably to stimulate the anterior or posterior brain in freely moving rodents. A coil support device is surgically attached onto the skull, which is used for consistent coil placement over the course of up to several weeks of stimulation sessions. RESULTS Our methods provide reliable stimulation in animals without the need for restraint or sedation. We see little aversive effects of support placement and stimulation. Computational models provide evidence that moving the coil support location can be utilized to target major stimulation sites in humans and mice. SUMMARY OF FINDINGS WITH THIS METHOD Animal models are key to optimizing brain stimulation parameters, but research relies on restraint or sedation for consistency in coil placement. The method described here provides a unique means for reliable targeted stimulation in freely moving animals. Research utilizing this method has uncovered changes in biochemical and animal behavioral measurements as a function of brain stimulation. CONCLUSIONS The majority of research on magnetic stimulation focuses on anterior regions. Given the substantial network connectivity throughout the brain, it is critical to develop a reliable method for stimulating different regions. The method described here can be utilized to better inform clinical trials about optimal treatment localization, stimulation intensity and number of treatment sessions, and provides a motivation for exploring posterior brain regions for both mice and humans.
Collapse
Affiliation(s)
- Michelle Madore
- Veterans Affairs Palo Alto Health Care system, Palo Alto, CA, USA,Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Eugenia Poh
- Experimental and Regenerative Neurosciences, School of Biological Sciences, The University of Western Australia, Perth WA, Australia
| | - Samuel J Bolland
- Experimental and Regenerative Neurosciences, School of Biological Sciences, The University of Western Australia, Perth WA, Australia
| | | | - Joy Taylor
- Veterans Affairs Palo Alto Health Care system, Palo Alto, CA, USA,Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Jauhtai Cheng
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Eric Booth
- Department of Electrical and Computer Engineering, Boise State University, Boise ID
| | - Monica Nable
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Alesha Heath
- Veterans Affairs Palo Alto Health Care system, Palo Alto, CA, USA,Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Jerry Yesavage
- Veterans Affairs Palo Alto Health Care system, Palo Alto, CA, USA,Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Jennifer Rodger
- Experimental and Regenerative Neurosciences, School of Biological Sciences, The University of Western Australia, Perth WA, Australia
| | - M. Windy McNerney
- Veterans Affairs Palo Alto Health Care system, Palo Alto, CA, USA,Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
5
|
Zimdahl JW, Thomas H, Bolland SJ, Leggett K, Barry KM, Rodger J, Mulders WHAM. Excitatory Repetitive Transcranial Magnetic Stimulation Over Prefrontal Cortex in a Guinea Pig Model Ameliorates Tinnitus. Front Neurosci 2021; 15:693935. [PMID: 34366777 PMCID: PMC8339289 DOI: 10.3389/fnins.2021.693935] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/01/2021] [Indexed: 11/13/2022] Open
Abstract
Tinnitus, a phantom auditory perception that can seriously affect quality of life, is generally triggered by cochlear trauma and associated with aberrant activity throughout the auditory pathways, often referred to as hyperactivity. Studies suggest that non-auditory structures, such as prefrontal cortex (PFC), may be involved in tinnitus generation, by affecting sensory gating in auditory thalamus, allowing hyperactivity to reach the cortex and lead to perception. Indeed, human studies have shown that repetitive transcranial magnetic stimulation (rTMS) of PFC can alleviate tinnitus. The current study investigated whether this therapeutic effect is achieved through inhibition of thalamic hyperactivity, comparing effects of two common clinical rTMS protocols with sham treatment, in a guinea pig tinnitus model. Animals underwent acoustic trauma and once tinnitus developed were treated with either intermittent theta burst stimulation (iTBS), 20 Hz rTMS, or sham rTMS (10 days, 10 min/day; weekdays only). Tinnitus was reassessed and extracellular recordings of spontaneous tonic and burst firing rates in auditory thalamus made. To verify effects in PFC, densities of neurons positive for calcium-binding proteins, calbindin and parvalbumin, were investigated using immunohistochemistry. Both rTMS protocols significantly reduced tinnitus compared to sham. However, spontaneous tonic firing decreased following 20 Hz stimulation and increased following iTBS in auditory thalamus. Burst rate was significantly different between 20 Hz and iTBS stimulation, and burst duration was increased only after 20 Hz treatment. Density of calbindin, but not parvalbumin positive neurons, was significantly increased in the most dorsal region of PFC indicating that rTMS directly affected PFC. Our results support the involvement of PFC in tinnitus modulation, and the therapeutic benefit of rTMS on PFC in treating tinnitus, but indicate this is not achieved solely by suppression of thalamic hyperactivity.
Collapse
Affiliation(s)
- Jack W Zimdahl
- School of Human Sciences, University of Western Australia, Crawley, WA, Australia
| | - Harrison Thomas
- School of Human Sciences, University of Western Australia, Crawley, WA, Australia
| | - Samuel J Bolland
- School of Biological Sciences, University of Western Australia, Crawley, WA, Australia.,Perron Institute for Neurological and Translational Research, Crawley, WA, Australia
| | - Kerry Leggett
- School of Human Sciences, University of Western Australia, Crawley, WA, Australia
| | - Kristin M Barry
- School of Human Sciences, University of Western Australia, Crawley, WA, Australia
| | - Jennifer Rodger
- School of Biological Sciences, University of Western Australia, Crawley, WA, Australia.,Perron Institute for Neurological and Translational Research, Crawley, WA, Australia
| | | |
Collapse
|
6
|
Monitoring and Modulating Inflammation-Associated Alterations in Synaptic Plasticity: Role of Brain Stimulation and the Blood-Brain Interface. Biomolecules 2021; 11:biom11030359. [PMID: 33652912 PMCID: PMC7996828 DOI: 10.3390/biom11030359] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/18/2021] [Accepted: 02/20/2021] [Indexed: 12/20/2022] Open
Abstract
Inflammation of the central nervous system can be triggered by endogenous and exogenous stimuli such as local or systemic infection, trauma, and stroke. In addition to neurodegeneration and cell death, alterations in physiological brain functions are often associated with neuroinflammation. Robust experimental evidence has demonstrated that inflammatory cytokines affect the ability of neurons to express plasticity. It has been well-established that inflammation-associated alterations in synaptic plasticity contribute to the development of neuropsychiatric symptoms. Nevertheless, diagnostic approaches and interventional strategies to restore inflammatory deficits in synaptic plasticity are limited. Here, we review recent findings on inflammation-associated alterations in synaptic plasticity and the potential role of the blood–brain interface, i.e., the blood–brain barrier, in modulating synaptic plasticity. Based on recent findings indicating that brain stimulation promotes plasticity and modulates vascular function, we argue that clinically employed non-invasive brain stimulation techniques, such as transcranial magnetic stimulation, could be used for monitoring and modulating inflammation-induced alterations in synaptic plasticity.
Collapse
|
7
|
Roque C, Pinto N, Vaz Patto M, Baltazar G. Astrocytes contribute to the neuronal recovery promoted by high-frequency repetitive magnetic stimulation in in vitro models of ischemia. J Neurosci Res 2021; 99:1414-1432. [PMID: 33522025 DOI: 10.1002/jnr.24792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 12/11/2020] [Accepted: 12/23/2020] [Indexed: 11/07/2022]
Abstract
After decades of effort, there are no effective clinical treatments to induce the recovery of ischemia-injured tissues, and among the several strategies that have been explored, repetitive transcranial magnetic stimulation has proven to be one of the most promising, with beneficial effects in limb motor function, aphasia, hemispatial neglect, or dysphagia. Despite the clinical evidences, little is known about the mechanisms underlying those effects. The present study aimed to explore the cellular and molecular effects of high-frequency repetitive magnetic stimulation (HF-rMS) on an in vitro model of ischemia. Using primary cortical cultures exposed to oxygen and glucose deprivation followed by reperfusion, we observed that HF-rMS treatment prevents the ischemia-induced neuronal death by 21.2%, and the neurite degeneration triggered by ischemia. Our results also demonstrate that with this treatment there is an increase of 89.2% on the number cells expressing ERK1/2, of 20.1% on the number of cells expressing c-Fos, and a synaptogenic effect, through an increase of 62.9% in the number of synaptic puncta as well as of 49.4% in their intensity. Interestingly, our results indicate that astrocytes are crucial to the beneficial effects triggered by HF-rMS after ischemia, thus suggesting a direct effect of HF-rMS on these cells. The modulation of astrocytes with this non-invasive brain stimulation technique is a promising approach to promote the recovery of ischemia-induced injured tissues; however, it is essential to understand how these effects can be modulated in order to optimize the protocols and enhance the beneficial outcomes.
Collapse
Affiliation(s)
- Cláudio Roque
- Centro de Investigação em Ciências da Saúde (CICS-UBI), Universidade da Beira Interior, Covilhã, Portugal.,Faculdade de Ciências da Saúde, Universidade da Beira Interior, Covilhã, Portugal
| | - Nuno Pinto
- Centro de Investigação em Ciências da Saúde (CICS-UBI), Universidade da Beira Interior, Covilhã, Portugal
| | - Maria Vaz Patto
- Centro de Investigação em Ciências da Saúde (CICS-UBI), Universidade da Beira Interior, Covilhã, Portugal.,Faculdade de Ciências da Saúde, Universidade da Beira Interior, Covilhã, Portugal
| | - Graça Baltazar
- Centro de Investigação em Ciências da Saúde (CICS-UBI), Universidade da Beira Interior, Covilhã, Portugal.,Faculdade de Ciências da Saúde, Universidade da Beira Interior, Covilhã, Portugal
| |
Collapse
|
8
|
Pourzitaki C, Dardalas I, Poutoglidou F, Kouvelas D, Kimiskidis VK. The Combination of rTMS and Pharmacotherapy on In Vitro Models: A Mini-Review. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2020; 19:220-226. [PMID: 32418533 DOI: 10.2174/1871527319666200518100716] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 04/05/2020] [Accepted: 04/05/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Repetitive Transcranial Magnetic Stimulation (rTMS) is a non-invasive brain stimulation technique that is being actively explored as a potential therapeutic modality in various neuropsychiatric disorders, such as depression, neuropathic pain, epilepsy, multiple sclerosis, and neurodegenerative disorders, including the Parkinson's and Alzheimer's disease. The Food and Drug Administration (FDA) approved rTMS for the treatment of major depression, migraine-associated headaches, and Obsessive Compulsive Disorder (OCD). The fact that a significant proportion of patients suffering from these disorders fail to respond to current pharmacological interventions indicates the need for alternative therapies like rTMS. OBJECTIVE The objective was to find and summarize all studies combining the use of rTMS and pharmacological interference in vitro, in order to facilitate future studies. METHODS The results of studies combining the use of rTMS with pharmacological interference in vitro were focused on. The PubMed database was searched using the terms "rTMS", "repetitive", "transcranial", "magnetic", "stimulation", "in vitro", "in vivo", "cell cultures" untilMarch 2019 and 7 eligible studies were found. RESULTS Overall results show a synergistic effect of rTMS and pharmacotherapy in vitro with additive effectiveness, better prognosis, and superior potential management. CONCLUSION The limited amount of knowledge denotes the need for additional in vitro studies on the combination of rTMS and pharmacotherapy, which could be extended to in vivo studies and ultimately help design clinical trials so as to improve the therapeutic management of patients with a wide array of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Chryssa Pourzitaki
- Department of Clinical Pharmacology, Faculty of Medicine, School of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Ioannis Dardalas
- Department of Clinical Pharmacology, Faculty of Medicine, School of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Frideriki Poutoglidou
- Department of Clinical Pharmacology, Faculty of Medicine, School of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Dimitrios Kouvelas
- Department of Clinical Pharmacology, Faculty of Medicine, School of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Vasilios K Kimiskidis
- Laboratory of Clinical Neurophysiology, AHEPA University Hospital, Aristotle University of Thessaloniki, 54006, Thessaloniki, Greece
| |
Collapse
|
9
|
Hong Y, Liu Q, Peng M, Bai M, Li J, Sun R, Guo H, Xu P, Xie Y, Li Y, Liu L, Du J, Liu X, Yang B, Xu G. High-frequency repetitive transcranial magnetic stimulation improves functional recovery by inhibiting neurotoxic polarization of astrocytes in ischemic rats. J Neuroinflammation 2020; 17:150. [PMID: 32375835 PMCID: PMC7203826 DOI: 10.1186/s12974-020-01747-y] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 02/13/2020] [Indexed: 12/15/2022] Open
Abstract
Background Repetitive transcranial magnetic stimulation (rTMS) is a noninvasive treatment for ischemic stroke. Astrocytes regulation has been suggested as one mechanism for rTMS effectiveness. But how rTMS regulates astrocytes remains largely undetermined. There were neurotoxic and neuroprotective phenotypes of astrocytes (also denoted as classically and alternatively activated astrocytes or A1 and A2 astrocytes) pertaining to pro- or anti-inflammatory gene expression. Pro-inflammatory or neurotoxic polarized astrocytes were induced during cerebral ischemic stroke. The present study aimed to investigate the effects of rTMS on astrocytic polarization during cerebral ischemic/reperfusion injury. Methods Three rTMS protocols were applied to primary astrocytes under normal and oxygen-glucose deprivation/reoxygenation (OGD/R) conditions. Cell survival, proliferation, and phenotypic changes were assessed after 2-day treatment. Astrocytes culture medium (ACM) from control, OGD/R, and OGD/R + rTMS groups were mixed with neuronal medium to culture neurons for 48 h and 7 days, in order to explore the influence on neuronal survival and synaptic plasticity. In vivo, rats were subjected to middle cerebral artery occlusion (MCAO), and received posterior orbital intravenous injection of ACM collected from different groups at reperfusion, and at 3 days post reperfusion. The apoptosis in the ischemic penumbra, infarct volumes, and the modified Neurological Severity Score (mNSS) were evaluated at 1 week after reperfusion, and cognitive functions were evaluated using the Morris Water Maze (MWM) tests. Finally, the 10 Hz rTMS was directly applied to MCAO rats to verify the rTMS effects on astrocytic polarization. Results Among these three frequencies, the 10 Hz protocol exerted the greatest potential to modulate astrocytic polarization after OGD/R injury. Classically activated and A1 markers were significantly inhibited by rTMS treatment. In OGD/R model, the concentration of pro-inflammatory mediator TNF-α decreased from 57.7 to 23.0 рg/mL, while anti-inflammatory mediator IL-10 increased from 99.0 to 555.1 рg/mL in the ACM after rTMS treatment. The ACM collected from rTMS-treated astrocytes significantly alleviated neuronal apoptosis induced by OGD/R injury, and promoted neuronal plasticity. In MCAO rat model, the ACM collected from rTMS treatment decreased neuronal apoptosis and infarct volumes, and improved cognitive functions. The neurotoxic astrocytes were simultaneously inhibited after rTMS treatment. Conclusion Inhibition of neurotoxic astrocytic polarization is a potential mechanism for the effectiveness of high-frequency rTMS in cerebral ischemic stroke.
Collapse
Affiliation(s)
- Ye Hong
- Department of Neurology, Jingling Hospital, Nanjing University School of Medicine, 305# East Zhongshan Road, Nanjing, 210002, Jiangsu, China
| | - Qian Liu
- Department of Neurology, Jingling Hospital, Nanjing University School of Medicine, 305# East Zhongshan Road, Nanjing, 210002, Jiangsu, China
| | - Mengna Peng
- Department of Neurology, Jingling Hospital, Nanjing University School of Medicine, 305# East Zhongshan Road, Nanjing, 210002, Jiangsu, China
| | - Maosheng Bai
- Department of Orthopedics, Nanjing Tongren Hospital, Nanjing, 210002, Jiangsu, China.,Department of Orthopedics, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, 210002, Jiangsu, China
| | - Juanji Li
- Department of Neurology, Jingling Hospital, Nanjing University School of Medicine, 305# East Zhongshan Road, Nanjing, 210002, Jiangsu, China
| | - Rui Sun
- Department of Neurology, Jinling Hospital, Nanjing Medical University, Nanjing, 210002, Jiangsu, China.,Department of Neurology, Changhai Hospital, Second Military Medical University/Naval Medical University, Shanghai, 210000, China
| | - Hongquan Guo
- Department of Neurology, Jinling Hospital, Southern Medical University, Nanjing, 210002, Jiangsu, China
| | - Pengfei Xu
- Department of Neurology, Jingling Hospital, Nanjing University School of Medicine, 305# East Zhongshan Road, Nanjing, 210002, Jiangsu, China.,Stroke Center & Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230036, Anhui, China
| | - Yi Xie
- Department of Neurology, Jingling Hospital, Nanjing University School of Medicine, 305# East Zhongshan Road, Nanjing, 210002, Jiangsu, China
| | - Yunzi Li
- Department of Neurology, Jingling Hospital, Nanjing University School of Medicine, 305# East Zhongshan Road, Nanjing, 210002, Jiangsu, China
| | - Ling Liu
- Department of Neurology, Jingling Hospital, Nanjing University School of Medicine, 305# East Zhongshan Road, Nanjing, 210002, Jiangsu, China
| | - Juan Du
- Department of Neurology, Jingling Hospital, Nanjing University School of Medicine, 305# East Zhongshan Road, Nanjing, 210002, Jiangsu, China
| | - Xinfeng Liu
- Department of Neurology, Jingling Hospital, Nanjing University School of Medicine, 305# East Zhongshan Road, Nanjing, 210002, Jiangsu, China
| | - Bin Yang
- Department of Ultrasonography, Jingling Hospital, Nanjing University School of Medicine, 305# East Zhongshan Road, Nanjing, 210002, Jiangsu, China.
| | - Gelin Xu
- Department of Neurology, Jingling Hospital, Nanjing University School of Medicine, 305# East Zhongshan Road, Nanjing, 210002, Jiangsu, China.
| |
Collapse
|
10
|
Moretti J, Poh EZ, Rodger J. rTMS-Induced Changes in Glutamatergic and Dopaminergic Systems: Relevance to Cocaine and Methamphetamine Use Disorders. Front Neurosci 2020; 14:137. [PMID: 32210744 PMCID: PMC7068681 DOI: 10.3389/fnins.2020.00137] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 02/03/2020] [Indexed: 12/12/2022] Open
Abstract
Cocaine use disorder and methamphetamine use disorder are chronic, relapsing disorders with no US Food and Drug Administration-approved interventions. Repetitive transcranial magnetic stimulation (rTMS) is a non-invasive brain stimulation tool that has been increasingly investigated as a possible therapeutic intervention for substance use disorders. rTMS may have the ability to induce beneficial neuroplasticity in abnormal circuits and networks in individuals with addiction. The aim of this review is to highlight the rationale and potential for rTMS to treat cocaine and methamphetamine dependence: we synthesize the outcomes of studies in healthy humans and animal models to identify and understand the neurobiological mechanisms of rTMS that seem most involved in addiction, focusing on the dopaminergic and glutamatergic systems. rTMS-induced changes to neurotransmitter systems include alterations to striatal dopamine release and metabolite levels, as well as to glutamate transporter and receptor expression, which may be relevant for ameliorating the aberrant plasticity observed in individuals with substance use disorders. We also discuss the clinical studies that have used rTMS in humans with cocaine and methamphetamine use disorders. Many such studies suggest changes in network connectivity following acute rTMS, which may underpin reduced craving following chronic rTMS. We suggest several possible future directions for research relating to the therapeutic potential of rTMS in addiction that would help fill current gaps in the literature. Such research would apply rTMS to animal models of addiction, developing a translational pipeline that would guide evidence-based rTMS treatment of cocaine and methamphetamine use disorder.
Collapse
Affiliation(s)
- Jessica Moretti
- Experimental and Regenerative Neurosciences, School of Biological Sciences, The University of Western Australia, Crawley, WA, Australia.,School of Human Sciences, The University of Western Australia, Crawley, WA, Australia.,Brain Plasticity Group, Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia
| | - Eugenia Z Poh
- Experimental and Regenerative Neurosciences, School of Biological Sciences, The University of Western Australia, Crawley, WA, Australia.,School of Human Sciences, The University of Western Australia, Crawley, WA, Australia.,Brain Plasticity Group, Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia
| | - Jennifer Rodger
- Experimental and Regenerative Neurosciences, School of Biological Sciences, The University of Western Australia, Crawley, WA, Australia.,Brain Plasticity Group, Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia
| |
Collapse
|
11
|
Wang Y, Fang K, He S, Fan Y, Yu J, Zhang X. Effects of repetitive magnetic stimulation on the growth of primarily cultured hippocampus neurons in vitro and their expression of iron-containing enzymes. Neuropsychiatr Dis Treat 2019; 15:927-934. [PMID: 31114204 PMCID: PMC6489628 DOI: 10.2147/ndt.s199328] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 03/05/2019] [Indexed: 12/22/2022] Open
Abstract
Background: The mechanism of action of repetitive transcranial magnetic stimulation (rTMS) involves the generation of neuronal and action potentials utilizing induced currents in time-varying magnetic fields. However, the long-lasting and effective biological impact of magnetic stimulation does not appear to be completely explained by the transient magnetic field pulses. In this context, we hypothesized magnetic stimulation may affect the expression of iron-containing enzymes in neurons, mediating the long-lasting biological effects associated with this stimulus. Methods: Primarily cultured hippocampus neurons from SD rats were used as the cell model in this study. These were randomly divided into control, sham, and magnetic stimulation groups to probe into the effect of the magnetic field directly. The latter group received 40%, 60%, and 100% maximal stimulator output Tesla (1.68, 2.52, and 4.2 T) with low-frequency rTMS (1 Hz). The expression of iron-containing enzymes (catalase and aconitase) and non-ferrous enzymes (protein kinase A) was measured with Western blotting and ELISA. Results: The survival rates of neurons in the 40%T and 60%T groups were significantly increased in comparison to the controls (P<0.05), while those in the 100%T group showed cell damage, with slightly disturbed neurite connections and decreased survival rate. Furthermore, catalase and aconitase expression was higher in all of the stimulated groups in comparison to controls (P<0.05). On the other hand, the expression of the iron-containing enzymes decreased in the 100%T group in comparison with the 40%T and 60%T groups (P<0.05). Meanwhile, the expression of protein kinase A was not significantly increased in the groups which underwent magnetic stimulation. Conclusion: rTMS may increase the expression of ferrous enzymes but does not have a strong effect on non-ferrous enzymes. Excessive intensity of magnetic stimulation may reduce neuronal survival rate and affect the expression of iron-containing enzymes. The mechanism underlying the lasting effect of rTMS may be related to the increase of ferriferous expression induced by magnetic stimulation, with a clear correlation with stimulation intensity.
Collapse
Affiliation(s)
- Yirong Wang
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College, Sichuan, People's Republic of China
| | - Kewei Fang
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Sichuan, People's Republic of China
| | - Shijia He
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College, Sichuan, People's Republic of China
| | - Yang Fan
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College, Sichuan, People's Republic of China
| | - Juming Yu
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College, Sichuan, People's Republic of China
| | - Xiaodong Zhang
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College, Sichuan, People's Republic of China
| |
Collapse
|