1
|
Gatenby RA, Teer JK, Tsai KY, Brown JS. Parallel and convergent dynamics in the evolution of primary breast and lung adenocarcinomas. Commun Biol 2025; 8:775. [PMID: 40399443 PMCID: PMC12095661 DOI: 10.1038/s42003-025-08123-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 04/23/2025] [Indexed: 05/23/2025] Open
Abstract
Cancer development requires an evolutionary transformation from mammalian cells fully regulated by and integrated into multicellular tissue to cancer cells that, as single cell protists, are individually subject to Darwinian selection. Through genetic and epigenetic mechanisms of inheritance, the evolving cancer phenotype must acquire independence from host controls, downregulate differentiated functions that benefit the host but not individual cells, and generate phenotypic traits that increase fitness in the context of the selection forces within the local microenvironment. Here, we investigate this evolutionary transition in breast (BRCA) and lung (LUAD, without EGFR, KRAS or BRAF driver mutations) adenocarcinomas using bulk mutation and expression data from the TCGA database. We define evolution selection for genes and molecular pathways based on 1) changes in gene expression compared to normal tissue, and 2) significantly larger or smaller observed mutation rates compared to those expected based on the gene size. We find BRCA and LUAD disable different genes and gene pathways associated with tissue-specific signaling and differentiated functions but promote common molecular pathways associated with cell cycle, cell-cell interactions, cytoskeleton, voltage gated ion channels, and microenvironmental niche construction. Thus, tissue-specific parallel evolution in early cancer development is followed by convergence to a common cancer phenotype.
Collapse
Affiliation(s)
- Robert A Gatenby
- Cancer Biology and Evolution Program, Tampa, FL, USA.
- Integrated Mathematical Oncology Department, Tampa, FL, USA.
| | - Jamie K Teer
- Biostatistics and Bioinformatics Department, Tampa, FL, USA
| | - Kenneth Y Tsai
- Cancer Biology and Evolution Program, Tampa, FL, USA
- Pathology Department Moffitt Cancer Center, Tampa, FL, USA
| | - Joel S Brown
- Cancer Biology and Evolution Program, Tampa, FL, USA
- Integrated Mathematical Oncology Department, Tampa, FL, USA
| |
Collapse
|
2
|
Maklad A, Sedeeq M, Baghaei K, Wilson R, Heath JA, Gueven N, Azimi I. Role of LIN28B in the Regulation of Ribosomal Biogenesis and Lipid Metabolism in Medulloblastoma Brain Cancer Cells. Proteomes 2025; 13:14. [PMID: 40265419 PMCID: PMC12015845 DOI: 10.3390/proteomes13020014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/07/2025] [Accepted: 03/20/2025] [Indexed: 04/24/2025] Open
Abstract
Background: Medulloblastoma (MB) is the most aggressive paediatric brain cancer, highlighting the urgent need for new diagnostic and prognostic biomarkers and improved treatments to enhance patient outcomes. Our previous study identified LIN28B, an RNA-binding protein, as a potential diagnostic and prognostic marker for MB and a pharmacological target to inhibit MB cell proliferation and stemness. However, the specific role of LIN28B and its mechanism of action in MB had not been studied. Methods: This study assessed LIN28B's role in Daoy MB cells using siRNA-mediated silencing. LIN28B silencing was achieved with Dharmacon ON-TARGETplus SMARTpool and confirmed by Western blotting. Proliferation and protein assays evaluated the cell metabolic activity and viability. A proteomics analysis was conducted to examine the effect of LIN28B knockdown on the MB cell protein expression profile. The intracellular lipid droplets were assessed using the Nile Red Staining Kit, and nucleolar B23 protein levels were assessed by immunofluorescence. Both were visualised with a high-content IN Cell Analyser 2200. Results: Effective LIN28B silencing (>80%) was achieved in each experiment. LIN28B knockdown reduced the MB cell viability, impaired ribosome biogenesis, and promoted cellular lipid accumulation, as supported by proteomics and cell-based assays. Conclusions: This study highlights LIN28B as a promising target for regulating MB cell growth, ribosomal biogenesis, and lipid metabolism.
Collapse
Affiliation(s)
- Ahmed Maklad
- School of Pharmacy and Pharmacology, College of Health and Medicine, University of Tasmania, Hobart, TAS 7001, Australia; (A.M.); (M.S.); (N.G.)
| | - Mohammed Sedeeq
- School of Pharmacy and Pharmacology, College of Health and Medicine, University of Tasmania, Hobart, TAS 7001, Australia; (A.M.); (M.S.); (N.G.)
| | - Kaveh Baghaei
- Monash Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Melbourne, VIC 3168, Australia;
| | - Richard Wilson
- Central Science Laboratory, College of Science and Engineering, University of Tasmania, Hobart, TAS 7001, Australia;
| | - John A. Heath
- Children’s Cancer Centre, Monash Children’s Hospital, Melbourne, VIC 3168, Australia;
| | - Nuri Gueven
- School of Pharmacy and Pharmacology, College of Health and Medicine, University of Tasmania, Hobart, TAS 7001, Australia; (A.M.); (M.S.); (N.G.)
| | - Iman Azimi
- School of Pharmacy and Pharmacology, College of Health and Medicine, University of Tasmania, Hobart, TAS 7001, Australia; (A.M.); (M.S.); (N.G.)
- Monash Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Melbourne, VIC 3168, Australia;
| |
Collapse
|
3
|
Yi Q, Zhu G, Zhu W, Wang J, Ouyang X, Yang K, Fan Y, Zhong J. LINC01094: A key long non-coding RNA in the regulation of cancer progression and therapeutic targets. Heliyon 2024; 10:e37527. [PMID: 39309878 PMCID: PMC11415682 DOI: 10.1016/j.heliyon.2024.e37527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 07/25/2024] [Accepted: 09/04/2024] [Indexed: 09/25/2024] Open
Abstract
LINC01094 is a long non-coding RNA that plays a crucial role in cancer progression by modulating key signaling pathways, such as PI3K/AKT, Wnt/β-catenin and TGF-β Signaling Pathway Feedback Loop. In this review we summarize the recent research on the functional mechanisms of LINC01094 in various cancers, including its impact on tumor growth, metastasis, and resistance to therapy. We also discuss the therapeutic potential of targeting LINC01094 and highlight the current strategies and challenges in this area. Perspectives on future development of LINC01094-based therapies are also provided.
Collapse
Affiliation(s)
- Qiang Yi
- The First Clinical Medical College, Gannan Medical University, Ganzhou, Jiangxi Province, 341000, China
| | - Gangfeng Zhu
- The First Clinical Medical College, Gannan Medical University, Ganzhou, Jiangxi Province, 341000, China
| | - Weijian Zhu
- The First Clinical Medical College, Gannan Medical University, Ganzhou, Jiangxi Province, 341000, China
| | - Jiaqi Wang
- The First Clinical Medical College, Gannan Medical University, Ganzhou, Jiangxi Province, 341000, China
| | - Xinting Ouyang
- The First Clinical Medical College, Gannan Medical University, Ganzhou, Jiangxi Province, 341000, China
| | - Kuan Yang
- The First Clinical Medical College, Gannan Medical University, Ganzhou, Jiangxi Province, 341000, China
| | - Yu Fan
- The First Clinical Medical College, Gannan Medical University, Ganzhou, Jiangxi Province, 341000, China
| | - Jinghua Zhong
- Department of Oncology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi Province, 341000, China
| |
Collapse
|
4
|
Li JH, Hsin PY, Hsiao YC, Chen BJ, Zhuang ZY, Lee CW, Lee WJ, Vo TTT, Tseng CF, Tseng SF, Lee IT. A Narrative Review: Repurposing Metformin as a Potential Therapeutic Agent for Oral Cancer. Cancers (Basel) 2024; 16:3017. [PMID: 39272875 PMCID: PMC11394296 DOI: 10.3390/cancers16173017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/25/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
Oral cancer, particularly oral squamous cell carcinoma (OSCC), is a significant global health challenge because of its high incidence and limited treatment options. Major risk factors, including tobacco use, alcohol consumption, and specific microbiota, contribute to the disease's prevalence. Recently, a compelling association between diabetes mellitus (DM) and oral cancer has been identified, with metformin, a widely used antidiabetic drug, emerging as a potential therapeutic agent across various cancers, including OSCC. This review explores both preclinical and clinical studies to understand the mechanisms by which metformin may exert its anticancer effects, such as inhibiting cancer cell proliferation, inducing apoptosis, and enhancing the efficacy of existing treatments. Preclinical studies demonstrate that metformin modulates crucial metabolic pathways, reduces inflammation, and impacts cellular proliferation, thereby potentially lowering cancer risk and improving patient outcomes. Additionally, metformin's ability to reverse epithelial-to-mesenchymal transition (EMT), regulate the LIN28/let-7 axis, and its therapeutic role in head and neck squamous cell carcinoma (HNSCC) are examined through experimental models. In clinical contexts, metformin shows promise in enhancing therapeutic outcomes and reducing recurrence rates, although challenges such as drug interactions, complex dosing regimens, and risks such as vitamin B12 deficiency remain. Future research should focus on optimizing metformin's application, investigating its synergistic effects with other therapies, and conducting rigorous clinical trials to validate its efficacy in OSCC treatment. This dual exploration underscores metformin's potential to play a transformative role in both diabetes management and cancer care, potentially revolutionizing oral cancer treatment strategies.
Collapse
Affiliation(s)
- Jui-Hsiang Li
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan 33004, Taiwan
| | - Pei-Yi Hsin
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Yung-Chia Hsiao
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Bo-Jun Chen
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Zhi-Yun Zhuang
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Chiang-Wen Lee
- Department of Nursing, Division of Basic Medical Sciences, Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Chiayi 61363, Taiwan
- Department of Respiratory Care, Chang Gung University of Science and Technology, Chiayi 61363, Taiwan
- Department of Orthopaedic Surgery, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan
| | - Wei-Ju Lee
- School of Food Safety, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan
| | - Thi Thuy Tien Vo
- Faculty of Dentistry, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Vietnam
| | - Chien-Fu Tseng
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei 10048, Taiwan
- Department of Dentistry, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan 33004, Taiwan
| | - Shih-Fen Tseng
- Department of Emergency Medicine, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan 33004, Taiwan
| | - I-Ta Lee
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
5
|
Pastori V, Zambanini G, Citterio E, Weiss T, Nakamura Y, Cantù C, Ronchi AE. Transcriptional repression of the oncofetal LIN28B gene by the transcription factor SOX6. Sci Rep 2024; 14:10287. [PMID: 38704454 PMCID: PMC11069503 DOI: 10.1038/s41598-024-60438-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 04/23/2024] [Indexed: 05/06/2024] Open
Abstract
The identification of regulatory networks contributing to fetal/adult gene expression switches is a major challenge in developmental biology and key to understand the aberrant proliferation of cancer cells, which often reactivate fetal oncogenes. One key example is represented by the developmental gene LIN28B, whose aberrant reactivation in adult tissues promotes tumor initiation and progression. Despite the prominent role of LIN28B in development and cancer, the mechanisms of its transcriptional regulation are largely unknown. Here, by using quantitative RT-PCR and single cell RNA sequencing data, we show that in erythropoiesis the expression of the transcription factor SOX6 matched a sharp decline of LIN28B mRNA during human embryo/fetal to adult globin switching. SOX6 overexpression repressed LIN28B not only in a panel of fetal-like erythroid cells (K562, HEL and HUDEP1; ≈92% p < 0.0001, 54% p = 0.0009 and ≈60% p < 0.0001 reduction, respectively), but also in hepatoblastoma HepG2 and neuroblastoma SH-SY5H cells (≈99% p < 0.0001 and ≈59% p < 0.0001 reduction, respectively). SOX6-mediated repression caused downregulation of the LIN28B/Let-7 targets, including MYC and IGF2BP1, and rapidly blocks cell proliferation. Mechanistically, Lin28B repression is accompanied by SOX6 physical binding within its locus, suggesting a direct mechanism of LIN28B downregulation that might contribute to the fetal/adult erythropoietic transition and restrict cancer proliferation.
Collapse
Affiliation(s)
- Valentina Pastori
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, Milan, Italy
| | - Gianluca Zambanini
- Wallenberg Centre for Molecular Medicine, Linköping University, Linköping, Sweden
- Division of Molecular Medicine and Virology, Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
- Max-Planck-Institut für molekulare Genetik, Berlin, Germany
| | - Elisabetta Citterio
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, Milan, Italy
| | - Tamina Weiss
- Wallenberg Centre for Molecular Medicine, Linköping University, Linköping, Sweden
- Division of Molecular Medicine and Virology, Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| | - Yukio Nakamura
- RIKEN BioResource Research Center, Tsukuba, Ibaraki, Japan
| | - Claudio Cantù
- Wallenberg Centre for Molecular Medicine, Linköping University, Linköping, Sweden
- Division of Molecular Medicine and Virology, Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| | - Antonella Ellena Ronchi
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, Milan, Italy.
| |
Collapse
|
6
|
ZHANG LU, CHU JINGUO, YU YUSHAN. Developing risk models and subtypes of autophagy-associated LncRNAs for enhanced prognostic prediction and precision in therapeutic approaches for liver cancer patients. Oncol Res 2024; 32:703-716. [PMID: 38560571 PMCID: PMC10972734 DOI: 10.32604/or.2023.030988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 08/21/2023] [Indexed: 04/04/2024] Open
Abstract
Background Limited research has been conducted on the influence of autophagy-associated long non-coding RNAs (ARLncRNAs) on the prognosis of hepatocellular carcinoma (HCC). Methods We analyzed 371 HCC samples from TCGA, identifying expression networks of ARLncRNAs using autophagy-related genes. Screening for prognostically relevant ARLncRNAs involved univariate Cox regression, Lasso regression, and multivariate Cox regression. A Nomogram was further employed to assess the reliability of Riskscore, calculated from the signatures of screened ARLncRNAs, in predicting outcomes. Additionally, we compared drug sensitivities in patient groups with differing risk levels and investigated potential biological pathways through enrichment analysis, using consensus clustering to identify subgroups related to ARLncRNAs. Results The screening process identified 27 ARLncRNAs, with 13 being associated with HCC prognosis. Consequently, a set of signatures comprising 8 ARLncRNAs was successfully constructed as independent prognostic factors for HCC. Patients in the high-risk group showed very poor prognoses in most clinical categories. The Riskscore was closely related to immune cell scores, such as macrophages, and the DEGs between different groups were implicated in metabolism, cell cycle, and mitotic processes. Notably, high-risk group patients demonstrated a significantly lower IC50 for Paclitaxel, suggesting that Paclitaxel could be an ideal treatment for those at elevated risk for HCC. We further identified C2 as the Paclitaxel subtype, where patients exhibited higher Riskscores, reduced survival rates, and more severe clinical progression. Conclusion The 8 signatures based on ARLncRNAs present novel targets for prognostic prediction in HCC. The drug candidate Paclitaxel may effectively treat HCC by impacting ARLncRNAs expression. With the identification of ARLncRNAs-related isoforms, these results provide valuable insights for clinical exploration of autophagy mechanisms in HCC pathogenesis and offer potential avenues for precision medicine.
Collapse
Affiliation(s)
- LU ZHANG
- Department of General Practice, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - JINGUO CHU
- Department of General Practice, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - YUSHAN YU
- Department of General Practice, The First Affiliated Hospital of Ningbo University, Ningbo, China
| |
Collapse
|
7
|
Gewalt T, Diehl L, Meder L. Editorial: Tumor and immune cell interactions in the formation of organ-specific metastasis. Front Oncol 2024; 14:1373308. [PMID: 38444685 PMCID: PMC10914249 DOI: 10.3389/fonc.2024.1373308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 02/05/2024] [Indexed: 03/07/2024] Open
Affiliation(s)
- Tabea Gewalt
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Linda Diehl
- Institute for Experimental Immunology and Hepatology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center of Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lydia Meder
- Department of Experimental Medicine 1, Medical Faculty, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
8
|
Stocchero M, Corallo D, Bresolin S, Pantile M, Pirillo P, Bortolozzi R, Menegazzo S, Boso D, Viola G, Baraldi E, Biffi A, Giordano G, Aveic S. A Multi-Omics Approach Reveals Enrichment in Metabolites Involved in the Regulation of the Glutathione Pathway in LIN28B-Dependent Cancer Cells. Int J Mol Sci 2024; 25:1602. [PMID: 38338881 PMCID: PMC10855783 DOI: 10.3390/ijms25031602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/19/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
The RNA-binding protein LIN28B, identified as an independent risk factor in high-risk neuroblastoma patients, is implicated in adverse treatment outcomes linked to metastasis and chemoresistance. Despite its clinical significance, the impact of LIN28B on neuroblastoma cell metabolism remains unexplored. This study employs a multi-omics approach, integrating transcriptome and metabolome data, to elucidate the global metabolic program associated with varying LIN28B expression levels over time. Our findings reveal that escalating LIN28B expression induces a significant metabolic rewiring in neuroblastoma cells. Specifically, LIN28B prompts a time-dependent increase in the release rate of metabolites related to the glutathione and aminoacyl-tRNA biosynthetic pathways, concomitant with a reduction in glucose uptake. These results underscore the pivotal role of LIN28B in governing neuroblastoma cell metabolism and suggest a potential disruption in the redox balance of LIN28B-bearing cells. This study offers valuable insights into the molecular mechanisms underlying LIN28B-associated adverse outcomes in neuroblastoma, paving the way for targeted therapeutic interventions.
Collapse
Affiliation(s)
- Matteo Stocchero
- Department of Women and Children’s Health, University of Padova, 35128 Padova, Italy; (S.B.); (P.P.); (R.B.); (S.M.); (G.V.); (A.B.); (G.G.)
- Laboratory Mass Spectrometry and Metabolomics, Istituto di Ricerca Pediatrica (IRP), Fondazione Città della Speranza, 35127 Padova, Italy
| | - Diana Corallo
- Laboratory of Target Discovery and Biology of Neuroblastoma, Istituto di Ricerca Pediatrica (IRP), Fondazione Città della Speranza, 35127 Padova, Italy; (M.P.); (D.B.); (S.A.)
| | - Silvia Bresolin
- Department of Women and Children’s Health, University of Padova, 35128 Padova, Italy; (S.B.); (P.P.); (R.B.); (S.M.); (G.V.); (A.B.); (G.G.)
| | - Marcella Pantile
- Laboratory of Target Discovery and Biology of Neuroblastoma, Istituto di Ricerca Pediatrica (IRP), Fondazione Città della Speranza, 35127 Padova, Italy; (M.P.); (D.B.); (S.A.)
| | - Paola Pirillo
- Department of Women and Children’s Health, University of Padova, 35128 Padova, Italy; (S.B.); (P.P.); (R.B.); (S.M.); (G.V.); (A.B.); (G.G.)
- Laboratory Mass Spectrometry and Metabolomics, Istituto di Ricerca Pediatrica (IRP), Fondazione Città della Speranza, 35127 Padova, Italy
| | - Roberta Bortolozzi
- Department of Women and Children’s Health, University of Padova, 35128 Padova, Italy; (S.B.); (P.P.); (R.B.); (S.M.); (G.V.); (A.B.); (G.G.)
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35128 Padova, Italy
| | - Sara Menegazzo
- Department of Women and Children’s Health, University of Padova, 35128 Padova, Italy; (S.B.); (P.P.); (R.B.); (S.M.); (G.V.); (A.B.); (G.G.)
- Laboratory of Target Discovery and Biology of Neuroblastoma, Istituto di Ricerca Pediatrica (IRP), Fondazione Città della Speranza, 35127 Padova, Italy; (M.P.); (D.B.); (S.A.)
| | - Daniele Boso
- Laboratory of Target Discovery and Biology of Neuroblastoma, Istituto di Ricerca Pediatrica (IRP), Fondazione Città della Speranza, 35127 Padova, Italy; (M.P.); (D.B.); (S.A.)
| | - Giampietro Viola
- Department of Women and Children’s Health, University of Padova, 35128 Padova, Italy; (S.B.); (P.P.); (R.B.); (S.M.); (G.V.); (A.B.); (G.G.)
| | - Eugenio Baraldi
- Department of Women and Children’s Health, University of Padova, 35128 Padova, Italy; (S.B.); (P.P.); (R.B.); (S.M.); (G.V.); (A.B.); (G.G.)
- Laboratory Mass Spectrometry and Metabolomics, Istituto di Ricerca Pediatrica (IRP), Fondazione Città della Speranza, 35127 Padova, Italy
| | - Alessandra Biffi
- Department of Women and Children’s Health, University of Padova, 35128 Padova, Italy; (S.B.); (P.P.); (R.B.); (S.M.); (G.V.); (A.B.); (G.G.)
| | - Giuseppe Giordano
- Department of Women and Children’s Health, University of Padova, 35128 Padova, Italy; (S.B.); (P.P.); (R.B.); (S.M.); (G.V.); (A.B.); (G.G.)
- Laboratory Mass Spectrometry and Metabolomics, Istituto di Ricerca Pediatrica (IRP), Fondazione Città della Speranza, 35127 Padova, Italy
| | - Sanja Aveic
- Laboratory of Target Discovery and Biology of Neuroblastoma, Istituto di Ricerca Pediatrica (IRP), Fondazione Città della Speranza, 35127 Padova, Italy; (M.P.); (D.B.); (S.A.)
- Department of Dental Materials and Biomaterials Research, RWTH Aachen University Hospital, 52074 Aachen, Germany
| |
Collapse
|