1
|
Li X, Hayashi R, Imaizumi T, Harrington J, Kudo Y, Takayanagi H, Baba K, Nishida K. Extracellular vesicles from adipose-derived mesenchymal stem cells promote colony formation ability and EMT of corneal limbal epithelial cells. PLoS One 2025; 20:e0321579. [PMID: 40257992 PMCID: PMC12011229 DOI: 10.1371/journal.pone.0321579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 03/07/2025] [Indexed: 04/23/2025] Open
Abstract
Corneal diseases are a leading cause of visual impairment, and their treatment remains challenging. Corneal epithelial stem cells exist in the limbus, the peripheral region of the cornea, and play an important role in corneal regeneration. Here, we evaluated the effects of extracellular vesicles from human adipose-derived mesenchymal stem cells (AdMSC-EVs) on limbal epithelial cells (LECs). Colony formation assays showed that the colony-forming efficiency of LECs significantly increased in the presence of AdMSC-EVs. We next demonstrated that AdMSC-EVs accelerated the migration of LECs in a scratch assay, whereas the proliferation of LECs was decreased by AdMSC-EVs in the cell proliferation assay. RNA sequencing analysis of LECs indicated that AdMSC-EVs maintained their stem cell properties and improved epithelial-mesenchymal transition (EMT). Furthermore, after identifying the six most abundant microRNAs (miRNAs) in AdMSC-EVs, LEC transfection with miRNA mimics indicated that miR-25, miR-191, and miR-335 were the most probable miRNA factors within AdMSC-EVs at improving colony formation ability and EMT. Taken together, our findings indicated that AdMSC-EVs enhanced the colony formation ability and EMT of LECs, and the effects of AdMSC-EVs were in-part mediated by the miRNAs within the AdMSC-EVs.
Collapse
Affiliation(s)
- Xiaoqin Li
- Department of Ophthalmology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Ryuhei Hayashi
- Department of Ophthalmology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
- Department of Stem Cells and Applied Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
- Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka, Japan
| | - Tsutomu Imaizumi
- Department of Stem Cells and Applied Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
- Basic Research Development Division, ROHTO Pharmaceutical, Ikuno-ku, Osaka, Japan
| | - Jodie Harrington
- Department of Stem Cells and Applied Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
- Faculty of Health, Medicine and Social Care, Medical Technology Research Centre, Anglia Ruskin University, Chelmsford Campus, England, United Kingdom
| | - Yuji Kudo
- Department of Stem Cells and Applied Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
- Basic Research Development Division, ROHTO Pharmaceutical, Ikuno-ku, Osaka, Japan
| | - Hiroshi Takayanagi
- Department of Ophthalmology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
- Research, Development and Production Department of RAYMEI Inc, Suita, Osaka, Japan
| | - Koichi Baba
- Department of Ophthalmology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
- Department of Advanced Device Regenerative Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
- Visual Regenerative Medicine, Division of Health Sciences, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Kohji Nishida
- Department of Ophthalmology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
- Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
2
|
Huang Y, Wu M, Li JD, Qin Z, Huang KQ, Cui JZ, Ou HL. Upregulation of vesicle-associated membrane protein 7 in breast cancer tissues. Technol Health Care 2024; 32:2141-2157. [PMID: 38393934 DOI: 10.3233/thc-230832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
BACKGROUND Vesicle-associated membrane protein 7 (VAMP7) plays oncogenic roles in cancers. However, its clinical significance in breast cancer (BC) tissues remains unknown. OBJECTIVE To elucidate the clinical implications of VAMP7, as well as its involvement in the tumor microenvironment and molecular pathways of breast cancer. METHODS BC (n=100) and non-cancerous breast tissues (n= 100) were collected for an immunohistochemical experiment (1:200). The protein expression level of VAMP7 was determined by using a semi-quantitative scoring method. High-throughput RNA-sequencing data of BC tissues were analyzed to confirm the mRNA expression trend of VAMP7. Additionally, the largest BC prognosis cohort data were collected to mine the potential impact VAMP7 has on BC progression. The association between VAMP7 and the microenvironment of BC was evaluated by using a CIBERSORT algorithm. Moreover, we explored the co-expressed molecular mechanisms of VAMP7 in BC by calculating Pearson correlation coefficients and overexpressed genes. Finally, the biological mechanism underlying the relationship between VAMP7 and the key pathways was also explored using gene set enrichment analysis (GSEA). Potential therapeutic strategies were predicted targeting VAMP7. RESULTS VAMP7 protein was significantly over-expressed in BC tissue than that in controls (p< 0.001). Compared with 459 normal breast tissues and 113 non-cancerous breast tissues, the expression level of VAMP7 mRNA was significantly increased in 1111 BC tissues. CD4+T cells, macrophages, and naïve B cells had a higher infiltration rate in BC tissues with high VAMP7 expression, while regulatory T cells and CD8+T cells had a lower infiltration rate. Over-expressed VAMP7 was associated with macrophages activation and transition from M1 to M2 polarization. Upregulated VAMP7 could predicted poorer OS, DMFS, PPS, and RFS outcomes. Upregulated VAMP7 co-expressed genes were significantly enriched in the cell cycle checkpoints. GSEA confirmed that over-expressed VAMP7 are markedly associated with functional enrichment in cell cycle related categories, including mitotic spindle, G2M checkpoint, and E2F targets. KU-55933 was predicted as a putative therapeutic drug for BC targeting VAMP7. CONCLUSIONS VAMP7 was upregulated in BC tissue and correlated with poor prognosis of BC patients. VAMP7 may promote BC progression by targeting the cell cycle pathway.
Collapse
Affiliation(s)
- Yu Huang
- Department of Pathology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Mei Wu
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Jian-Di Li
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Zhen Qin
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Ke-Qiang Huang
- Department of Pathology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Jin-Zhu Cui
- Department of Pathology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Hai-Ling Ou
- Department of Pathology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| |
Collapse
|