1
|
L G, R H, M S, Raja SP. Enhancing diabetic retinopathy and macular edema detection through multi scale feature fusion using deep learning model. Graefes Arch Clin Exp Ophthalmol 2024:10.1007/s00417-024-06687-4. [PMID: 39680112 DOI: 10.1007/s00417-024-06687-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 10/08/2024] [Accepted: 11/05/2024] [Indexed: 12/17/2024] Open
Abstract
BACKGROUND This work tackles the growing problem of early identification of diabetic retinopathy and diabetic macular edema. The deep neural network design utilizes multi-scale feature fusion to improve automated diagnostic accuracy. Methods This approach uses convolutional neural networks (CNN) and is designed to combine higher-level semantic inputs with low-level textural characteristics. The contextual and localized abstract representations that complement each other are combined via a unique fusion technique. RESULTS Use the MESSIDOR dataset, which comprises retinal images labeled with pathological annotations, for model training and validation to ensure robust algorithm development. The suggested model shows a 98% general precision and good performance in diabetic retinopathy. This model achieves an impressive nearly 100% exactness for diabetic macular edema, with particularly high accuracy (0.99). CONCLUSION Consistent performance increases the likelihood that the vision will be upheld through public screening and extensive clinical integration.
Collapse
Affiliation(s)
- Gowri L
- SASTRA Deemed to be University, Thanjavur, Tamil Nadu, India
| | - Haris R
- SASTRA Deemed to be University, Thanjavur, Tamil Nadu, India
| | - Sumathi M
- SASTRA Deemed to be University, Thanjavur, Tamil Nadu, India.
| | - S P Raja
- School of Computer Science and Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| |
Collapse
|
2
|
Manikandan S, Raman R, Rajalakshmi R, Tamilselvi S, Surya RJ. Deep learning-based detection of diabetic macular edema using optical coherence tomography and fundus images: A meta-analysis. Indian J Ophthalmol 2023; 71:1783-1796. [PMID: 37203031 PMCID: PMC10391382 DOI: 10.4103/ijo.ijo_2614_22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023] Open
Abstract
Diabetic macular edema (DME) is an important cause of visual impairment in the working-age group. Deep learning methods have been developed to detect DME from two-dimensional retinal images and also from optical coherence tomography (OCT) images. The performances of these algorithms vary and often create doubt regarding their clinical utility. In resource-constrained health-care systems, these algorithms may play an important role in determining referral and treatment. The survey provides a diversified overview of macular edema detection methods, including cutting-edge research, with the objective of providing pertinent information to research groups, health-care professionals, and diabetic patients about the applications of deep learning in retinal image detection and classification process. Electronic databases such as PubMed, IEEE Explore, BioMed, and Google Scholar were searched from inception to March 31, 2022, and the reference lists of published papers were also searched. The study followed the preferred reporting items for systematic review and meta-analysis (PRISMA) reporting guidelines. Examination of various deep learning models and their exhibition regarding precision, epochs, their capacity to detect anomalies for less training data, concepts, and challenges that go deep into the applications were analyzed. A total of 53 studies were included that evaluated the performance of deep learning models in a total of 1,414,169°CT volumes, B-scans, patients, and 472,328 fundus images. The overall area under the receiver operating characteristic curve (AUROC) was 0.9727. The overall sensitivity for detecting DME using OCT images was 96% (95% confidence interval [CI]: 0.94-0.98). The overall sensitivity for detecting DME using fundus images was 94% (95% CI: 0.90-0.96).
Collapse
Affiliation(s)
- Suchetha Manikandan
- Professor & Deputy Director, Centre for Healthcare Advancement, Innovation ! Research, Vellore Institute of Technology, Chennai, Tamil Nadu, India
| | - Rajiv Raman
- Senior Consultant, Shri Bhagwan Mahavir Vitreoretinal Services, Sankara Nethralaya, Chennai, Tamil Nadu, India
| | - Ramachandran Rajalakshmi
- Head Medical Retina, Dr. Mohan's Diabetes Specialties Centre and Madras Diabetes Research Foundation, Chennai, Tamil Nadu, India
| | - S Tamilselvi
- Junior Research Fellow, Centre for Healthcare Advancement, Innovation & Research, Vellore Institute of Technology, Chennai, Tamil Nadu, India
| | - R Janani Surya
- Research Associate, Vision Research Foundation, Chennai, Tamil Nadu, India
| |
Collapse
|
3
|
Shahriari MH, Sabbaghi H, Asadi F, Hosseini A, Khorrami Z. Artificial intelligence in screening, diagnosis, and classification of diabetic macular edema: A systematic review. Surv Ophthalmol 2023; 68:42-53. [PMID: 35970233 DOI: 10.1016/j.survophthal.2022.08.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 08/03/2022] [Accepted: 08/08/2022] [Indexed: 02/01/2023]
Abstract
We review the application of artificial intelligence (AI) techniques in the screening, diagnosis, and classification of diabetic macular edema (DME) by searching six databases- PubMed, Scopus, Web of Science, Science Direct, IEEE, and ACM- from January 1, 2005 to July 4, 2021. A total of 879 articles were extracted, and by applying inclusion and exclusion criteria, 38 articles were selected for more evaluation. The methodological quality of included studies was evaluated using the Quality Assessment for Diagnostic Accuracy Studies (QUADAS-2). We provide an overview of the current state of various AI techniques for DME screening, diagnosis, and classification using retinal imaging modalities such as optical coherence tomography (OCT) and color fundus photography (CFP). Based on our findings, deep learning models have an extraordinary capacity to provide an accurate and efficient system for DME screening and diagnosis. Using these in the processing of modalities leads to a significant increase in sensitivity and specificity values. The use of decision support systems and applications based on AI in processing retinal images provided by OCT and CFP increases the sensitivity and specificity in DME screening and detection.
Collapse
Affiliation(s)
- Mohammad Hasan Shahriari
- Department of Health Information Technology and Management, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamideh Sabbaghi
- Ophthalmic Epidemiology Research Center, Research Institute for Ophthalmology and Vision Science, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Optometry, School of Rehabilitation, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farkhondeh Asadi
- Department of Health Information Technology and Management, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Azamosadat Hosseini
- Department of Health Information Technology and Management, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Zahra Khorrami
- Ophthalmic Epidemiology Research Center, Research Institute for Ophthalmology and Vision Science, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Pavithra K, Kumar P, Geetha M, Bhandary SV. Computer aided diagnosis of diabetic macular edema in retinal fundus and OCT images: A review. Biocybern Biomed Eng 2023. [DOI: 10.1016/j.bbe.2022.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
5
|
Iqbal S, Khan TM, Naveed K, Naqvi SS, Nawaz SJ. Recent trends and advances in fundus image analysis: A review. Comput Biol Med 2022; 151:106277. [PMID: 36370579 DOI: 10.1016/j.compbiomed.2022.106277] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/19/2022] [Accepted: 10/30/2022] [Indexed: 11/05/2022]
Abstract
Automated retinal image analysis holds prime significance in the accurate diagnosis of various critical eye diseases that include diabetic retinopathy (DR), age-related macular degeneration (AMD), atherosclerosis, and glaucoma. Manual diagnosis of retinal diseases by ophthalmologists takes time, effort, and financial resources, and is prone to error, in comparison to computer-aided diagnosis systems. In this context, robust classification and segmentation of retinal images are primary operations that aid clinicians in the early screening of patients to ensure the prevention and/or treatment of these diseases. This paper conducts an extensive review of the state-of-the-art methods for the detection and segmentation of retinal image features. Existing notable techniques for the detection of retinal features are categorized into essential groups and compared in depth. Additionally, a summary of quantifiable performance measures for various important stages of retinal image analysis, such as image acquisition and preprocessing, is provided. Finally, the widely used in the literature datasets for analyzing retinal images are described and their significance is emphasized.
Collapse
Affiliation(s)
- Shahzaib Iqbal
- Department of Electrical and Computer Engineering, COMSATS University Islamabad (CUI), Islamabad, Pakistan
| | - Tariq M Khan
- School of Computer Science and Engineering, University of New South Wales, Sydney, NSW, Australia.
| | - Khuram Naveed
- Department of Electrical and Computer Engineering, COMSATS University Islamabad (CUI), Islamabad, Pakistan; Department of Electrical and Computer Engineering, Aarhus University, Aarhus, Denmark
| | - Syed S Naqvi
- Department of Electrical and Computer Engineering, COMSATS University Islamabad (CUI), Islamabad, Pakistan
| | - Syed Junaid Nawaz
- Department of Electrical and Computer Engineering, COMSATS University Islamabad (CUI), Islamabad, Pakistan
| |
Collapse
|
6
|
A Novel original feature fusion network for joint diabetic retinopathy and diabetic Macular edema grading. Neural Comput Appl 2022. [DOI: 10.1007/s00521-022-08038-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
7
|
Lu Z, Miao J, Dong J, Zhu S, Wang X, Feng J. Automatic classification of retinal diseases with transfer learning-based lightweight convolutional neural network. Biomed Signal Process Control 2022. [DOI: 10.1016/j.bspc.2022.104365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Wang TY, Chen YH, Chen JT, Liu JT, Wu PY, Chang SY, Lee YW, Su KC, Chen CL. Diabetic Macular Edema Detection Using End-to-End Deep Fusion Model and Anatomical Landmark Visualization on an Edge Computing Device. Front Med (Lausanne) 2022; 9:851644. [PMID: 35445051 PMCID: PMC9014123 DOI: 10.3389/fmed.2022.851644] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/14/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose Diabetic macular edema (DME) is a common cause of vision impairment and blindness in patients with diabetes. However, vision loss can be prevented by regular eye examinations during primary care. This study aimed to design an artificial intelligence (AI) system to facilitate ophthalmology referrals by physicians. Methods We developed an end-to-end deep fusion model for DME classification and hard exudate (HE) detection. Based on the architecture of fusion model, we also applied a dual model which included an independent classifier and object detector to perform these two tasks separately. We used 35,001 annotated fundus images from three hospitals between 2007 and 2018 in Taiwan to create a private dataset. The Private dataset, Messidor-1 and Messidor-2 were used to assess the performance of the fusion model for DME classification and HE detection. A second object detector was trained to identify anatomical landmarks (optic disc and macula). We integrated the fusion model and the anatomical landmark detector, and evaluated their performance on an edge device, a device with limited compute resources. Results For DME classification of our private testing dataset, Messidor-1 and Messidor-2, the area under the receiver operating characteristic curve (AUC) for the fusion model had values of 98.1, 95.2, and 95.8%, the sensitivities were 96.4, 88.7, and 87.4%, the specificities were 90.1, 90.2, and 90.2%, and the accuracies were 90.8, 90.0, and 89.9%, respectively. In addition, the AUC was not significantly different for the fusion and dual models for the three datasets (p = 0.743, 0.942, and 0.114, respectively). For HE detection, the fusion model achieved a sensitivity of 79.5%, a specificity of 87.7%, and an accuracy of 86.3% using our private testing dataset. The sensitivity of the fusion model was higher than that of the dual model (p = 0.048). For optic disc and macula detection, the second object detector achieved accuracies of 98.4% (optic disc) and 99.3% (macula). The fusion model and the anatomical landmark detector can be deployed on a portable edge device. Conclusion This portable AI system exhibited excellent performance for the classification of DME, and the visualization of HE and anatomical locations. It facilitates interpretability and can serve as a clinical reference for physicians. Clinically, this system could be applied to diabetic eye screening to improve the interpretation of fundus imaging in patients with DME.
Collapse
Affiliation(s)
- Ting-Yuan Wang
- Information and Communications Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan
| | - Yi-Hao Chen
- Department of Ophthalmology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Jiann-Torng Chen
- Department of Ophthalmology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Jung-Tzu Liu
- Information and Communications Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan
| | - Po-Yi Wu
- Information and Communications Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan
| | - Sung-Yen Chang
- Information and Communications Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan
| | - Ya-Wen Lee
- Information and Communications Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan
| | - Kuo-Chen Su
- Department of Optometry, Chung Shan Medical University, Taichung, Taiwan
| | - Ching-Long Chen
- Department of Ophthalmology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
9
|
Liu B, Zhang B, Hu Y, Cao D, Yang D, Wu Q, Hu Y, Yang J, Peng Q, Huang M, Zhong P, Dong X, Feng S, Li T, Lin H, Cai H, Yang X, Yu H. Automatic prediction of treatment outcomes in patients with diabetic macular edema using ensemble machine learning. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:43. [PMID: 33553336 PMCID: PMC7859823 DOI: 10.21037/atm-20-1431] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Background This study aimed to predict the treatment outcomes in patients with diabetic macular edema (DME) after 3 monthly anti-vascular endothelial growth factor (VEGF) injections using machine learning (ML) based on pretreatment optical coherence tomography (OCT) images and clinical variables. Methods An ensemble ML system consisting of four deep learning (DL) models and five classical machine learning (CML) models was developed to predict the posttreatment central foveal thickness (CFT) and the best-corrected visual acuity (BCVA). A total of 363 OCT images and 7,587 clinical data records from 363 eyes were included in the training set (304 eyes) and external validation set (59 eyes). The DL models were trained using the OCT images, and the CML models were trained using the OCT images features and clinical variables. The predictive posttreatment CFT and BCVA values were compared with true outcomes obtained from the medical records. Results For CFT prediction, the mean absolute error (MAE), root mean square error (RMSE), and R2 of the best-performing model in the training set was 66.59, 93.73, and 0.71, respectively, with an area under receiver operating characteristic curve (AUC) of 0.90 for distinguishing the eyes with good anatomical response. The MAE, RMSE, and R2 was 68.08, 97.63, and 0.74, respectively, with an AUC of 0.94 in the external validation set. For BCVA prediction, the MAE, RMSE, and R2 of the best-performing model in the training set was 0.19, 0.29, and 0.60, respectively, with an AUC of 0.80 for distinguishing eyes with a good functional response. The external validation achieved a MAE, RMSE, and R2 of 0.13, 0.20, and 0.68, respectively, with an AUC of 0.81. Conclusions Our ensemble ML system accurately predicted posttreatment CFT and BCVA after anti-VEGF injections in DME patients, and can be used to prospectively assess the efficacy of anti-VEGF therapy in DME patients.
Collapse
Affiliation(s)
- Baoyi Liu
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Bin Zhang
- School of Computer Science and Engineering, South China University of Technology, Guangzhou, China
| | - Yijun Hu
- Aier School of Ophthalmology, Central South University, Changsha, China
| | - Dan Cao
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Dawei Yang
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Qiaowei Wu
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Yu Hu
- School of Computer Science and Engineering, South China University of Technology, Guangzhou, China
| | - Jingwen Yang
- School of Computer Science and Engineering, South China University of Technology, Guangzhou, China
| | - Qingsheng Peng
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Manqing Huang
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Pingting Zhong
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Xinran Dong
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Songfu Feng
- Department of Ophthalmology, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Tao Li
- Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Haotian Lin
- Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Hongmin Cai
- School of Computer Science and Engineering, South China University of Technology, Guangzhou, China
| | - Xiaohong Yang
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Honghua Yu
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
10
|
Abstract
Macular edema occurs in a wide variety of ophthalmological diseases. The diagnostics and treatment are an important part of modern ophthalmology. Due to the continuous development, artificial intelligence (AI) offers many opportunities to improve the management of macular edema. This article provides the readership with an overview of this interesting topic.
Collapse
|
11
|
Retinal Image Analysis for Diabetes-Based Eye Disease Detection Using Deep Learning. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10186185] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Diabetic patients are at the risk of developing different eye diseases i.e., diabetic retinopathy (DR), diabetic macular edema (DME) and glaucoma. DR is an eye disease that harms the retina and DME is developed by the accumulation of fluid in the macula, while glaucoma damages the optic disk and causes vision loss in advanced stages. However, due to slow progression, the disease shows few signs in early stages, hence making disease detection a difficult task. Therefore, a fully automated system is required to support the detection and screening process at early stages. In this paper, an automated disease localization and segmentation approach based on Fast Region-based Convolutional Neural Network (FRCNN) algorithm with fuzzy k-means (FKM) clustering is presented. The FRCNN is an object detection approach that requires the bounding-box annotations to work; however, datasets do not provide them, therefore, we have generated these annotations through ground-truths. Afterward, FRCNN is trained over the annotated images for localization that are then segmented-out through FKM clustering. The segmented regions are then compared against the ground-truths through intersection-over-union operations. For performance evaluation, we used the Diaretdb1, MESSIDOR, ORIGA, DR-HAGIS, and HRF datasets. A rigorous comparison against the latest methods confirms the efficacy of the approach in terms of both disease detection and segmentation.
Collapse
|
12
|
Intelligent optic disc segmentation using improved particle swarm optimization and evolving ensemble models. Appl Soft Comput 2020. [DOI: 10.1016/j.asoc.2020.106328] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
13
|
Li X, Hu X, Yu L, Zhu L, Fu CW, Heng PA. CANet: Cross-Disease Attention Network for Joint Diabetic Retinopathy and Diabetic Macular Edema Grading. IEEE TRANSACTIONS ON MEDICAL IMAGING 2020; 39:1483-1493. [PMID: 31714219 DOI: 10.1109/tmi.2019.2951844] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Diabetic retinopathy (DR) and diabetic macular edema (DME) are the leading causes of permanent blindness in the working-age population. Automatic grading of DR and DME helps ophthalmologists design tailored treatments to patients, thus is of vital importance in the clinical practice. However, prior works either grade DR or DME, and ignore the correlation between DR and its complication, i.e., DME. Moreover, the location information, e.g., macula and soft hard exhaust annotations, are widely used as a prior for grading. Such annotations are costly to obtain, hence it is desirable to develop automatic grading methods with only image-level supervision. In this article, we present a novel cross-disease attention network (CANet) to jointly grade DR and DME by exploring the internal relationship between the diseases with only image-level supervision. Our key contributions include the disease-specific attention module to selectively learn useful features for individual diseases, and the disease-dependent attention module to further capture the internal relationship between the two diseases. We integrate these two attention modules in a deep network to produce disease-specific and disease-dependent features, and to maximize the overall performance jointly for grading DR and DME. We evaluate our network on two public benchmark datasets, i.e., ISBI 2018 IDRiD challenge dataset and Messidor dataset. Our method achieves the best result on the ISBI 2018 IDRiD challenge dataset and outperforms other methods on the Messidor dataset. Our code is publicly available at https://github.com/xmengli999/CANet.
Collapse
|
14
|
Armstrong GW, Lorch AC. A(eye): A Review of Current Applications of Artificial Intelligence and Machine Learning in Ophthalmology. Int Ophthalmol Clin 2020; 60:57-71. [PMID: 31855896 DOI: 10.1097/iio.0000000000000298] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
|