1
|
Domínguez-Oliva A, Mota-Rojas D, Hernández-Avalos I, Mora-Medina P, Olmos-Hernández A, Verduzco-Mendoza A, Casas-Alvarado A, Whittaker AL. The neurobiology of pain and facial movements in rodents: Clinical applications and current research. Front Vet Sci 2022; 9:1016720. [PMID: 36246319 PMCID: PMC9556725 DOI: 10.3389/fvets.2022.1016720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/12/2022] [Indexed: 11/30/2022] Open
Abstract
One of the most controversial aspects of the use of animals in science is the production of pain. Pain is a central ethical concern. The activation of neural pathways involved in the pain response has physiological, endocrine, and behavioral consequences, that can affect both the health and welfare of the animals, as well as the validity of research. The strategy to prevent these consequences requires understanding of the nociception process, pain itself, and how assessment can be performed using validated, non-invasive methods. The study of facial expressions related to pain has undergone considerable study with the finding that certain movements of the facial muscles (called facial action units) are associated with the presence and intensity of pain. This review, focused on rodents, discusses the neurobiology of facial expressions, clinical applications, and current research designed to better understand pain and the nociceptive pathway as a strategy for implementing refinement in biomedical research.
Collapse
Affiliation(s)
- Adriana Domínguez-Oliva
- Master in Science Program “Maestría en Ciencias Agropecuarias”, Universidad Autónoma Metropolitana, Mexico City, Mexico
| | - Daniel Mota-Rojas
- Neurophysiology, Behavior and Animal Welfare Assesment, DPAA, Universidad Autónoma Metropolitana, Mexico City, Mexico
- *Correspondence: Daniel Mota-Rojas
| | - Ismael Hernández-Avalos
- Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Cuautitlán Izcalli, Mexico
| | - Patricia Mora-Medina
- Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Cuautitlán Izcalli, Mexico
| | - Adriana Olmos-Hernández
- Division of Biotechnology-Bioterio and Experimental Surgery, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City, Mexico
| | - Antonio Verduzco-Mendoza
- Division of Biotechnology-Bioterio and Experimental Surgery, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City, Mexico
| | - Alejandro Casas-Alvarado
- Neurophysiology, Behavior and Animal Welfare Assesment, DPAA, Universidad Autónoma Metropolitana, Mexico City, Mexico
| | - Alexandra L. Whittaker
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA, Australia
| |
Collapse
|
2
|
Malvandi AM, Rastegar-Moghaddam SH, Ebrahimzadeh-Bideskan S, Lombardi G, Ebrahimzadeh-Bideskan A, Mohammadipour A. Targeting miR-21 in spinal cord injuries: a game-changer? Mol Med 2022; 28:118. [PMID: 36138359 PMCID: PMC9502625 DOI: 10.1186/s10020-022-00546-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 09/12/2022] [Indexed: 12/03/2022] Open
Abstract
Spinal cord injury (SCI) is a devastating neurological state causing physical disability, psychological stress and financial burden. SCI global rate is estimated between 250,000 and 500,000 individuals every year, of which 60% of victims are young, healthy males between 15 and 35 years. A variety of pathological conditions such as neuroinflammation, mitochondrial dysfunction, apoptosis, glial scar formation, blood-spinal cord barrier disruption, and angiogenesis disruption occur after SCI leading to a limitation in recovery. MicroRNAs (miRs) are endogenous and non-coding RNAs consisting of 22 nucleotides that regulate 60% of all human genes and involve several normal physiological processes and pathological conditions. miR-21 is among the most highly expressed miRs and its expression has been shown to increase one day after SCI and this elevation is sustained up to 28 days after injury. Overexpression of miR-21 exerts many protective effects against SCI by inhibiting neuroinflammation, improving blood-spinal cord barrier function, regulating angiogenesis, and controlling glial scar formation. It also exhibits anti-apoptotic effects in SCI by down-regulating the expression of PTEN, Spry2, and PDCD4. This review provides a novel therapeutic perspective for miR-21 in SCI.
Collapse
Affiliation(s)
- Amir Mohammad Malvandi
- Laboratory of Experimental Biochemistry and Molecular Biology, IRCCS Istituto Ortopedico Galeazzi, Via Cristina Belgioioso 173, 20157, Milan, Italy.
| | - Seyed Hamidreza Rastegar-Moghaddam
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Anatomy and Cell Biology, Faculty of Medicine, School of Medicine, Mashhad University of Medical Sciences, Azadi Sq, Vakilabad Blvd, Mashhad, Iran
| | | | - Giovanni Lombardi
- Laboratory of Experimental Biochemistry and Molecular Biology, IRCCS Istituto Ortopedico Galeazzi, Via Cristina Belgioioso 173, 20157, Milan, Italy.,Department of Athletics, Strength and Conditioning, Poznań University of Physical Education, Poznań, Poland
| | - Alireza Ebrahimzadeh-Bideskan
- Department of Anatomy and Cell Biology, Faculty of Medicine, School of Medicine, Mashhad University of Medical Sciences, Azadi Sq, Vakilabad Blvd, Mashhad, Iran.,Applied Biomedical Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abbas Mohammadipour
- Department of Anatomy and Cell Biology, Faculty of Medicine, School of Medicine, Mashhad University of Medical Sciences, Azadi Sq, Vakilabad Blvd, Mashhad, Iran.,Applied Biomedical Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
3
|
Stewart AN, MacLean SM, Stromberg AJ, Whelan JP, Bailey WM, Gensel JC, Wilson ME. Considerations for Studying Sex as a Biological Variable in Spinal Cord Injury. Front Neurol 2020; 11:802. [PMID: 32849242 PMCID: PMC7419700 DOI: 10.3389/fneur.2020.00802] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 06/26/2020] [Indexed: 12/13/2022] Open
Abstract
In response to NIH initiatives to investigate sex as a biological variable in preclinical animal studies, researchers have increased their focus on male and female differences in neurotrauma. Inclusion of both sexes when modeling neurotrauma is leading to the identification of novel areas for therapeutic and scientific exploitation. Here, we review the organizational and activational effects of sex hormones on recovery from injury and how these changes impact the long-term health of spinal cord injury (SCI) patients. When determining how sex affects SCI it remains imperative to expand outcomes beyond locomotor recovery and consider other complications plaguing the quality of life of patients with SCI. Interestingly, the SCI field predominately utilizes female rodents for basic science research which contrasts most other male-biased research fields. We discuss the unique caveats this creates to the translatability of preclinical research in the SCI field. We also review current clinical and preclinical data examining sex as biological variable in SCI. Further, we report how technical considerations such as housing, size, care management, and age, confound the interpretation of sex-specific effects in animal studies of SCI. We have uncovered novel findings regarding how age differentially affects mortality and injury-induced anemia in males and females after SCI, and further identified estrus cycle dysfunction in mice after injury. Emerging concepts underlying sexually dimorphic responses to therapy are also discussed. Through a combination of literature review and primary research observations we present a practical guide for considering and incorporating sex as biological variable in preclinical neurotrauma studies.
Collapse
Affiliation(s)
- Andrew N Stewart
- Department of Physiology, University of Kentucky, Lexington, KY, United States.,Spinal Cord and Brain Injury Research Center, College of Medicine, University of Kentucky, Lexington, KY, United States
| | - Steven M MacLean
- Department of Physiology, University of Kentucky, Lexington, KY, United States.,Spinal Cord and Brain Injury Research Center, College of Medicine, University of Kentucky, Lexington, KY, United States
| | - Arnold J Stromberg
- Department of Statistics, College of Arts and Sciences, University of Kentucky, Lexington, KY, United States
| | - Jessica P Whelan
- Department of Physiology, University of Kentucky, Lexington, KY, United States.,Spinal Cord and Brain Injury Research Center, College of Medicine, University of Kentucky, Lexington, KY, United States
| | - William M Bailey
- Department of Physiology, University of Kentucky, Lexington, KY, United States.,Spinal Cord and Brain Injury Research Center, College of Medicine, University of Kentucky, Lexington, KY, United States
| | - John C Gensel
- Department of Physiology, University of Kentucky, Lexington, KY, United States.,Spinal Cord and Brain Injury Research Center, College of Medicine, University of Kentucky, Lexington, KY, United States
| | - Melinda E Wilson
- Department of Physiology, University of Kentucky, Lexington, KY, United States
| |
Collapse
|