1
|
Nigam S, Bishop JO, Hayat H, Quadri T, Hayat H, Wang P. Nanotechnology in Immunotherapy for Type 1 Diabetes: Promising Innovations and Future Advances. Pharmaceutics 2022; 14:644. [PMID: 35336018 PMCID: PMC8955746 DOI: 10.3390/pharmaceutics14030644] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/05/2022] [Accepted: 03/08/2022] [Indexed: 11/16/2022] Open
Abstract
Diabetes is a chronic condition which affects the glucose metabolism in the body. In lieu of any clinical "cure," the condition is managed through the administration of pharmacological aids, insulin supplements, diet restrictions, exercise, and the like. The conventional clinical prescriptions are limited by their life-long dependency and diminished potency, which in turn hinder the patient's recovery. This necessitated an alteration in approach and has instigated several investigations into other strategies. As Type 1 diabetes (T1D) is known to be an autoimmune disorder, targeting the immune system in activation and/or suppression has shown promise in reducing beta cell loss and improving insulin levels in response to hyperglycemia. Another strategy currently being explored is the use of nanoparticles in the delivery of immunomodulators, insulin, or engineered vaccines to endogenous immune cells. Nanoparticle-assisted targeting of immune cells holds substantial potential for enhanced patient care within T1D clinical settings. Herein, we summarize the knowledge of etiology, clinical scenarios, and the current state of nanoparticle-based immunotherapeutic approaches for Type 1 diabetes. We also discuss the feasibility of translating this approach to clinical practice.
Collapse
Affiliation(s)
- Saumya Nigam
- Precision Health Program, Michigan State University, East Lansing, MI 48824, USA; (S.N.); (J.O.B.); (H.H.); (T.Q.); (H.H.)
- Department of Radiology, College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA
| | - Jack Owen Bishop
- Precision Health Program, Michigan State University, East Lansing, MI 48824, USA; (S.N.); (J.O.B.); (H.H.); (T.Q.); (H.H.)
- Department of Radiology, College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA
| | - Hanaan Hayat
- Precision Health Program, Michigan State University, East Lansing, MI 48824, USA; (S.N.); (J.O.B.); (H.H.); (T.Q.); (H.H.)
- Lyman Briggs College, Michigan State University, East Lansing, MI 48824, USA
| | - Tahnia Quadri
- Precision Health Program, Michigan State University, East Lansing, MI 48824, USA; (S.N.); (J.O.B.); (H.H.); (T.Q.); (H.H.)
- Lyman Briggs College, Michigan State University, East Lansing, MI 48824, USA
| | - Hasaan Hayat
- Precision Health Program, Michigan State University, East Lansing, MI 48824, USA; (S.N.); (J.O.B.); (H.H.); (T.Q.); (H.H.)
- Department of Radiology, College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA
| | - Ping Wang
- Precision Health Program, Michigan State University, East Lansing, MI 48824, USA; (S.N.); (J.O.B.); (H.H.); (T.Q.); (H.H.)
- Department of Radiology, College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
2
|
Klontzas ME, Kakkos GA, Papadakis GZ, Marias K, Karantanas AH. Advanced clinical imaging for the evaluation of stem cell based therapies. Expert Opin Biol Ther 2021; 21:1253-1264. [PMID: 33576278 DOI: 10.1080/14712598.2021.1890711] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Introduction: As stem cell treatments reach closer to the clinic, the need for appropriate noninvasive imaging for accurate disease diagnosis, treatment planning, follow-up, and early detection of complications, is constantly rising. Clinical radiology affords an extensive arsenal of advanced imaging techniques, to provide anatomical and functional information on the whole spectrum of stem cell treatments from diagnosis to follow-up.Areas covered: This manuscript aims at providing a critical review of major published studies on the utilization of advanced imaging for stem cell treatments. Uses of magnetic resonance imaging (MRI), computed tomography (CT), ultrasound, and positron emission tomography (PET) are reviewed and interrogated for their applicability to stem cell imaging.Expert opinion: A wide spectrum of imaging methods have been utilized for the evaluation of stem cell therapies. The majority of published techniques are not clinically applicable, using methods exclusively applicable to animals or technology irrelevant to current clinical practice. Harmonization of preclinical methods with clinical reality is necessary for the timely translation of stem cell therapies to the clinic. Methods such as diffusion weighted MRI, hybrid imaging, and contrast-enhanced ultrasound hold great promise and should be routinely incorporated in the evaluation of patients receiving stem cell treatments.
Collapse
Affiliation(s)
- Michail E Klontzas
- Department of Medical Imaging, University Hospital of Heraklion, Crete, Greece.,Advanced Hybrid Imaging Systems, Institute of Computer Science, Foundation for Research and Technology (FORTH), Heraklion, Crete, Greece
| | - George A Kakkos
- Department of Medical Imaging, University Hospital of Heraklion, Crete, Greece
| | - Georgios Z Papadakis
- Advanced Hybrid Imaging Systems, Institute of Computer Science, Foundation for Research and Technology (FORTH), Heraklion, Crete, Greece.,Computational Biomedicine Laboratory (CBML), Foundation for Research and Technology Hellas (FORTH), Heraklion, Crete, Greece.,Department of Radiology, School of Medicine, University of Crete, Heraklion, Crete, Greece
| | - Kostas Marias
- Computational Biomedicine Laboratory (CBML), Foundation for Research and Technology Hellas (FORTH), Heraklion, Crete, Greece.,Department of Electrical and Computer Engineering, Hellenic Mediterranean University, Heraklion, Crete, Greece
| | - Apostolos H Karantanas
- Department of Medical Imaging, University Hospital of Heraklion, Crete, Greece.,Advanced Hybrid Imaging Systems, Institute of Computer Science, Foundation for Research and Technology (FORTH), Heraklion, Crete, Greece.,Computational Biomedicine Laboratory (CBML), Foundation for Research and Technology Hellas (FORTH), Heraklion, Crete, Greece.,Department of Radiology, School of Medicine, University of Crete, Heraklion, Crete, Greece
| |
Collapse
|
3
|
Rajendran RL, Jogalekar MP, Gangadaran P, Ahn BC. Noninvasive in vivo cell tracking using molecular imaging: A useful tool for developing mesenchymal stem cell-based cancer treatment. World J Stem Cells 2020; 12:1492-1510. [PMID: 33505597 PMCID: PMC7789123 DOI: 10.4252/wjsc.v12.i12.1492] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 10/05/2020] [Accepted: 10/21/2020] [Indexed: 02/06/2023] Open
Abstract
Mounting evidence has emphasized the potential of cell therapies in treating various diseases by restoring damaged tissues or replacing defective cells in the body. Cell therapies have become a strong therapeutic modality by applying noninvasive in vivo molecular imaging for examining complex cellular processes, understanding pathophysiological mechanisms of diseases, and evaluating the kinetics/dynamics of cell therapies. In particular, mesenchymal stem cells (MSCs) have shown promise in recent years as drug carriers for cancer treatment. They can also be labeled with different probes and tracked in vivo to assess the in vivo effect of administered cells, and to optimize therapy. The exact role of MSCs in oncologic diseases is not clear as MSCs have been shown to be involved in tumor progression and inhibition, and the exact interactions between MSCs and specific cancer microenvironments are not clear. In this review, a multitude of labeling approaches, imaging modalities, and the merits/demerits of each strategy are outlined. In addition, specific examples of the use of MSCs and in vivo imaging in cancer therapy are provided. Finally, present limitations and future outlooks in terms of the translation of different imaging approaches in clinics are discussed.
Collapse
Affiliation(s)
| | | | - Prakash Gangadaran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, South Korea
- BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu 41944, South Korea
| | - Byeong-Cheol Ahn
- BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu 41944, South Korea
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, South Korea.
| |
Collapse
|