1
|
Hua A, Wang G, Bai J, Hao Z, Liu J, Meng J, Wang J. Nonlinear dynamics of postural control system under visual-vestibular habituation balance practice: evidence from EEG, EMG and center of pressure signals. Front Hum Neurosci 2024; 18:1371648. [PMID: 38736529 PMCID: PMC11082324 DOI: 10.3389/fnhum.2024.1371648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/15/2024] [Indexed: 05/14/2024] Open
Abstract
Human postural control system is inherently complex with nonlinear interaction among multiple subsystems. Accordingly, such postural control system has the flexibility in adaptation to complex environments. Previous studies applied complexity-based methods to analyze center of pressure (COP) to explore nonlinear dynamics of postural sway under changing environments, but direct evidence from central nervous system or muscular system is limited in the existing literature. Therefore, we assessed the fractal dimension of COP, surface electromyographic (sEMG) and electroencephalogram (EEG) signals under visual-vestibular habituation balance practice. We combined a rotating platform and a virtual reality headset to present visual-vestibular congruent or incongruent conditions. We asked participants to undergo repeated exposure to either congruent (n = 14) or incongruent condition (n = 13) five times while maintaining balance. We found repeated practice under both congruent and incongruent conditions increased the complexity of high-frequency (0.5-20 Hz) component of COP data and the complexity of sEMG data from tibialis anterior muscle. In contrast, repeated practice under conflicts decreased the complexity of low-frequency (<0.5 Hz) component of COP data and the complexity of EEG data of parietal and occipital lobes, while repeated practice under congruent environment decreased the complexity of EEG data of parietal and temporal lobes. These results suggested nonlinear dynamics of cortical activity differed after balance practice under congruent and incongruent environments. Also, we found a positive correlation (1) between the complexity of high-frequency component of COP and the complexity of sEMG signals from calf muscles, and (2) between the complexity of low-frequency component of COP and the complexity of EEG signals. These results suggested the low- or high-component of COP might be related to central or muscular adjustment of postural control, respectively.
Collapse
Affiliation(s)
- Anke Hua
- Department of Sports Science, Zhejiang University, Hangzhou, China
- Sciences Cognitives et Sciences Affectives, University of Lille, Lille, France
| | - Guozheng Wang
- College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
- Taizhou Key Laboratory of Medical Devices and Advanced Materials, Research Institute of Zhejiang University, Taizhou, China
| | - Jingyuan Bai
- Department of Sports Science, Zhejiang University, Hangzhou, China
| | - Zengming Hao
- Department of Rehabilitation Medicine, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jun Liu
- College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Jun Meng
- College of Control Science and Engineering, Zhejiang University, Hangzhou, China
| | - Jian Wang
- Department of Sports Science, Zhejiang University, Hangzhou, China
- Center for Psychological Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
2
|
Blodgett JM, Ahmadi M, Stamatakis E, Rockwood K, Hamer M. Fractal complexity of daily physical activity and cognitive function in a midlife cohort. Sci Rep 2023; 13:20340. [PMID: 37990028 PMCID: PMC10663528 DOI: 10.1038/s41598-023-47200-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 11/10/2023] [Indexed: 11/23/2023] Open
Abstract
High stability of fluctuation in physiological patterns across fixed time periods suggest healthy fractal complexity, while greater randomness in fluctuation patterns may indicate underlying disease processes. The importance of fractal stability in mid-life remains unexplored. We quantified fractal regulation patterns in 24-h accelerometer data and examined associations with cognitive function in midlife. Data from 5097 individuals (aged 46) from the 1970 British Cohort Study were analyzed. Participants wore thigh-mounted accelerometers for seven days and completed cognitive tests (verbal fluency, memory, processing speed; derived composite z-score). Detrended fluctuation analysis (DFA) was used to examine temporal correlations of acceleration magnitude across 25 time scales (range: 1 min-10 h). Linear regression examined associations between DFA scaling exponents (DFAe) and each standardised cognitive outcome. DFAe was normally distributed (mean ± SD: 0.90 ± 0.06; range: 0.72-1.25). In males, a 0.10 increase in DFAe was associated with a 0.30 (95% Confidence Interval: 0.14, 0.47) increase in composite cognitive z-score in unadjusted models; associations were strongest for verbal fluency (0.10 [0.04, 0.16]). Associations remained in fully-adjusted models for verbal fluency only (0.06 [0.00, 0.12]). There was no association between DFA and cognition in females. Greater fractal stability in men was associated with better cognitive function. This could indicate mechanisms through which fractal complexity may scale up to and contribute to cognitive clinical endpoints.
Collapse
Affiliation(s)
- Joanna M Blodgett
- Institute of Sport Exercise and Health, Division of Surgery and Interventional Science, University College London, London, UK.
| | - Matthew Ahmadi
- School of Health Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Mackenzie Wearables Research Hub, Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia
| | - Emmanuel Stamatakis
- School of Health Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Mackenzie Wearables Research Hub, Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia
| | - Kenneth Rockwood
- Geriatric Medicine Research, Department of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Mark Hamer
- Institute of Sport Exercise and Health, Division of Surgery and Interventional Science, University College London, London, UK
| |
Collapse
|
3
|
Kamal SM, Babini MH, Tee R, Krejcar O, Namazi H. Decoding the correlation between heart activation and walking path by information-based analysis. Technol Health Care 2023; 31:205-215. [PMID: 35848002 DOI: 10.3233/thc-220191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
BACKGROND One of the important areas of heart research is to analyze heart rate variability during (HRV) walking. OBJECTIVE In this research, we investigated the correction between heart activation and the variations of walking paths. METHOD We employed Shannon entropy to analyze how the information content of walking paths affects the information content of HRV. Eight healthy students walked on three designed walking paths with different information contents while we recorded their ECG signals. We computed and analyzed the Shannon entropy of the R-R interval time series (as an indicator of HRV) versus the Shannon entropy of different walking paths and accordingly evaluated their relation. RESULTS According to the obtained results, walking on the path that contains more information leads to less information in the R-R time series. CONCLUSION The analysis method employed in this research can be extended to analyze the relation between other physiological signals (such as brain or muscle reactions) and the walking path.
Collapse
Affiliation(s)
| | | | - Rui Tee
- School of Pharmacy, Monash University, Selangor, Malaysia
| | - Ondrej Krejcar
- Center for Basic and Applied Research, Faculty of Informatics and Management, University of Hradec Kralove, Hradec Kralove, Czech Republic.,Malaysia Japan International Institute of Technology, Universiti Teknologi Malaysia, Kuala Lumpur, Malaysia
| | - Hamidreza Namazi
- School of Engineering, Monash University, Selangor, Malaysia.,Center for Basic and Applied Research, Faculty of Informatics and Management, University of Hradec Kralove, Hradec Kralove, Czech Republic
| |
Collapse
|
4
|
Pakniyat N, Namazi H. Complexity-Based Analysis of the Variations of Brain and Muscle Reactions in Walking and Standing Balance While Receiving Different Perturbations. Front Hum Neurosci 2021; 15:749082. [PMID: 34690727 PMCID: PMC8531105 DOI: 10.3389/fnhum.2021.749082] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/06/2021] [Indexed: 11/18/2022] Open
Abstract
In this article, we evaluated the variations of the brain and muscle activations while subjects are exposed to different perturbations to walking and standing balance. Since EEG and EMG signals have complex structures, we utilized the complexity-based analysis. Specifically, we analyzed the fractal dimension and sample entropy of Electroencephalogram (EEG) and Electromyogram (EMG) signals while subjects walked and stood, and received different perturbations in the form of pulling and rotation (via virtual reality). The results showed that the complexity of EEG signals was higher in walking than standing as the result of different perturbations. However, the complexity of EMG signals was higher in standing than walking as the result of different perturbations. Therefore, the alterations in the complexity of EEG and EMG signals are inversely correlated. This analysis could be extended to investigate simultaneous variations of rhythmic patterns of other physiological signals while subjects perform different activities.
Collapse
Affiliation(s)
| | - Hamidreza Namazi
- Incubator of Kinanthropology Research, Faculty of Sports Studies, Masaryk University, Brno, Czechia.,College of Engineering and Science, Victoria University, Melbourne, VIC, Australia
| |
Collapse
|
5
|
Pakniyat N, Namazi H. Decoding the coupling between the brain and skin reactions in auditory stimulation by information-based analysis of EEG and GSR signals. Technol Health Care 2021; 30:623-632. [PMID: 34542048 DOI: 10.3233/thc-213052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND The analysis of brain activity in different conditions is an important research area in neuroscience. OBJECTIVE This paper analyzed the correlation between the brain and skin activities in rest and stimulations by information-based analysis of electroencephalogram (EEG) and galvanic skin resistance (GSR) signals. METHODS We recorded EEG and GSR signals of eleven subjects during rest and auditory stimulations using three pieces of music that were differentiated based on their complexity. Then, we calculated the Shannon entropy of these signals to quantify their information contents. RESULTS The results showed that music with greater complexity has a more significant effect on altering the information contents of EEG and GSR signals. We also found a strong correlation (r= 0.9682) among the variations of the information contents of EEG and GSR signals. Therefore, the activities of the skin and brain are correlated in different conditions. CONCLUSION This analysis technique can be utilized to evaluate the correlation among the activities of various organs versus brain activity in different conditions.
Collapse
|
6
|
Kamal SM, Dawi NBM, Sim S, Tee R, Nathan V, Aghasian E, Namazi H. Information-based analysis of the relation between human muscle reaction and walking path. Technol Health Care 2021; 28:675-684. [PMID: 32200366 DOI: 10.3233/thc-192034] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Walking is one of the important actions of the human body. For this purpose, the human brain communicates with leg muscles through the nervous system. Based on the walking path, leg muscles act differently. Therefore, there should be a relation between the activity of leg muscles and the path of movement. OBJECTIVE In order to address this issue, we analyzed how leg muscle activity is related to the variations of the path of movement. METHOD Since the electromyography (EMG) signal is a feature of muscle activity and the movement path has complex structures, we used entropy analysis in order to link their structures. The Shannon entropy of EMG signal and walking path are computed to relate their information content. RESULTS Based on the obtained results, walking on a path with greater information content causes greater information content in the EMG signal which is supported by statistical analysis results. This allowed us to analyze the relation between muscle activity and walking path. CONCLUSION The method of analysis employed in this research can be applied to investigate the relation between brain or heart reactions and walking path.
Collapse
Affiliation(s)
| | | | - Sue Sim
- School of Engineering, Monash University, Selangor, Malaysia
| | - Rui Tee
- School of Pharmacy, Monash University, Selangor, Malaysia
| | - Visvamba Nathan
- School of Engineering, Monash University, Selangor, Malaysia
| | - Erfan Aghasian
- Discipline of ICT, School of Technology, Environments and Design, University of Tasmania, Hobart, Australia
| | | |
Collapse
|
7
|
Pakniyat N, Babini MH, Kulish VV, Namazi H. Information-based analysis of the coupling between brain and heart reactions to olfactory stimulation. Technol Health Care 2021; 30:661-671. [PMID: 34397441 DOI: 10.3233/thc-213136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
BACKGROUND Analysis of the heart activity is one of the important areas of research in biomedical science and engineering. For this purpose, scientists analyze the activity of the heart in various conditions. Since the brain controls the heart's activity, a relationship should exist among their activities. OBJECTIVE In this research, for the first time the coupling between heart and brain activities was analyzed by information-based analysis. METHODS Considering Shannon entropy as the indicator of the information of a system, we recorded electroencephalogram (EEG) and electrocardiogram (ECG) signals of 13 participants (7 M, 6 F, 18-22 years old) in different external stimulations (using pineapple, banana, vanilla, and lemon flavors as olfactory stimuli) and evaluated how the information of EEG signals and R-R time series (as heart rate variability (HRV)) are linked. RESULTS The results indicate that the changes in the information of the R-R time series and EEG signals are strongly correlated (ρ=-0.9566). CONCLUSION We conclude that heart and brain activities are related.
Collapse
Affiliation(s)
| | | | - Vladimir V Kulish
- Faculty of Mechanical Engineering, Czech Technical University in Prague, Prague, Czech Republic
| | | |
Collapse
|
8
|
Namazi H. Complexity-based analysis of the correlation between stride interval variability and muscle reaction at different walking speeds. Biomed Signal Process Control 2021. [DOI: 10.1016/j.bspc.2021.102956] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
9
|
Kamal SM, Dawi NM, Namazi H. Information-based decoding of the coupling among human brain activity and movement paths. Technol Health Care 2021; 29:1109-1118. [PMID: 33749623 DOI: 10.3233/thc-202744] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Walking like many other actions of a human is controlled by the brain through the nervous system. In fact, if a problem occurs in our brain, we cannot walk correctly. Therefore, the analysis of the coupling of brain activity and walking is very important especially in rehabilitation science. The complexity of movement paths is one of the factors that affect human walking. For instance, if we walk on a path that is more complex, our brain activity increases to adjust our movements. OBJECTIVE This study for the first time analyzed the coupling of walking paths and brain reaction from the information point of view. METHODS We analyzed the Shannon entropy for electroencephalography (EEG) signals versus the walking paths in order to relate their information contents. RESULTS According to the results, walking on a path that contains more information causes more information in EEG signals. A strong correlation (p= 0.9999) was observed between the information contents of EEG signals and walking paths. Our method of analysis can also be used to investigate the relation among other physiological signals of a human and walking paths, which has great benefits in rehabilitation science.
Collapse
|
10
|
Ahamed MRA, Babini MH, Namazi H. Analysis of the information transfer between brains during a conversation. Technol Health Care 2021; 29:283-293. [DOI: 10.3233/thc-202366] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND: The interaction between people is one of the usual daily activities. For this purpose, people mainly connect with others, using their voice. Voices act as the auditory stimuli on the brain during a conversation. OBJECTIVE: In this research, we analyze the relationship between the brains’ activities of subjects during a conversation. METHODS: Since human voice transfers information from one subject to another, we used information theory for our analysis. We investigated the alterations of Shannon entropy of electroencephalography (EEG) signals for subjects during a conversation. RESULTS: The results demonstrated that the alterations in the information contents of the EEG signals for the listeners and speakers are correlated. Therefore, we concluded that the brains’ activities of both subjects are linked. CONCLUSION: Our results can be expanded to analyze the coupling among other physiological signals of subjects (such as heart rate) during the conversation.
Collapse
|
11
|
Mujib Kamal S, Babini MH, Krejcar O, Namazi H. Complexity-Based Decoding of the Coupling Among Heart Rate Variability (HRV) and Walking Path. Front Physiol 2020; 11:602027. [PMID: 33324242 PMCID: PMC7723866 DOI: 10.3389/fphys.2020.602027] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 10/14/2020] [Indexed: 01/04/2023] Open
Abstract
Walking is an everyday activity in our daily life. Because walking affects heart rate variability, in this research, for the first time, we analyzed the coupling among the alterations of the complexity of walking paths and heart rate. We benefited from the fractal theory and sample entropy to evaluate the influence of the complexity of paths on the complexity of heart rate variability (HRV) during walking. We calculated the fractal exponent and sample entropy of the R-R time series for nine participants who walked on four paths with various complexities. The findings showed a strong coupling among the alterations of fractal dimension (an indicator of complexity) of HRV and the walking paths. Besides, the result of the analysis of sample entropy also verified the obtained results from the fractal analysis. In further studies, we can analyze the coupling among the alterations of the complexities of other physiological signals and walking paths.
Collapse
Affiliation(s)
| | | | - Ondrej Krejcar
- Center for Basic and Applied Research, Faculty of Informatics and Management, University of Hradec Králové, Hradec Králové, Czechia
| | - Hamidreza Namazi
- School of Engineering, Monash University Malaysia, Selangor, Malaysia.,Center for Basic and Applied Research, Faculty of Informatics and Management, University of Hradec Králové, Hradec Králové, Czechia
| |
Collapse
|
12
|
Ahamed MRA, Babini MH, Namazi H. Complexity-based decoding of the relation between human voice and brain activity. Technol Health Care 2020; 28:665-674. [DOI: 10.3233/thc-192105] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND: The human voice is the main feature of human communication. It is known that the brain controls the human voice. Therefore, there should be a relation between the characteristics of voice and brain activity. OBJECTIVE: In this research, electroencephalography (EEG) as the feature of brain activity and voice signals were simultaneously analyzed. METHOD: For this purpose, we changed the activity of the human brain by applying different odours and simultaneously recorded their voices and EEG signals while they read a text. For the analysis, we used the fractal theory that deals with the complexity of objects. The fractal dimension of EEG signal versus voice signal in different levels of brain activity were computed and analyzed. RESULTS: The results indicate that the activity of human voice is related to brain activity, where the variations of the complexity of EEG signal are linked to the variations of the complexity of voice signal. In addition, the EEG and voice signal complexities are related to the molecular complexity of applied odours. CONCLUSION: The employed method of analysis in this research can be widely applied to other physiological signals in order to relate the activities of different organs of human such as the heart to the activity of his brain.
Collapse
|
13
|
Babini MH, Kulish VV, Namazi H. Physiological State and Learning Ability of Students in Normal and Virtual Reality Conditions: Complexity-Based Analysis. J Med Internet Res 2020; 22:e17945. [PMID: 32478661 PMCID: PMC7313733 DOI: 10.2196/17945] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/04/2020] [Accepted: 03/14/2020] [Indexed: 12/31/2022] Open
Abstract
Background Education and learning are the most important goals of all universities. For this purpose, lecturers use various tools to grab the attention of students and improve their learning ability. Virtual reality refers to the subjective sensory experience of being immersed in a computer-mediated world, and has recently been implemented in learning environments. Objective The aim of this study was to analyze the effect of a virtual reality condition on students’ learning ability and physiological state. Methods Students were shown 6 sets of videos (3 videos in a two-dimensional condition and 3 videos in a three-dimensional condition), and their learning ability was analyzed based on a subsequent questionnaire. In addition, we analyzed the reaction of the brain and facial muscles of the students during both the two-dimensional and three-dimensional viewing conditions and used fractal theory to investigate their attention to the videos. Results The learning ability of students was increased in the three-dimensional condition compared to that in the two-dimensional condition. In addition, analysis of physiological signals showed that students paid more attention to the three-dimensional videos. Conclusions A virtual reality condition has a greater effect on enhancing the learning ability of students. The analytical approach of this study can be further extended to evaluate other physiological signals of subjects in a virtual reality condition.
Collapse
Affiliation(s)
| | - Vladimir V Kulish
- Faculty of Mechanical Engineering, Czech Technical University in Prague, Prague, Czech Republic
| | | |
Collapse
|