1
|
Li Y, Li P, Li Y, Wang J, Shen X, Zhang M, Ding L. Effect of motor process-related priming via repeated transcranial magnetic stimulation on embodiment perception during mirror visual feedback: a pilot study. Front Neurosci 2024; 18:1501169. [PMID: 39659886 PMCID: PMC11628548 DOI: 10.3389/fnins.2024.1501169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 11/07/2024] [Indexed: 12/12/2024] Open
Abstract
Introduction Non-invasive brain stimulation has been combined with mirror visual feedback (MVF) as a priming strategy to enhance therapeutic efficacy. However, a superior combined effect is hindered by the lack of emphasis on MVF-relevant embodiment perception. Objective This study assessed the priming effect of repeated transcranial magnetic stimulation (TMS) over the primary motor cortex (M1) and dorsolateral prefrontal cortex (dlPFC) on embodiment perception during MVF. Methods In the experiment, 15 healthy participants were required to complete tasks using their left hand while keeping their right hand static behind a mirror. They first received excitatory TMS over the left M1 or dlPFC, or sham-TMS in random order during three trial rounds and then performed three subsequent motor tasks and two task-oriented evaluations during MVF in each trial. Latency time (LT), number of embodiment occurrences, embodiment questionnaire (EQ) score, and time required to complete the task-oriented activities were recorded. Results The results showed that the LT of forearm rotation in the dlPFC-TMS round was shorter than that in the sham-TMS round, although a greater number of occurrences were obtained in both the M1-TMS and dlPFC-TMS rounds compared to the sham-TMS round within the three motor tasks, which suggested that TMS priming facilitated the elicitation of embodiment perception. The EQ results indicated strengthened embodiment perception after TMS priming, especially in the dlPFC-TMS round. Conclusion This study provides evidence that TMS priming over motor process-related regions, specifically the dlPFC, contributes to eliciting and intensifying embodiment perception during MVF, which benefited from a superior MVF paradigm for improving rehabilitation outcomes. Clinical Trial Registration Identifier ChiCTR2400089499 https://www.chictr.org.cn/showproj.html?proj=240385.
Collapse
Affiliation(s)
- Ying Li
- Rehabilitation Department, Luqiao Hospital of Traditional Chinese Medicine, Tazihou, Zhejiang, China
| | - Ping Li
- Rehabilitation Department, Luqiao Hospital of Traditional Chinese Medicine, Tazihou, Zhejiang, China
| | - Yixuan Li
- Rehabilitation Department, Luqiao Hospital of Traditional Chinese Medicine, Tazihou, Zhejiang, China
| | - Jia Wang
- Rehabilitation Department, Luqiao Hospital of Traditional Chinese Medicine, Tazihou, Zhejiang, China
| | - Xinyao Shen
- Rehabilitation Department, Luqiao Hospital of Traditional Chinese Medicine, Tazihou, Zhejiang, China
| | - Mingyong Zhang
- Rehabilitation Department, Luqiao Hospital of Traditional Chinese Medicine, Tazihou, Zhejiang, China
| | - Li Ding
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
2
|
Xu M, Nikolin S, Samaratunga N, Chow EJH, Loo CK, Martin DM. Cognitive Effects Following Offline High-Frequency Repetitive Transcranial Magnetic Stimulation (HF-rTMS) in Healthy Populations: A Systematic Review and Meta-Analysis. Neuropsychol Rev 2024; 34:250-276. [PMID: 36857011 PMCID: PMC10920443 DOI: 10.1007/s11065-023-09580-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/10/2023] [Indexed: 03/02/2023]
Abstract
High-frequency repetitive transcranial magnetic stimulation (HF-rTMS) is a commonly used form of rTMS to treat neuropsychiatric disorders. Emerging evidence suggests that 'offline' HF-rTMS may have cognitive enhancing effects, although the magnitude and moderators of these effects remain unclear. We conducted a systematic review and meta-analysis to clarify the cognitive effects of offline HF-rTMS in healthy individuals. A literature search for randomised controlled trials with cognitive outcomes for pre and post offline HF-rTMS was performed across five databases up until March 2022. This study was registered on the PROSPERO international prospective protocol for systematic reviews (PROSPERO 2020 CRD 42,020,191,269). The Risk of Bias 2 tool was used to assess the risk of bias in randomised trials. Separate analyses examined the cognitive effects of excitatory and inhibitory forms of offline HF-rTMS on accuracy and reaction times across six cognitive domains. Fifty-three studies (N = 1507) met inclusion criteria. Excitatory offline HF-rTMS showed significant small sized effects for improving accuracy (k = 46, g = 0.12) and reaction time (k = 44, g = -0.13) across all cognitive domains collapsed. Excitatory offline HF-rTMS demonstrated a relatively greater effect for executive functioning in accuracy (k = 24, g = 0.14). Reaction times were also improved for the executive function (k = 21, g = -0.11) and motor (k = 3, g = -0.22) domains following excitatory offline HF-rTMS. The current review was restricted to healthy individuals and future research is required to examine cognitive enhancement from offline HF-rTMS in clinical cohorts.
Collapse
Affiliation(s)
- Mei Xu
- Discipline of Psychiatry & Mental Health, School of Clinical Medicine, Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Stevan Nikolin
- Discipline of Psychiatry & Mental Health, School of Clinical Medicine, Faculty of Medicine, University of New South Wales, Sydney, Australia
- Black Dog Institute, Sydney, Australia
| | - Nisal Samaratunga
- Discipline of Psychiatry & Mental Health, School of Clinical Medicine, Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Esther Jia Hui Chow
- Discipline of Psychiatry & Mental Health, School of Clinical Medicine, Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Colleen K Loo
- Discipline of Psychiatry & Mental Health, School of Clinical Medicine, Faculty of Medicine, University of New South Wales, Sydney, Australia
- Black Dog Institute, Sydney, Australia
- The George Institute for Global Health, Sydney, Australia
| | - Donel M Martin
- Discipline of Psychiatry & Mental Health, School of Clinical Medicine, Faculty of Medicine, University of New South Wales, Sydney, Australia.
- Black Dog Institute, Sydney, Australia.
- UNSW Sydney, High St, Kensington, NSW, 2052, Australia.
| |
Collapse
|
3
|
Ding L, Sun Q, Jiang N, He J, Jia J. The instant effect of embodiment via mirror visual feedback on electroencephalogram-based brain connectivity changes: A pilot study. Front Neurosci 2023; 17:1138406. [PMID: 37021135 PMCID: PMC10067600 DOI: 10.3389/fnins.2023.1138406] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/28/2023] [Indexed: 04/07/2023] Open
Abstract
The therapeutic efficacy of mirror visual feedback (MVF) is attributed to the perception of embodiment. This study intends to investigate the instantaneous effect of embodiment on brain connectivity. Twelve healthy subjects were required to clench and open their non-dominant hands and keep the dominant hands still during two experimental sessions. In the first session, the dominant hand was covered and no MVF was applied, named the sham-MVF condition. Random vibrotactile stimulations were applied to the non-dominant hand with MVF in the subsequent session. Subjects were asked to pedal while having embodiment perception during motor tasks. As suggested by previous findings, trials of no vibration and continuous vibration were selected for this study, named the condition of MVF and vt-MVF. EEG signals were recorded and the alterations in brain connectivity were analyzed. The average node degrees of sham-MVF, MVF, and vt-MVF conditions were largely different in the alpha band (9.94, 11.19, and 17.37, respectively). Further analyses showed the MVF and vt-MVF had more nodes with a significantly large degree, which mainly occurred in the central and the visual stream involved regions. Results of network metrics showed a significant increment of local and global efficiency, and a reduction of characteristic path length for the vt-MVF condition in the alpha and beta bands compared to sham-MVF, and in the alpha band compared to MVF. Similar trends were found for MVF condition in the beta band compared to sham-MVF. Moreover, significant leftward asymmetry of global efficiency and rightward asymmetry of characteristic path length was reported in the vt-MVF condition in the beta band. These results indicated a positive impact of embodiment on network connectivity and neural communication efficiency, which reflected the potential mechanisms of MVF for new insight into neural modulation.
Collapse
Affiliation(s)
- Li Ding
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
- The National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Qiang Sun
- National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Sichuan, China
- Med-X Center for Manufacturing, Sichuan University, Sichuan, China
| | - Ning Jiang
- National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Sichuan, China
- Med-X Center for Manufacturing, Sichuan University, Sichuan, China
| | - Jiayuan He
- National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Sichuan, China
- Med-X Center for Manufacturing, Sichuan University, Sichuan, China
- Jiayuan He,
| | - Jie Jia
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
- The National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
- *Correspondence: Jie Jia,
| |
Collapse
|
4
|
Fong KNK, Ting KH, Zhang JJQ, Yau CSF, Li LSW. Event-Related Desynchronization During Mirror Visual Feedback: A Comparison of Older Adults and People After Stroke. Front Hum Neurosci 2021; 15:629592. [PMID: 34135740 PMCID: PMC8200456 DOI: 10.3389/fnhum.2021.629592] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 04/19/2021] [Indexed: 11/15/2022] Open
Abstract
Event-related desynchronization (ERD), as a proxy for mirror neuron activity, has been used as a neurophysiological marker for motor execution after mirror visual feedback (MVF). Using EEG, this study investigated ERD upon the immediate effects of single-session MVF in unimanual arm movements compared with the ERD effects occurring without a mirror, in two groups: stroke patients with left hemiplegia and their healthy counterparts. During EEG recordings, each group performed one session of mirror therapy training in three task conditions: with a mirror, with no mirror, and with a covered mirror. An asymmetry index was calculated from the subtraction of the event-related spectrum perturbations between the C3 and C4 electrodes located over the sensorimotor cortices contralateral and ipsilateral to the moved arm. Results of the effect of task versus group in contralateral and ipsilateral motor areas showed that there was a significant effect of task condition at the contralateral motor area in the high beta band (17–35 Hz) at C3. High beta ERD showed that the suppression was greater over the contralateral hemisphere than it was over the ipsilateral hemisphere in both study groups. The magnitude of low beta (12–16 Hz) ERD in patients with stroke was more suppressed in contralesional C3 under the no mirror compared to that of the covered mirror and similarly more suppressed in ipsilesional C4 ERD under the no mirror compared to that of the mirror condition. The correlation analysis revealed that the magnitude of ERSP power correlated significantly with arm severity in the low and high beta bands in patients with stroke, and a higher asymmetry index in the low beta band was associated with higher arm functioning under the no-mirror condition. There was a shift in sensorimotor ERD toward the contralateral hemisphere as induced by MVF accompanying unimanual movement in both stroke patients and healthy controls. The use of ERD in the low beta band as a neurophysiological marker to indicate the relationships between the amount of MVF-induced ERD attenuation and motor severity, and the outcome indicator for improving stroke patients’ neuroplasticity in clinical trials using MVF are warranted to be explored in the future.
Collapse
Affiliation(s)
- Kenneth N K Fong
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - K H Ting
- University Research Facility in Behavioral and Systems Neuroscience, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Jack J Q Zhang
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | | | - Leonard S W Li
- Tung Wah Hospital, Hospital Authority, Hong Kong, Hong Kong
| |
Collapse
|
5
|
Zhang JJ, Fong KNK. The Modulatory Effects of Intermittent Theta Burst Stimulation in Combination With Mirror Hand Motor Training on Functional Connectivity: A Proof-of-Concept Study. Front Neural Circuits 2021; 15:548299. [PMID: 33994954 PMCID: PMC8116554 DOI: 10.3389/fncir.2021.548299] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 04/06/2021] [Indexed: 11/13/2022] Open
Abstract
Mirror training (MT) is an observation-based motor learning strategy. Intermittent theta burst stimulation (iTBS) is an accelerated form of excitatory repetitive transcranial magnetic stimulation (rTMS) that has been used to enhance the cortical excitability of the motor cortices. This study aims to investigate the combined effects of iTBS with MT on the resting state functional connectivity at alpha frequency band in healthy adults. Eighteen healthy adults were randomized into one of three groups—Group 1: iTBS plus MT, Group 2: iTBS plus sham MT, and Group 3: sham iTBS plus MT. Participants in Groups 1 and 3 observed the mirror illusion of the moving (right) hand in a plain mirror for four consecutive sessions, one session/day, while participants in Group 2 received the same training with a covered mirror. Real or sham iTBS was applied daily over right motor cortex prior to the training. Resting state electroencephalography (EEG) at baseline and post-training was recorded when participants closed their eyes. The mixed-effects model demonstrated a significant interaction effect in the coherence between FC4 and C4 channels, favoring participants in Group 1 over Group 3 (Δβ = −0.84, p = 0.048). A similar effect was also found in the coherence between FC3 and FC4 channels favoring Group 1 over Group 3 (Δβ = −0.43, p = 0.049). In contrast to sham iTBS combined with MT, iTBS combined with MT may strengthen the functional connectivity between bilateral premotor cortices and ipsilaterally within the motor cortex of the stimulated hemisphere. In contrast to sham MT, real MT, when combined with iTBS, might diminish the connectivity among the contralateral parietal–frontal areas.
Collapse
Affiliation(s)
- Jack Jiaqi Zhang
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hung Hom, Hong Kong
| | - Kenneth N K Fong
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hung Hom, Hong Kong
| |
Collapse
|
6
|
Zhang JJ, Fong KNK. The Effects of Priming Intermittent Theta Burst Stimulation on Movement-Related and Mirror Visual Feedback-Induced Sensorimotor Desynchronization. Front Hum Neurosci 2021; 15:626887. [PMID: 33584232 PMCID: PMC7878678 DOI: 10.3389/fnhum.2021.626887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 01/06/2021] [Indexed: 11/24/2022] Open
Abstract
The potential benefits of priming intermittent theta burst stimulation (iTBS) with continuous theta burst stimulation (cTBS) have not been examined in regard to sensorimotor oscillatory activities recorded in electroencephalography (EEG). The objective of this study was to investigate the modulatory effect of priming iTBS (cTBS followed by iTBS) delivered to the motor cortex on movement-related and mirror visual feedback (MVF)-induced sensorimotor event-related desynchronization (ERD), compared with iTBS alone, on healthy adults. Twenty participants were randomly allocated into Group 1: priming iTBS—cTBS followed by iTBS, and Group 2: non-priming iTBS—sham cTBS followed by iTBS. The stimulation was delivered to the right primary motor cortex daily for 4 consecutive days. EEG was measured before and after 4 sessions of stimulation. Movement-related ERD was evaluated during left-index finger tapping and MVF-induced sensorimotor ERD was evaluated by comparing the difference between right-index finger tapping with and without MVF. After stimulation, both protocols increased movement-related ERD and MVF-induced sensorimotor ERD in high mu and low beta bands, indicated by significant time effects. A significant interaction effect favoring Group 1 in enhancing movement-related ERD was observed in the high mu band [F(1,18) = 4.47, p = 0.049], compared with Group 2. Our experiment suggests that among healthy adults priming iTBS with cTBS delivered to the motor cortex yields similar effects with iTBS alone on enhancing ERD induced by MVF-based observation, while movement-related ERD was more enhanced in the priming iTBS condition, specifically in the high mu band.
Collapse
Affiliation(s)
- Jack Jiaqi Zhang
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Kenneth N K Fong
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| |
Collapse
|
7
|
Zhang JJ, Fong KNK. Effects of priming intermittent theta burst stimulation on upper limb motor recovery after stroke: study protocol for a proof-of-concept randomised controlled trial. BMJ Open 2020; 10:e035348. [PMID: 32152174 PMCID: PMC7064082 DOI: 10.1136/bmjopen-2019-035348] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 02/11/2020] [Accepted: 02/19/2020] [Indexed: 11/29/2022] Open
Abstract
INTRODUCTION Intermittent theta burst stimulation (iTBS), a form of repetitive transcranial magnetic stimulation (rTMS), delivered to the ipsilesional primary motor cortex (M1), appears to enhance the brain's response to rehabilitative training in patients with stroke. However, its clinical utility is highly subject to variability in different protocols. New evidence has reported that preceding iTBS, with continuous theta burst stimulation (cTBS) may stabilise and even boost the facilitatory effect of iTBS on the stimulated M1, via metaplasticity. The aim of this study is to investigate the effects of iTBS primed with cTBS (ie, priming iTBS), in addition to robot-assisted training (RAT), on the improvement of the hemiparetic upper limb functions of stroke patients and to explore potential sensorimotor neuroplasticity using electroencephalography (EEG). METHODS AND ANALYSIS A three-arm, subjects and assessors-blinded, randomised controlled trial will be performed with patients with chronic stroke. An estimated sample of 36 patients will be needed based on the prior sample size calculation. All participants will be randomly allocated to receive 10 sessions of rTMS with different TBS protocols (cTBS+iTBS, sham cTBS+iTBS and sham cTBS+sham iTBS), three to five sessions per week, for 2-3 weeks. All participants will receive 60 min of RAT after each stimulation session. Primary outcomes will be assessed using Fugl-Meyer Assessment-Upper Extremity scores and Action Research Arm Test. Secondary outcomes will be assessed using kinematic outcomes generated during RAT and EEG. ETHICS AND DISSEMINATION Ethical approval has been obtained from The Human Subjects Ethics Sub-committee, University Research Committee of The Hong Kong Polytechnic University (reference number: HSEARS20190718003). The results yielded from this study will be presented at international conferences and sent to a peer-review journal to be considered for publication. TRIAL REGISTRATION NUMBER NCT04034069.
Collapse
Affiliation(s)
- Jack Jiaqi Zhang
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Kenneth N K Fong
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China
| |
Collapse
|