1
|
Xia L, Zhang J, Liang Z, Tang J, Xia J, Liu Y. Shapley-based saliency maps improve interpretability of vertebral compression fractures classification: multicenter study. LA RADIOLOGIA MEDICA 2025; 130:412-421. [PMID: 39992331 DOI: 10.1007/s11547-025-01968-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 02/05/2025] [Indexed: 02/25/2025]
Abstract
PURPOSE Evaluate the classification performance and interpretability of the Vision Transformer (ViT) model on acute and chronic vertebral compression fractures using Shapley significance maps. MATERIALS AND METHODS This retrospective study utilized medical imaging data from December 2018 to December 2023 from three hospitals in China. The study included 942 patients, with imaging data comprising X-rays, CTs, and MRIs. Patients were divided into training, validation, and test sets with a ratio of 7:2:1. The ViT model variant, SimpleViT, was fine-tuned on the training dataset. Statistical analyses were performed using the PixelMedAI platform, focusing on metrics such as ROC curves, sensitivity, specificity, and AUC values, with statistical significance assessed using the DeLong test. RESULTS A total of 942 patients (mean age 69.17 ± 10.61 years) were included, with 1076 vertebral fractures analyzed (705 acute, 371 chronic). In the test set, the ViT model demonstrated superior performance over the ResNet18 model, with an accuracy of 0.880 and an AUC of 0.901 compared to 0.843 and 0.833, respectively. The use of ViT Shapley saliency maps significantly enhanced diagnostic sensitivity and specificity, reaching 0.883 (95% CI: 0.800, 0.963) and 0.950 (95% CI: 0.891, 1.00), respectively. CONCLUSION In vertebral compression fractures classification, Vision Transformer outperformed Convolutional Neural Network, providing more effective Shapley-based saliency maps that were favored by radiologists over GradCAM.
Collapse
Affiliation(s)
- Liang Xia
- Department of Radiology, Sir Run Run Hospital, Nanjing Medical University, 109 Longmian Road, Nanjing, 211002, Jiangsu, People's Republic of China
| | - Jun Zhang
- Department of Radiology, Sir Run Run Hospital, Nanjing Medical University, 109 Longmian Road, Nanjing, 211002, Jiangsu, People's Republic of China.
| | - Zhipeng Liang
- Department of Radiology, Sir Run Run Hospital, Nanjing Medical University, 109 Longmian Road, Nanjing, 211002, Jiangsu, People's Republic of China
| | - Jun Tang
- Department of Radiology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, 366 Taihu Road, Taizhou, 225300, Jiangsu, People's Republic of China
| | - Jianguo Xia
- Department of Radiology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, 366 Taihu Road, Taizhou, 225300, Jiangsu, People's Republic of China
| | - Yongkang Liu
- Department of Radiology, The Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong Road, Nanjing, 210004, Jiangsu, People's Republic of China
| |
Collapse
|
2
|
Tang LJ, Li XK, Huang Y, Zhang XZ, Li BQ. Accurate and visualiable discrimination of Chenpi age using 2D-CNN and Grad-CAM++ based on infrared spectral images. Food Chem X 2024; 23:101759. [PMID: 39280221 PMCID: PMC11401106 DOI: 10.1016/j.fochx.2024.101759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 09/18/2024] Open
Abstract
Dried tangerine peel ("Chenpi"), has numerous clinical and nutritional benefits, with its quality being significantly influenced by its storage age, referred to as "Chen Jiu Zhe Liang" in Chinese. Concequently, the rapid and accurate identification of Chenpi's age is important for consumers. In this study, Fourier transform infrared spectroscopy (FTIR) was employed to capture spectral images of Chenpi. These FTIR images were then analyzed using a two-dimensional convolutional neural networks (2D-CNN) model, achieving a discrimination accuracy of 97.92%. To address the "black box" nature of the 2D-CNN, Gradient-weighted Class Activation Mapping Plus Plus (Grad-CAM++) was utilized to highlight the important regions contributing to the model's performance. Additionally, six other machine learning models were developped using features identified by the 2D-CNN to validate their effectiveness. The results demonstrated that the combination of FTIR spectral images and 2D-CNN provides a highly effective method for accurately determining the age of Chenpi.
Collapse
Affiliation(s)
- Li Jun Tang
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, 529020, PR China
| | - Xin Kang Li
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, 529020, PR China
| | - Yue Huang
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, 529020, PR China
| | - Xiang-Zhi Zhang
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, 529020, PR China
| | - Bao Qiong Li
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, 529020, PR China
| |
Collapse
|
3
|
Ding H, Fan L, Zhang J, Gao G. Deep Learning-Based System Combining Chest X-Ray and Computerized Tomography Images for COVID-19 Diagnosis. Br J Hosp Med (Lond) 2024; 85:1-15. [PMID: 39212565 DOI: 10.12968/hmed.2024.0244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Aims/Background: The coronavirus disease 2019 (COVID-19) pandemic has highlighted the need for accurate and efficient diagnostic methods. This study aims to improve COVID-19 detection by integrating chest X-ray (CXR) and computerized tomography (CT) images using deep learning techniques, further improving diagnostic accuracy by using a combined imaging approach. Methods: The study used two publicly accessible databases, COVID-19 Questionnaires for Understanding the Exposure (COVID-QU-Ex) and Integrated Clinical and Translational Cancer Foundation (iCTCF), containing CXR and CT images, respectively. The proposed system employed convolutional neural networks (CNNs) for classification, specifically EfficientNet and ResNet architectures. The data underwent preprocessing steps, including image resizing, Gaussian noise addition, and data augmentation. The dataset was divided into training, validation, and test sets. Gradient-weighted Class Activation Mapping (Grad-CAM) was used for model interpretability. Results: The EfficientNet-based models outperformed the ResNet-based models across all metrics. The highest accuracy achieved was 99.44% for CXR images and 99.81% for CT images with EfficientNetB5. The models also demonstrated high precision, recall, and F1 scores. For statistical significance, the p-values were less than 0.05, indicating that the results are significant. Conclusion: Integrating CXR and CT images using deep learning significantly improves the accuracy of COVID-19 diagnosis. The EfficientNet-based models, with their superior feature extraction capabilities, show better performance than ResNet models. Grad-CAM Visualizations provide insights into the model's decision-making process, potentially reducing diagnostic errors and accelerating diagnosis processes. This approach can improve patient care and support healthcare systems in managing the pandemic more effectively.
Collapse
Affiliation(s)
- Hui Ding
- Department of Radiology, Ningbo No.2 Hospital, Ningbo, Zhejiang, China
| | - Lingyan Fan
- Department of Acute Infectious Diseases, Ningbo No.2 Hospital, Ningbo, Zhejiang, China
| | - Jingfeng Zhang
- Department of Radiology, Ningbo No.2 Hospital, Ningbo, Zhejiang, China
| | - Guosheng Gao
- Department of Clinical Laboratory, Ningbo No.2 Hospital, Ningbo, Zhejiang, China
| |
Collapse
|
4
|
Park S, Kim JH, Woo JH, Park SY, Cha YK, Chung MJ. Pixel-Wise Interstitial Lung Disease Interval Change Analysis: A Quantitative Evaluation Method for Chest Radiographs Using Weakly Supervised Learning. Bioengineering (Basel) 2024; 11:562. [PMID: 38927798 PMCID: PMC11201158 DOI: 10.3390/bioengineering11060562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024] Open
Abstract
Interstitial lung disease (ILD) is characterized by progressive pathological changes that require timely and accurate diagnosis. The early detection and progression assessment of ILD are important for effective management. This study introduces a novel quantitative evaluation method utilizing chest radiographs to analyze pixel-wise changes in ILD. Using a weakly supervised learning framework, the approach incorporates the contrastive unpaired translation model and a newly developed ILD extent scoring algorithm for more precise and objective quantification of disease changes than conventional visual assessments. The ILD extent score calculated through this method demonstrated a classification accuracy of 92.98% between ILD and normal classes. Additionally, using an ILD follow-up dataset for interval change analysis, this method assessed disease progression with an accuracy of 85.29%. These findings validate the reliability of the ILD extent score as a tool for ILD monitoring. The results of this study suggest that the proposed quantitative method may improve the monitoring and management of ILD.
Collapse
Affiliation(s)
- Subin Park
- Department of Health Sciences es and Technology, SAIHST, Sungkyunkwan University, Seoul 06351, Republic of Korea; (S.P.)
| | - Jong Hee Kim
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 0631, Republic of Korea; (J.H.K.)
| | - Jung Han Woo
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 0631, Republic of Korea; (J.H.K.)
| | - So Young Park
- Department of Health Sciences es and Technology, SAIHST, Sungkyunkwan University, Seoul 06351, Republic of Korea; (S.P.)
| | - Yoon Ki Cha
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 0631, Republic of Korea; (J.H.K.)
| | - Myung Jin Chung
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 0631, Republic of Korea; (J.H.K.)
- Medical AI Research Center, Research Institute for Future Medicine, Samsung Medical Center, Seoul 06351, Republic of Korea
| |
Collapse
|
5
|
Yi C, Niu G, Zhang Y, Rao J, Liu G, Yang W, Fei X. Advances in artificial intelligence in thyroid-associated ophthalmopathy. Front Endocrinol (Lausanne) 2024; 15:1356055. [PMID: 38715793 PMCID: PMC11075148 DOI: 10.3389/fendo.2024.1356055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 04/10/2024] [Indexed: 05/23/2024] Open
Abstract
Thyroid-associated ophthalmopathy (TAO), also referred to as Graves' ophthalmopathy, is a medical condition wherein ocular complications arise due to autoimmune thyroid illness. The diagnosis of TAO, reliant on imaging, typical ocular symptoms, and abnormalities in thyroid function or thyroid-associated antibodies, is generally graded and staged. In recent years, Artificial intelligence(AI), particularly deep learning(DL) technology, has gained widespread use in the diagnosis and treatment of ophthalmic diseases. This paper presents a discussion on specific studies involving AI, specifically DL, in the context of TAO, highlighting their applications in TAO diagnosis, staging, grading, and treatment decisions. Additionally, it addresses certain limitations in AI research on TAO and potential future directions for the field.
Collapse
Affiliation(s)
- Chenyuan Yi
- Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, China
| | - Geng Niu
- School of Medical Technology and Nursing, Shenzhen Polytechnic University, Shenzhen, China
| | - Yinghuai Zhang
- Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, China
| | - Jing Rao
- Shenzhen Eye Institute, Shenzhen Eye Hospital, Jinan University, Shenzhen, China
| | - Guiqin Liu
- Shenzhen Eye Institute, Shenzhen Eye Hospital, Jinan University, Shenzhen, China
| | - Weihua Yang
- Shenzhen Eye Institute, Shenzhen Eye Hospital, Jinan University, Shenzhen, China
| | - XingZhen Fei
- Department of Endocrinology, First People’s Hospital of Huzhou, Huzhou University, Huzhou, China
| |
Collapse
|
6
|
Tariq MU, Ismail SB. AI-powered COVID-19 forecasting: a comprehensive comparison of advanced deep learning methods. Osong Public Health Res Perspect 2024; 15:115-136. [PMID: 38621765 PMCID: PMC11082441 DOI: 10.24171/j.phrp.2023.0287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/07/2024] [Accepted: 01/26/2024] [Indexed: 04/17/2024] Open
Abstract
BACKGROUND The coronavirus disease 2019 (COVID-19) pandemic continues to pose significant challenges to the public health sector, including that of the United Arab Emirates (UAE). The objective of this study was to assess the efficiency and accuracy of various deep-learning models in forecasting COVID-19 cases within the UAE, thereby aiding the nation's public health authorities in informed decision-making. METHODS This study utilized a comprehensive dataset encompassing confirmed COVID-19 cases, demographic statistics, and socioeconomic indicators. Several advanced deep learning models, including long short-term memory (LSTM), bidirectional LSTM, convolutional neural network (CNN), CNN-LSTM, multilayer perceptron, and recurrent neural network (RNN) models, were trained and evaluated. Bayesian optimization was also implemented to fine-tune these models. RESULTS The evaluation framework revealed that each model exhibited different levels of predictive accuracy and precision. Specifically, the RNN model outperformed the other architectures even without optimization. Comprehensive predictive and perspective analytics were conducted to scrutinize the COVID-19 dataset. CONCLUSION This study transcends academic boundaries by offering critical insights that enable public health authorities in the UAE to deploy targeted data-driven interventions. The RNN model, which was identified as the most reliable and accurate for this specific context, can significantly influence public health decisions. Moreover, the broader implications of this research validate the capability of deep learning techniques in handling complex datasets, thus offering the transformative potential for predictive accuracy in the public health and healthcare sectors.
Collapse
Affiliation(s)
- Muhammad Usman Tariq
- Marketing, Operations, and Information System, Abu Dhabi University, Abu Dhabi, United Arab Emirates
- Faculty of Computer Science and Information Technology, Univesiti Tun Hussien Onn Malaysia, Parit Raja, Malaysia
| | - Shuhaida Binti Ismail
- Faculty of Computer Science and Information Technology, Univesiti Tun Hussien Onn Malaysia, Parit Raja, Malaysia
| |
Collapse
|
7
|
Mahmud T, Barua K, Habiba SU, Sharmen N, Hossain MS, Andersson K. An Explainable AI Paradigm for Alzheimer's Diagnosis Using Deep Transfer Learning. Diagnostics (Basel) 2024; 14:345. [PMID: 38337861 PMCID: PMC10855149 DOI: 10.3390/diagnostics14030345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder that affects millions of individuals worldwide, causing severe cognitive decline and memory impairment. The early and accurate diagnosis of AD is crucial for effective intervention and disease management. In recent years, deep learning techniques have shown promising results in medical image analysis, including AD diagnosis from neuroimaging data. However, the lack of interpretability in deep learning models hinders their adoption in clinical settings, where explainability is essential for gaining trust and acceptance from healthcare professionals. In this study, we propose an explainable AI (XAI)-based approach for the diagnosis of Alzheimer's disease, leveraging the power of deep transfer learning and ensemble modeling. The proposed framework aims to enhance the interpretability of deep learning models by incorporating XAI techniques, allowing clinicians to understand the decision-making process and providing valuable insights into disease diagnosis. By leveraging popular pre-trained convolutional neural networks (CNNs) such as VGG16, VGG19, DenseNet169, and DenseNet201, we conducted extensive experiments to evaluate their individual performances on a comprehensive dataset. The proposed ensembles, Ensemble-1 (VGG16 and VGG19) and Ensemble-2 (DenseNet169 and DenseNet201), demonstrated superior accuracy, precision, recall, and F1 scores compared to individual models, reaching up to 95%. In order to enhance interpretability and transparency in Alzheimer's diagnosis, we introduced a novel model achieving an impressive accuracy of 96%. This model incorporates explainable AI techniques, including saliency maps and grad-CAM (gradient-weighted class activation mapping). The integration of these techniques not only contributes to the model's exceptional accuracy but also provides clinicians and researchers with visual insights into the neural regions influencing the diagnosis. Our findings showcase the potential of combining deep transfer learning with explainable AI in the realm of Alzheimer's disease diagnosis, paving the way for more interpretable and clinically relevant AI models in healthcare.
Collapse
Affiliation(s)
- Tanjim Mahmud
- Department of Computer Science and Engineering, Rangamati Science and Technology University, Rangamati 4500, Bangladesh
| | - Koushick Barua
- Department of Computer Science and Engineering, Rangamati Science and Technology University, Rangamati 4500, Bangladesh
| | - Sultana Umme Habiba
- Department of Computer Science and Engineering, Khulna University of Engineering & Technology, Khulna 9203, Bangladesh;
| | - Nahed Sharmen
- Department of Obstetrics and Gynecology, Chattogram Maa-O-Shishu Hospital Medical College, Chittagong 4100, Bangladesh;
| | - Mohammad Shahadat Hossain
- Department of Computer Science and Engineering, University of Chittagong, Chittagong 4331, Bangladesh;
| | - Karl Andersson
- Pervasive and Mobile Computing Laboratory, Luleå University of Technology, 97187 Luleå, Sweden;
| |
Collapse
|
8
|
Xiao X, Kong Y, Li R, Wang Z, Lu H. Transformer with convolution and graph-node co-embedding: An accurate and interpretable vision backbone for predicting gene expressions from local histopathological image. Med Image Anal 2024; 91:103040. [PMID: 38007979 DOI: 10.1016/j.media.2023.103040] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 11/04/2023] [Accepted: 11/17/2023] [Indexed: 11/28/2023]
Abstract
Inferring gene expressions from histopathological images has long been a fascinating yet challenging task, primarily due to the substantial disparities between the two modality. Existing strategies using local or global features of histological images are suffering model complexity, GPU consumption, low interpretability, insufficient encoding of local features, and over-smooth prediction of gene expressions among neighboring sites. In this paper, we develop TCGN (Transformer with Convolution and Graph-Node co-embedding method) for gene expression estimation from H&E-stained pathological slide images. TCGN comprises a combination of convolutional layers, transformer encoders, and graph neural networks, and is the first to integrate these blocks in a general and interpretable computer vision backbone. Notably, TCGN uniquely operates with just a single spot image as input for histopathological image analysis, simplifying the process while maintaining interpretability. We validate TCGN on three publicly available spatial transcriptomic datasets. TCGN consistently exhibited the best performance (with median PCC 0.232). TCGN offers superior accuracy while keeping parameters to a minimum (just 86.241 million), and it consumes minimal memory, allowing it to run smoothly even on personal computers. Moreover, TCGN can be extended to handle bulk RNA-seq data while providing the interpretability. Enhancing the accuracy of omics information prediction from pathological images not only establishes a connection between genotype and phenotype, enabling the prediction of costly-to-measure biomarkers from affordable histopathological images, but also lays the groundwork for future multi-modal data modeling. Our results confirm that TCGN is a powerful tool for inferring gene expressions from histopathological images in precision health applications.
Collapse
Affiliation(s)
- Xiao Xiao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China; SJTU-Yale Joint Center for Biostatistics and Data Science, National Center for Translational Medicine, MoE Key Lab of Artificial Intelligence, AI Institute, Shanghai Jiao Tong University, Shanghai, China; Department of Biostatistics, Yale School of Public Health, Yale University, New Haven, CT, United States
| | - Yan Kong
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China; SJTU-Yale Joint Center for Biostatistics and Data Science, National Center for Translational Medicine, MoE Key Lab of Artificial Intelligence, AI Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Ronghan Li
- SJTU-Yale Joint Center for Biostatistics and Data Science, National Center for Translational Medicine, MoE Key Lab of Artificial Intelligence, AI Institute, Shanghai Jiao Tong University, Shanghai, China; Zhiyuan College, Shanghai Jiao Tong University, Shanghai, China
| | - Zuoheng Wang
- Department of Biostatistics, Yale School of Public Health, Yale University, New Haven, CT, United States
| | - Hui Lu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China; SJTU-Yale Joint Center for Biostatistics and Data Science, National Center for Translational Medicine, MoE Key Lab of Artificial Intelligence, AI Institute, Shanghai Jiao Tong University, Shanghai, China; NHC Key Laboratory of Medical Embryogenesis and Developmental Molecular Biology & Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai Engineering Research Center for Big Data in Pediatric Precision Medicine, Shanghai, China.
| |
Collapse
|
9
|
Qi H, Huang Z, Sun Z, Tang Q, Zhao G, Zhu X, Zhang C. Rice seed vigor detection based on near-infrared hyperspectral imaging and deep transfer learning. FRONTIERS IN PLANT SCIENCE 2023; 14:1283921. [PMID: 37936942 PMCID: PMC10627025 DOI: 10.3389/fpls.2023.1283921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 10/09/2023] [Indexed: 11/09/2023]
Abstract
Vigor is one of the important factors that affects rice yield and quality. Rapid and accurate detection of rice seed vigor is of great importance for rice production. In this study, near-infrared hyperspectral imaging technique and transfer learning were combined to detect rice seed vigor. Four varieties of artificial-aged rice seeds (Yongyou12, Yongyou1540, Suxiangjing100, and Longjingyou1212) were studied. Different convolutional neural network (CNN) models were built to detect the vigor of the rice seeds. Two transfer strategies, fine-tuning and MixStyle, were used to transfer knowledge among different rice varieties for vigor detection. The experimental results showed that the convolutional neural network model of Yongyou12 classified the vigor of Yongyou1540, Suxiangjing100, and Longjingyou1212 through MixStyle transfer knowledge, and the accuracy reached 90.00%, 80.33%, and 85.00% in validation sets, respectively, which was better or close to the initial modeling performances of each variety. MixStyle statistics are based on probabilistic mixed instance-level features of cross-source domain training samples. When training instances, new domains can be synthesized, which increases the domain diversity of the source domain, thereby improving the generalization ability of the trained model. This study would help rapid and accurate detection of a large varieties of crop seeds.
Collapse
Affiliation(s)
- Hengnian Qi
- School of Information Engineering, Huzhou University, Huzhou, China
| | - Zihong Huang
- School of Information Engineering, Huzhou University, Huzhou, China
| | - Zeyu Sun
- School of Information Engineering, Huzhou University, Huzhou, China
| | - Qizhe Tang
- School of Information Engineering, Huzhou University, Huzhou, China
| | - Guangwu Zhao
- College of Advanced Agricultural Sciences, Zhejiang A&F University, Lin’an, China
| | - Xuhua Zhu
- Smart Agriculture Research Institute, Zhejiang Top Cloud-agri Technology Co., Ltd., Hangzhou, China
| | - Chu Zhang
- School of Information Engineering, Huzhou University, Huzhou, China
| |
Collapse
|
10
|
Tariq MU, Ismail SB, Babar M, Ahmad A. Harnessing the power of AI: Advanced deep learning models optimization for accurate SARS-CoV-2 forecasting. PLoS One 2023; 18:e0287755. [PMID: 37471397 PMCID: PMC10359009 DOI: 10.1371/journal.pone.0287755] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 06/09/2023] [Indexed: 07/22/2023] Open
Abstract
The pandemic has significantly affected many countries including the USA, UK, Asia, the Middle East and Africa region, and many other countries. Similarly, it has substantially affected Malaysia, making it crucial to develop efficient and precise forecasting tools for guiding public health policies and approaches. Our study is based on advanced deep-learning models to predict the SARS-CoV-2 cases. We evaluate the performance of Long Short-Term Memory (LSTM), Bi-directional LSTM, Convolutional Neural Networks (CNN), CNN-LSTM, Multilayer Perceptron, Gated Recurrent Unit (GRU), and Recurrent Neural Networks (RNN). We trained these models and assessed them using a detailed dataset of confirmed cases, demographic data, and pertinent socio-economic factors. Our research aims to determine the most reliable and accurate model for forecasting SARS-CoV-2 cases in the region. We were able to test and optimize deep learning models to predict cases, with each model displaying diverse levels of accuracy and precision. A comprehensive evaluation of the models' performance discloses the most appropriate architecture for Malaysia's specific situation. This study supports ongoing efforts to combat the pandemic by offering valuable insights into the application of sophisticated deep-learning models for precise and timely SARS-CoV-2 case predictions. The findings hold considerable implications for public health decision-making, empowering authorities to create targeted and data-driven interventions to limit the virus's spread and minimize its effects on Malaysia's population.
Collapse
Affiliation(s)
- Muhammad Usman Tariq
- Abu Dhabi University, Abu Dhabi, United Arab Emirates
- Universiti Tun Hussein Onn Malaysia (UTHM), Parit Raja, Malaysia
| | | | - Muhammad Babar
- Robotics and Internet of Things Lab, Prince Sultan University, Riyadh, Saudi Arabia
| | - Ashir Ahmad
- College of Computer and Information Sciences, Prince Sultan University, Riyadh, Saudi Arabia
- Swinburne University of Technology, Melbourne, Australia
| |
Collapse
|
11
|
Highly accurate multiclass classification of respiratory system diseases from chest radiography images using deep transfer learning technique. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2023.104745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
|
12
|
Khattab R, Abdelmaksoud IR, Abdelrazek S. Deep Convolutional Neural Networks for Detecting COVID-19 Using Medical Images: A Survey. NEW GENERATION COMPUTING 2023; 41:343-400. [PMID: 37229176 PMCID: PMC10071474 DOI: 10.1007/s00354-023-00213-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 02/23/2023] [Indexed: 05/27/2023]
Abstract
Coronavirus Disease 2019 (COVID-19), which is caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-COV-2), surprised the world in December 2019 and has threatened the lives of millions of people. Countries all over the world closed worship places and shops, prevented gatherings, and implemented curfews to stand against the spread of COVID-19. Deep Learning (DL) and Artificial Intelligence (AI) can have a great role in detecting and fighting this disease. Deep learning can be used to detect COVID-19 symptoms and signs from different imaging modalities, such as X-Ray, Computed Tomography (CT), and Ultrasound Images (US). This could help in identifying COVID-19 cases as a first step to curing them. In this paper, we reviewed the research studies conducted from January 2020 to September 2022 about deep learning models that were used in COVID-19 detection. This paper clarified the three most common imaging modalities (X-Ray, CT, and US) in addition to the DL approaches that are used in this detection and compared these approaches. This paper also provided the future directions of this field to fight COVID-19 disease.
Collapse
Affiliation(s)
- Rana Khattab
- Information Systems Department, Faculty of Computers and Information, Mansoura University, Mansoura, Egypt
| | - Islam R. Abdelmaksoud
- Information Systems Department, Faculty of Computers and Information, Mansoura University, Mansoura, Egypt
| | - Samir Abdelrazek
- Information Systems Department, Faculty of Computers and Information, Mansoura University, Mansoura, Egypt
| |
Collapse
|
13
|
Yu X, Zhou S, Zou H, Wang Q, Liu C, Zang M, Liu T. Survey of deep learning techniques for disease prediction based on omics data. HUMAN GENE 2023; 35:201140. [DOI: 10.1016/j.humgen.2022.201140] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
14
|
Muhammad Ali Shahid M, Sulaiman S, Al-Sarem M, Ur Rahman A, Iqbal S, Nawaz Bashir R, Ahmad Khan A, M. Alrawi M, R. Marie R, Poochaya S. Measuring Reliability of A Web Portal Based on Testing Profile. COMPUTERS, MATERIALS & CONTINUA 2023; 74:6641-6663. [DOI: 10.32604/cmc.2023.031459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
|
15
|
Al-Sarem M, Al-Asali M, Alqutaibi AY, Saeed F. Enhanced Tooth Region Detection Using Pretrained Deep Learning Models. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:15414. [PMID: 36430133 PMCID: PMC9692549 DOI: 10.3390/ijerph192215414] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 06/15/2023]
Abstract
The rapid development of artificial intelligence (AI) has led to the emergence of many new technologies in the healthcare industry. In dentistry, the patient's panoramic radiographic or cone beam computed tomography (CBCT) images are used for implant placement planning to find the correct implant position and eliminate surgical risks. This study aims to develop a deep learning-based model that detects missing teeth's position on a dataset segmented from CBCT images. Five hundred CBCT images were included in this study. After preprocessing, the datasets were randomized and divided into 70% training, 20% validation, and 10% test data. A total of six pretrained convolutional neural network (CNN) models were used in this study, which includes AlexNet, VGG16, VGG19, ResNet50, DenseNet169, and MobileNetV3. In addition, the proposed models were tested with/without applying the segmentation technique. Regarding the normal teeth class, the performance of the proposed pretrained DL models in terms of precision was above 0.90. Moreover, the experimental results showed the superiority of DenseNet169 with a precision of 0.98. In addition, other models such as MobileNetV3, VGG19, ResNet50, VGG16, and AlexNet obtained a precision of 0.95, 0.94, 0.94, 0.93, and 0.92, respectively. The DenseNet169 model performed well at the different stages of CBCT-based detection and classification with a segmentation accuracy of 93.3% and classification of missing tooth regions with an accuracy of 89%. As a result, the use of this model may represent a promising time-saving tool serving dental implantologists with a significant step toward automated dental implant planning.
Collapse
Affiliation(s)
- Mohammed Al-Sarem
- College of Computer Science and Engineering, Taibah University, Medina 42353, Saudi Arabia
- Department of Computer Science, Sheba Region University, Marib 14400, Yemen
| | - Mohammed Al-Asali
- College of Computer Science and Engineering, Taibah University, Medina 42353, Saudi Arabia
| | - Ahmed Yaseen Alqutaibi
- Department of Prosthodontics and Implant Dentistry, College of Dentistry, Taibah University, Al Madinah 41311, Saudi Arabia
- Department of Prosthodontics, College of Dentistry, Ibb University, Ibb 70270, Yemen
| | - Faisal Saeed
- College of Computer Science and Engineering, Taibah University, Medina 42353, Saudi Arabia
- DAAI Research Group, Department of Computing and Data Science, School of Computing and Digital Technology, Birmingham City University, Birmingham B4 7XG, UK
| |
Collapse
|
16
|
Ait Bennacer S, Aaroud A, Sabiri K, Rguibi MA, Cherradi B. Design and implementation of a New Blockchain-based digital health passport: A Moroccan case study. INFORMATICS IN MEDICINE UNLOCKED 2022; 35:101125. [PMID: 36345287 PMCID: PMC9630302 DOI: 10.1016/j.imu.2022.101125] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
Abstract
In the context of COVID-19 pandemic, the Moroccan Interior and Health Ministries have proposed to use the health pass with a QR code to identify vaccinated people. Additionally, the government suggested a mobile application to control the health passport authenticity. However, the key problem is the possibility of anyone scanning the QR code and figuring out citizens' private information, causing severe issues about individual privacy. In this work, the main contribution is integrating a private Blockchain-based digital health passport to ensure high protection of sensitive information, security and privacy among all the actors (Government, Ministry of Interior, Ministry of Health, verifiers) that comply with the CNDP (National Commission for the Control of Personal Data Protection) and the Moroccan Law 09–08. In our proposed architectural framework solution, we identify two types of actors: authorized and unauthorized, to limit and control access to the citizens' personal information. Besides, to preserve individuals' privacy, we adopt on-chain and off-chain storage (Interplanetary File Systems IPFS). In our case, smart contracts improve security and privacy in the health passport verification process. Our system implementation describes the proposed solution to grant individual privacy. To verify and validate our approach, we used Remix-IDE and Ethereum Blockchain to build smart contracts.
Collapse
|
17
|
Ali NA, El Abbassi A, Bouattane O. Performance evaluation of spatial fuzzy C-means clustering algorithm on GPU for image segmentation. MULTIMEDIA TOOLS AND APPLICATIONS 2022; 82:6787-6805. [PMID: 35968411 PMCID: PMC9363269 DOI: 10.1007/s11042-022-13635-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/25/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
Image processing by segmentation technique is an important phase in medical imaging such as MRI. Its objective is to analyze the different tissues in human body. In research area, Fuzzy set is one of the most successful techniques that guarantees a robust classification. Spatial FCM (SFCM); one of the fuzzy c-means variants; considers spatial information to deal with the noisy images. To reduce this iterative algorithm's execution time, a hard SIMD architecture has been planted named the Graphical Processing Unit (GPU). In this work, a great contribution has been done to diagnose, confront and implement three different parallel implementations on GPU. A parallel implementations' extensive study of SFCM entitled PSFCM using 3 × 3 window is presented, and the experiments illustrate a significant decrease in terms of running time of this algorithm known by its high complexity. The experimental results indicate that the parallel version's execution time is about 9.46 times faster than the sequential implementation on image segmentation. This gain in terms of speed-up is achieved on the Nvidia GeForce GT 740 m GPU.
Collapse
Affiliation(s)
- Noureddine Ait Ali
- Labo ERTTI, FST Errachidia, Moulay Ismail University of Meknes, Meknes, Morocco
| | - Ahmed El Abbassi
- Labo ERTTI, FST Errachidia, Moulay Ismail University of Meknes, Meknes, Morocco
| | - Omar Bouattane
- SSDIA Laboratory, ENSET-Mohammedia Hassan II University Casablanca, Casablanca, Morocco
| |
Collapse
|
18
|
Mehrrotraa R, Ansari MA, Agrawal R, Tripathi P, Bin Heyat MB, Al-Sarem M, Muaad AYM, Nagmeldin WAE, Abdelmaboud A, Saeed F. Ensembling of Efficient Deep Convolutional Networks and Machine Learning Algorithms for Resource Effective Detection of Tuberculosis Using Thoracic (Chest) Radiography. IEEE ACCESS 2022; 10:85442-85458. [DOI: 10.1109/access.2022.3194152] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Affiliation(s)
- Rajat Mehrrotraa
- Department of Electrical and Electronics Engineering, G. L. Bajaj Institute of Technology & Management, Greater Noida, India
| | - M. A. Ansari
- Department of Electrical Engineering, School of Engineering, Gautam Buddha University, Greater Noida, India
| | - Rajeev Agrawal
- Department of Computer Science, Lloyd Institute of Engineering & Technology, Greater Noida, India
| | - Pragati Tripathi
- Department of Electrical Engineering, School of Engineering, Gautam Buddha University, Greater Noida, India
| | - Md Belal Bin Heyat
- IoT Research Center, College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China
| | - Mohammed Al-Sarem
- College of Computer Science and Engineering, Taibah University, Medina, Saudi Arabia
| | | | - Wamda Abdelrahman Elhag Nagmeldin
- Department of Information Systems, College of Computer Engineering and Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | | | - Faisal Saeed
- Department of Computing and Data Science, DAAI Research Group, School of Computing and Digital Technology, Birmingham City University, Birmingham, U.K
| |
Collapse
|
19
|
Singh D, Prashar D, Singla J, Ahmad Khan A, Al-Sarem M, Ali Kurdi N. Intelligent Medical Diagnostic System for Hepatitis B. COMPUTERS, MATERIALS & CONTINUA 2022; 73:6047-6068. [DOI: 10.32604/cmc.2022.031255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
|
20
|
El Gannour O, Hamida S, Cherradi B, Al-Sarem M, Raihani A, Saeed F, Hadwan M. Concatenation of Pre-Trained Convolutional Neural Networks for Enhanced COVID-19 Screening Using Transfer Learning Technique. ELECTRONICS 2021; 11:103. [DOI: 10.3390/electronics11010103] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Coronavirus (COVID-19) is the most prevalent coronavirus infection with respiratory symptoms such as fever, cough, dyspnea, pneumonia, and weariness being typical in the early stages. On the other hand, COVID-19 has a direct impact on the circulatory and respiratory systems as it causes a failure to some human organs or severe respiratory distress in extreme circumstances. Early diagnosis of COVID-19 is extremely important for the medical community to limit its spread. For a large number of suspected cases, manual diagnostic methods based on the analysis of chest images are insufficient. Faced with this situation, artificial intelligence (AI) techniques have shown great potential in automatic diagnostic tasks. This paper aims at proposing a fast and precise medical diagnosis support system (MDSS) that can distinguish COVID-19 precisely in chest-X-ray images. This MDSS uses a concatenation technique that aims to combine pre-trained convolutional neural networks (CNN) depend on the transfer learning (TL) technique to build a highly accurate model. The models enable storage and application of knowledge learned from a pre-trained CNN to a new task, viz., COVID-19 case detection. For this purpose, we employed the concatenation method to aggregate the performances of numerous pre-trained models to confirm the reliability of the proposed method for identifying the patients with COVID-19 disease from X-ray images. The proposed system was trialed on a dataset that included four classes: normal, viral-pneumonia, tuberculosis, and COVID-19 cases. Various general evaluation methods were used to evaluate the effectiveness of the proposed model. The first proposed model achieved an accuracy rate of 99.80% while the second model reached an accuracy of 99.71%.
Collapse
Affiliation(s)
- Oussama El Gannour
- Electrical Engineering and Intelligent Systems (EEIS) Laboratory, ENSET of Mohammedia, Hassan II University of Casablanca, B.P. 159, Mohammedia 28820, Morocco
| | - Soufiane Hamida
- Electrical Engineering and Intelligent Systems (EEIS) Laboratory, ENSET of Mohammedia, Hassan II University of Casablanca, B.P. 159, Mohammedia 28820, Morocco
| | - Bouchaib Cherradi
- Electrical Engineering and Intelligent Systems (EEIS) Laboratory, ENSET of Mohammedia, Hassan II University of Casablanca, B.P. 159, Mohammedia 28820, Morocco
- STIE Team, CRMEF Casablanca-Settat, Provincial Section of El Jadida, El Jadida 24000, Morocco
| | - Mohammed Al-Sarem
- College of Computer Science and Engineering, Taibah University, Medina 42353, Saudi Arabia
- Department of Computer Science, Saba’a Region University, Marib 0000, Yemen
| | - Abdelhadi Raihani
- Electrical Engineering and Intelligent Systems (EEIS) Laboratory, ENSET of Mohammedia, Hassan II University of Casablanca, B.P. 159, Mohammedia 28820, Morocco
| | - Faisal Saeed
- School of Computing and Digital Technology, Birmingham City University, Birmingham B4 7XG, UK
| | - Mohammed Hadwan
- Department of Information Technology, College of Computer, Qassim University, Buraydah 51452, Saudi Arabia
- Department of Computer Science, College of Applied Sciences, Taiz University, Taiz 6803, Yemen
| |
Collapse
|