1
|
Riabova A, Bekreneva M, Saveko A. Human foot cutaneous receptors function: clinical findings and prospects of using medical devices to stimulate mechanoreceptors in neurorehabilitation. Rev Neurosci 2025; 36:279-293. [PMID: 39425663 DOI: 10.1515/revneuro-2024-0082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 10/03/2024] [Indexed: 10/21/2024]
Abstract
The effectiveness of the support stimulation of the mechanoreceptors of the feet has been first shown in space medicine. In space flight during support withdrawal with non-use of postural muscle, this method is a countermeasure against sensorimotor disorders. Later, it was applied in clinical practice as treatment of motor disorders after stroke, in Parkinson's disease, infantile cerebral palsy, neuropathies, and many others. The impact of such stimulation on motor control is due to spinal and supraspinal mechanisms, which are activated by creating an additional support afferent input through the plantar surface. Many studies confirmed the positive effect of support stimulation on motor control, but the protocols of such stimulation remain the subject of active discussion. This review includes (1) the features of sensitivity of the foot sole cutaneous afferents to the support mechanical stimuli, (2) data on spinal and supraspinal responses of the nervous system to support stimulation, and (3) the results of applying this approach in neurological practice via various techniques. Summarizing this information, the authors highlight the most promising ways and types of medical devices for foot support stimulation in neurology.
Collapse
Affiliation(s)
- Alexandra Riabova
- Institute of Biomedical Problems of the Russian Academy of Sciences (IBMP RAS), 76A Khoroshevskoye shosse, 123007, Moscow, Russia
| | - Maria Bekreneva
- Institute of Biomedical Problems of the Russian Academy of Sciences (IBMP RAS), 76A Khoroshevskoye shosse, 123007, Moscow, Russia
| | - Alina Saveko
- Institute of Biomedical Problems of the Russian Academy of Sciences (IBMP RAS), 76A Khoroshevskoye shosse, 123007, Moscow, Russia
| |
Collapse
|
2
|
Fujikawa J, Morigaki R, Yamamoto N, Oda T, Nakanishi H, Izumi Y, Takagi Y. Therapeutic Devices for Motor Symptoms in Parkinson’s Disease: Current Progress and a Systematic Review of Recent Randomized Controlled Trials. Front Aging Neurosci 2022; 14:807909. [PMID: 35462692 PMCID: PMC9020378 DOI: 10.3389/fnagi.2022.807909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/14/2022] [Indexed: 11/29/2022] Open
Abstract
Background Pharmacotherapy is the first-line treatment option for Parkinson’s disease, and levodopa is considered the most effective drug for managing motor symptoms. However, side effects such as motor fluctuation and dyskinesia have been associated with levodopa treatment. For these conditions, alternative therapies, including invasive and non-invasive medical devices, may be helpful. This review sheds light on current progress in the development of devices to alleviate motor symptoms in Parkinson’s disease. Methods We first conducted a narrative literature review to obtain an overview of current invasive and non-invasive medical devices and thereafter performed a systematic review of recent randomized controlled trials (RCTs) of these devices. Results Our review revealed different characteristics of each device and their effectiveness for motor symptoms. Although invasive medical devices are usually highly effective, surgical procedures can be burdensome for patients and have serious side effects. In contrast, non-pharmacological/non-surgical devices have fewer complications. RCTs of non-invasive devices, especially non-invasive brain stimulation and mechanical peripheral stimulation devices, have proven effectiveness on motor symptoms. Nearly no non-invasive devices have yet received Food and Drug Administration certification or a CE mark. Conclusion Invasive and non-invasive medical devices have unique characteristics, and several RCTs have been conducted for each device. Invasive devices are more effective, while non-invasive devices are less effective and have lower hurdles and risks. It is important to understand the characteristics of each device and capitalize on these.
Collapse
Affiliation(s)
- Joji Fujikawa
- Department of Advanced Brain Research, Institute of Biomedical Sciences, Graduate School of Medicine, Tokushima University, Tokushima, Japan
| | - Ryoma Morigaki
- Department of Advanced Brain Research, Institute of Biomedical Sciences, Graduate School of Medicine, Tokushima University, Tokushima, Japan
- Department of Neurosurgery, Institute of Biomedical Sciences, Graduate School of Medicine, Tokushima University, Tokushima, Japan
- *Correspondence: Ryoma Morigaki,
| | - Nobuaki Yamamoto
- Department of Advanced Brain Research, Institute of Biomedical Sciences, Graduate School of Medicine, Tokushima University, Tokushima, Japan
- Department of Neurology, Institute of Biomedical Sciences, Graduate School of Medicine, Tokushima University, Tokushima, Japan
| | - Teruo Oda
- Department of Advanced Brain Research, Institute of Biomedical Sciences, Graduate School of Medicine, Tokushima University, Tokushima, Japan
| | - Hiroshi Nakanishi
- Department of Neurosurgery, Institute of Biomedical Sciences, Graduate School of Medicine, Tokushima University, Tokushima, Japan
| | - Yuishin Izumi
- Department of Neurology, Institute of Biomedical Sciences, Graduate School of Medicine, Tokushima University, Tokushima, Japan
| | - Yasushi Takagi
- Department of Advanced Brain Research, Institute of Biomedical Sciences, Graduate School of Medicine, Tokushima University, Tokushima, Japan
- Department of Neurosurgery, Institute of Biomedical Sciences, Graduate School of Medicine, Tokushima University, Tokushima, Japan
| |
Collapse
|
3
|
Zelada-Astudillo N, Moreno VC, Herrera-Santelices A, Barbieri FA, Zamunér AR. Effect of the combination of automated peripheral mechanical stimulation and physical exercise on aerobic functional capacity and cardiac autonomic control in patients with Parkinson's disease: a randomized clinical trial protocol. Trials 2021; 22:250. [PMID: 33823928 PMCID: PMC8025383 DOI: 10.1186/s13063-021-05177-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 03/10/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Automated peripheral mechanical stimulation (AMPS) has been proposed as a new complementary therapy with potential for improving motor and cardiovascular abnormalities in Parkinson's disease (PD). However, AMPS long-term effects and its combination with physical exercise are unknown. Thus, this study aims to compare the effects of a program of 12 weeks of physical exercise with a 12-week intervention program combining physical exercise and AMPS on the aerobic capacity, cardiac autonomic control, and gait parameters in patients with PD. METHODS A randomized, controlled clinical trial will be conducted. Older volunteers with PD will be randomly assigned to one of the two groups studied: (1) exercise or (2) AMPS + exercise. Both groups will undergo an exercise program of 24 sessions, for 12 weeks, performed twice a week. Before exercise sessions, the group AMPS + exercise will receive a session of active AMPS, while the group exercise will receive an AMPS sham intervention. Shapiro-Wilk's and Levene's tests will be used to check for data normality and homogeneity, respectively. In case parametric assumptions are fulfilled, per-protocol and intention-to-treat analyses will be performed using a mixed model analysis of variance to check for group*time interaction. Significance level will be set at 5%. DISCUSSION Several non-pharmacological treatment modalities have been proposed for PD, focusing primarily on the reduction of motor and musculoskeletal disorders. Regular exercise and motor training have been shown to be effective in improving quality of life. However, treatment options in general remain limited given the high prevalence and adverse impact of these disorders. So, developing new strategies that can potentiate the improvement of motor disabilities and also improve non-motor symptoms in PD is relevant. It is expected that the participants from both groups will improve their quality of life, gait parameters, and their cardiac autonomic control, with greater improvements being observed in the group combining active AMPS and physical exercise. TRIAL REGISTRATION ClinicalTrials.gov NCT04251728 . Registered on February 05, 2020.
Collapse
Affiliation(s)
- Nicolle Zelada-Astudillo
- Laboratory of Clinical Research in Kinesiology, Department of Kinesiology, Universidad Católica del Maule, Talca, Chile
| | - Vinicius Christianini Moreno
- São Paulo State University (UNESP), Graduate Program in Movement Sciences, Department of Physical Education, Human Movement Research Laboratory (MOVI-LAB), Bauru, Brazil
| | - Andrea Herrera-Santelices
- Laboratory of Clinical Research in Kinesiology, Department of Kinesiology, Universidad Católica del Maule, Talca, Chile
- Servicio de Medicina Física y Rehabilitación, Hospital San Juan de Dios, Curicó, Chile
| | - Fabio Augusto Barbieri
- São Paulo State University (UNESP), Graduate Program in Movement Sciences, Department of Physical Education, Human Movement Research Laboratory (MOVI-LAB), Bauru, Brazil
| | - Antonio Roberto Zamunér
- Laboratory of Clinical Research in Kinesiology, Department of Kinesiology, Universidad Católica del Maule, Talca, Chile.
| |
Collapse
|
4
|
Pagnussat AS, Salazar AP, Pinto C, Redivo Marchese R, Rieder CRM, Alves Filho JO, Franco AR, Kleiner AFR. Plantar stimulation alters brain connectivity in idiopathic Parkinson's disease. Acta Neurol Scand 2020; 142:229-238. [PMID: 32299120 DOI: 10.1111/ane.13253] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 03/25/2020] [Accepted: 04/11/2020] [Indexed: 01/05/2023]
Abstract
OBJECTIVE Individuals with Parkinson's disease (PD) and freezing of gait (FOG) present peripheral and central sensitivity disturbances that impair motor performance. This study aimed to investigate long-term effects of plantar sensory stimulation on brain activity, brain connectivity, and gait velocity of individuals with PD and FOG. METHODS Twenty-five participants were enrolled in this clinical trial (NCT02594540). Plantar sensory stimulation was delivered using the Automated Mechanical Peripheral Stimulation therapy (AMPS). Volunteers were randomly assigned to real or placebo AMPS groups and received eight sessions of treatment. The primary outcome was brain activity (task-based fMRI-active ankle dorsi-plantar flexion). Secondary outcomes were brain connectivity (resting state-RS fMRI) and gait velocity. fMRI was investigated on the left, right, and mid-sensory motor regions, left and right basal ganglia. RESULTS No changes in brain activity were observed when task-based fMRI was analyzed. After real AMPS, RS functional connectivity between basal ganglia and sensory-related brain areas increased (insular and somatosensory cortices). Gait velocity also increased after real AMPS. A positive correlation was found between gait velocity and the increased connectivity between sensory, motor and supplementary motor cortices. CONCLUSION Plantar sensory stimulation through AMPS was not able to modify brain activity. AMPS increased the RS brain connectivity mainly in areas related to sensory processing and sensorimotor integration. Plantar stimulation could be a way to improve plantar sensitivity and consequently ameliorate gait performance. However, the mechanisms behind the way AMPS influences brain pathways are still not completely known.
Collapse
Affiliation(s)
- Aline Souza Pagnussat
- Graduate Program in Rehabilitation Sciences Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA) Porto Alegre Brazil
- Movement Analysis and Rehabilitation Laboratory Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA) Porto Alegre Brazil
| | - Ana Paula Salazar
- Graduate Program in Rehabilitation Sciences Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA) Porto Alegre Brazil
- Movement Analysis and Rehabilitation Laboratory Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA) Porto Alegre Brazil
| | - Camila Pinto
- Graduate Program in Rehabilitation Sciences Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA) Porto Alegre Brazil
- Movement Analysis and Rehabilitation Laboratory Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA) Porto Alegre Brazil
| | - Ritchele Redivo Marchese
- Graduate Program in Rehabilitation Sciences Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA) Porto Alegre Brazil
- Movement Analysis and Rehabilitation Laboratory Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA) Porto Alegre Brazil
| | - Carlos R. M. Rieder
- Graduate Program in Rehabilitation Sciences Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA) Porto Alegre Brazil
| | | | - Alexandre R. Franco
- Center for Biomedical Imaging and Neuromodulation Nathan S. Kline Institute for Psychiatric Research Orangeburg NY USA
- Center for the Developing Brain Child Mind Institute New York NY USA
| | | |
Collapse
|
5
|
Brognara L, Cauli O. Mechanical Plantar Foot Stimulation in Parkinson's Disease: A Scoping Review. Diseases 2020; 8:E12. [PMID: 32397588 PMCID: PMC7349899 DOI: 10.3390/diseases8020012] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/28/2020] [Accepted: 05/07/2020] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Parkinson's disease (PD) is the second most prevalent neurodegenerative disease in older individuals. Neurorehabilitation-based interventions such as those improving gait are crucial for a holistic approach and to limit falls. Several studies have recently shown that mechanical plantar foot stimulation is a beneficial intervention for improving gait impairment in PD patients. The objective of this scoping review is to evaluate the beneficial effects of this stimulation on gait parameters, and to analyse protocols of foot stimulation and other effects in non-motor symptoms. Relevant articles were searched in the Medline database using Pubmed and Scopus, using the primary search terms 'foot stimulation' OR 'plantar stimulation' AND 'Parkinson's disease*'. Several protocols have been used for mechanical plantar foot stimulation (ranging from medical devices to textured insoles). The gait parameters that have been shown to be improved are stride length and walking speed. The beneficial effects are achieved after both acute and repeated plantar foot stimulation. Beneficial effects are observed in other organs and systems, such as muscle activation, brain connectivity, cardiovascular control in the central nervous system, and the release of brain-derived neurotrophic factor and cortisol in blood added evidence about this intervention's impact on brain function. Mechanical plantar foot stimulation is a safe and effective add-on treatment able for improving gait impairments in PD patients during the L-dopa off state. Randomized and controlled clinical trials to study its eventual potentiating effect with different pharmacotherapy regimens are warranted.
Collapse
Affiliation(s)
- Lorenzo Brognara
- Department of Biomedical and Neuromotor Science, University of Bologna, Via Ugo Foscolo 7, 40123 Bologna, Italy;
| | - Omar Cauli
- Frailty and Cognitive Impairment Organized Group (FROG), University of Valencia, 46010 Valencia, Spain
- Department of Nursing, University of Valencia, c/Jaume Roig s/n, 46010 Valencia, Spain
| |
Collapse
|
6
|
Brognara L, Navarro-Flores E, Iachemet L, Serra-Catalá N, Cauli O. Beneficial Effect of Foot Plantar Stimulation in Gait Parameters in Individuals with Parkinson's Disease. Brain Sci 2020; 10:E69. [PMID: 32012779 PMCID: PMC7071420 DOI: 10.3390/brainsci10020069] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 01/23/2020] [Accepted: 01/25/2020] [Indexed: 11/17/2022] Open
Abstract
New treatments based on peripheral stimulation of the sensory-motor system have shown to be promising in rehabilitation strategies for patients with neurological disorders, including Parkinson's disease (PD), especially in regards to reducing gait impairment, and hence, the incidence of falls. The aim of this study was to evaluate the change in several gait parameters measured by sensor inertial measurement in PD patients after acute plantar stimulation, under the distal phalanx of the big toe, and underneath the head of the first metatarsal joint of both feet, using a 3D printing insole. In order to assess whether the effects are selective for PD patients, we compared the effect of the treatment in a control group (age-matched) consisting of patients with other neurological disorders which also displayed gait and balance impairment, and a similar cognitive function, depressive symptoms, body mass index, and comorbidity burden observed in the PD group. Plantar foot stimulation in PD patients eliminated the significant (p < 0.05) alterations existing in stride asymmetry and in stride variability. When comparing the effects of post-plantar stimulation with the respective basal level, considered as 100% in both groups, we observed a significant (p = 0.019, Mann-Whitney test) increase in stride length compared to basal in the PD group and control group. No significant effects of foot plantar stimulation were observed in any of the gait parameters in the control group. Plantar foot stimulation has a positive effect on the step and stride length, and has a positive effect on walking stability, measured by the increase in stride length. No significant effect was observed on bradykinesia because it did not improve walking velocity. These findings indicate that foot plantar stimulation using a 3D printing insole seems to generate a more stable walking pattern in PD patients, with an interesting applicability, and a low-cost, for reducing gait impairment in PD patients.
Collapse
Affiliation(s)
- Lorenzo Brognara
- Department of Biomedical and Neuromotor Science, University of Bologna, Via Ugo Foscolo 7, 40123 Bologna, Italy; (L.B.); (L.I.)
| | - Emmanuel Navarro-Flores
- Frailty and cognitive impairment organized group, University of Valencia, 46010 Valencia, Spain;
- Department of Nursing, University of Valencia, c/Jaume Roig s/n, 4610 Valencia, Spain
| | - Lorenzo Iachemet
- Department of Biomedical and Neuromotor Science, University of Bologna, Via Ugo Foscolo 7, 40123 Bologna, Italy; (L.B.); (L.I.)
| | | | - Omar Cauli
- Frailty and cognitive impairment organized group, University of Valencia, 46010 Valencia, Spain;
- Department of Nursing, University of Valencia, c/Jaume Roig s/n, 4610 Valencia, Spain
| |
Collapse
|
7
|
Galli M, Vicidomini C, Rozin Kleiner AF, Vacca L, Cimolin V, Condoluci C, Stocchi F, De Pandis MF. Peripheral neurostimulation breaks the shuffling steps patterns in Parkinsonian gait: a double blind randomized longitudinal study with automated mechanical peripheral stimulation. Eur J Phys Rehabil Med 2018; 54:860-865. [PMID: 29457707 DOI: 10.23736/s1973-9087.18.05037-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
BACKGROUND The shuffling steps pattern is a typical feature of gait in patients affected by Parkinson's disease (PD), which progressively reduces their quality of life, being related to the risk of falls in this population. Recently, Automated Mechanical Peripheral Stimulation (AMPS) was presented as an integrative rehabilitative treatment based on peripheral stimulation able to improve the gait spatiotemporal parameters in PD patients. AIM The aim of this study was to evaluate the effects of AMPS on shuffling steps pattern by analyzing the kinematic and spatio-temporal gait parameters. DESIGN Double blind randomized longitudinal study. SETTING Outpatients. POPULATION PD patients. METHODS In this double blind randomized longitudinal study, 14 patients with PD were treated with effective-AMPS (AMPS group), while 14 PD patients were treated with placebo-AMPS (SHAM group); 32 healthy subjects were deemed the control group (CG). A dedicated medical device (Gondola™ Medical Technologies, Stabio, Switzerland) was used to deliver both stimulations. Each treatment session lasted about 15 minutes, including preparation (approx. 10 to 13 minutes) and stimulation (approx. 2 minutes). All PD patients were given six AMPS/SHAM treatments sessions, twice a week, delivered during the off-levodopa phase, having withdrawn from dopaminergic medication overnight. We evaluated spatio-temporal and kinematic variables of gait with quantitative 3D-gait analysis as follows: before and after the first intervention (acute phase), then after the sixth session (long term phase). RESULTS We detected differences in all gait variables immediately after the first session of AMPS treatment and again after the sixth stimulation session. CONCLUSIONS AMPS treatment changes the shuffling steps pattern that is typical of PD subjects, increasing the ROM of hip, knee and ankle joints during the gait cycle. CLINICAL REHABILITATION IMPACT This data presents further evidence that a rehabilitative approach based on the AMPS treatment can induce improvements in the gait pattern of patients affected by PD.
Collapse
Affiliation(s)
- Manuela Galli
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy -
| | - Caterina Vicidomini
- Biostructure and Bioimaging Institute (IBB), National Research Council (CNR), Naples, Italy.,San Raffaele Cassino Hospital, Tosinvest Sanità, Cassino, Italy
| | - Ana F Rozin Kleiner
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | | | - Veronica Cimolin
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | | | | | | |
Collapse
|