1
|
He F, Zhang H, Zheng G, Zhou B, Fang Z, Zhu H, Dong Y, Hao G. Adverse childhood experiences and cardiometabolic biomarkers: A causal analysis. J Affect Disord 2025; 381:418-426. [PMID: 40194629 DOI: 10.1016/j.jad.2025.04.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 04/03/2025] [Accepted: 04/04/2025] [Indexed: 04/09/2025]
Abstract
BACKGROUND The associations between adverse childhood experiences (ACEs) and cardiometabolic biomarkers need to be further studied. Our objective was to investigate whether ACEs are causally associated with cardiometabolic biomarkers using observational study and two-sample Mendelian randomization (MR) analysis. METHODS The China Health and Retirement Longitudinal Study (CHARLS) data from 2014 to 2015 was used in the observational study. ACEs were divided into 4 groups (0, 1, 2, and 3 or more) according to whether they had experienced 12 items of negative experiences in childhood. A multilevel model was used to estimate the association between ACEs and each cardiometabolic biomarker. Further, we used two-sample MR to identify their potential causality. RESULTS A total of 11,422 participants (age:45-96) were eligible for the analyses in the observational study. Participants who experienced more ACEs were significantly higher in high-sensitivity C-reactive protein (hs-CRP) and high-density lipoprotein cholesterol (HDL-C) (all P < 0.05). Compared with those without ACE exposure, participants who experienced 3 or more ACEs had significantly lower total cholesterol (P < 0.05). In addition, a stronger association between ACEs and hs-CRP in males, as well as a stronger association between ACEs and HDL-C (Pinteraction = 0.036) in participants with higher education levels were observed. Consistently, in two-sample MR, we observed causal associations between DNA methylation loci and those cardiometabolic biomarkers. CONCLUSION Our results indicate that ACEs were causally associated with several cardiometabolic biomarkers. Further, adversity-associated DNA methylation loci might reflect buffering mechanisms against childhood adversity, which provides novel insight to the cardiovascular risk interventions.
Collapse
Affiliation(s)
- Fudong He
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou, China
| | - Haofeng Zhang
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou, China
| | - Guangjun Zheng
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
| | - Biying Zhou
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
| | - Zhenger Fang
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
| | - Haidong Zhu
- Georgia Prevention Institute, Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Yanbin Dong
- Georgia Prevention Institute, Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Guang Hao
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou, China.
| |
Collapse
|
2
|
Lobanova Y, Mazur A, Kaplun D, Prokchortchouk E, Zhenilo S. SUMOylation of TRIM28 is positively modulated by the BTB/POZ domain of Kaiso. Mol Biol Rep 2025; 52:153. [PMID: 39847191 DOI: 10.1007/s11033-025-10257-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 01/13/2025] [Indexed: 01/24/2025]
Abstract
BACKGROUND TRIM28 plays a crucial role in maintaining genomic stability and establishing imprinting, facilitated by the diversity of KRAB zinc finger proteins. The SUMOylation of TRIM28 is essential for its function and is enhanced in the presence of the KRAB domain. Previously, we demonstrated that Kaiso, another factor capable of interacting with TRIM28, can promote its SUMOylation. Here we investigate which structural elements of Kaiso are necessary for the hyper-SUMOylation of TRIM28. METHODS AND RESULTS We found that the SUMO-interacting motifs (SIMs) of Kaiso are not responsible for TRIM28 SUMOylation. The SUMOylation of individual TRIM28 domains in the presence of Kaiso was not observed, suggesting the importance of TRIM28's structural integrity for this process. The Kaiso BTB/POZ domain, but not its closest homolog ZBTB4, is sufficient for the effective hyper-SUMOylation of TRIM28. Also, using single-cell sequencing data of mouse embryos, we identified cells in which co-expression of Kaiso and TRIM28 occurs, including the immune system, nervous system and various epithelial cells. CONCLUSIONS BTB/POZ domain of Kaiso may function similarly to KRAB domains in its interaction with TRIM28 regulating its SUMOylation.
Collapse
Affiliation(s)
- Yaroslava Lobanova
- Federal Research Centre «Fundamentals of Biotechnology», Russian Academy of Sciences, Moscow, Russia, 119071
| | - Alexander Mazur
- Federal Research Centre «Fundamentals of Biotechnology», Russian Academy of Sciences, Moscow, Russia, 119071
| | - Daria Kaplun
- Federal Research Centre «Fundamentals of Biotechnology», Russian Academy of Sciences, Moscow, Russia, 119071
| | - Egor Prokchortchouk
- Federal Research Centre «Fundamentals of Biotechnology», Russian Academy of Sciences, Moscow, Russia, 119071
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia, 119334
| | - Svetlana Zhenilo
- Federal Research Centre «Fundamentals of Biotechnology», Russian Academy of Sciences, Moscow, Russia, 119071.
| |
Collapse
|
3
|
Wang J, Gao T, Zhang D, Tang Y, Gu J. Phospholipase C epsilon 1 as a therapeutic target in cardiovascular diseases. J Adv Res 2025:S2090-1232(25)00051-7. [PMID: 39855298 DOI: 10.1016/j.jare.2025.01.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 01/20/2025] [Accepted: 01/20/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND Phospholipase C epsilon 1 (PLCε1) can hydrolyze phosphatidylinositol-4,5-bisphosphate and phosphatidylinositol-4-phosphate at the plasma membrane and perinuclear membrane in the cardiovascular system, producing lipid-derived second messengers. These messengers are considered prominent triggers for various signal transduction processes. Notably, diverse cardiac phenotypes have been observed in cardiac-specific and global Plce1 knockout mice under conditions of pathological stress. It is well established that the cardiac-specific Plce1 knockout confers cardioprotective benefits. Therefore, the development of tissue/cell-specific targeting approaches is critical for advancing therapeutic interventions. AIM OF REVIEW This review aims to distill the foundational biology and functional significance of PLCε1 in cardiovascular diseases, as well as to explore potential avenues for research and the development of novel therapeutic strategies targeting PLCε1. KEY SCIENTIFIC CONCEPTS OF REVIEW Cardiovascular diseases remain the leading cause of morbidity and mortality worldwide, with incidence rates escalating annually. A comprehensive understanding of the multifaceted role of PLCε1 is essential for enhancing the diagnosis, management, and prognostic assessment of patients suffering from cardiovascular diseases.
Collapse
Affiliation(s)
- Jie Wang
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Ting Gao
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Dongmei Zhang
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Yufeng Tang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong 250014, China
| | - Junlian Gu
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| |
Collapse
|
4
|
Starshin A, Abramov P, Lobanova Y, Sharko F, Filonova G, Kaluzhny D, Kaplun D, Deyev I, Mazur A, Prokhortchou E, Zhenilo S. Dissecting the Kaiso binding profile in clear renal cancer cells. Epigenetics Chromatin 2024; 17:38. [PMID: 39702290 PMCID: PMC11657142 DOI: 10.1186/s13072-024-00565-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 12/03/2024] [Indexed: 12/21/2024] Open
Abstract
BACKGROUND There has been a notable increase in interest in the transcriptional regulator Kaiso, which has been linked to the regulation of clonal hematopoiesis, myelodysplastic syndrome, and tumorigenesis. Nevertheless, there are no consistent data on the binding sites of Kaiso in vivo in the genome. Previous ChIP-seq analyses for Kaiso contradicted the accumulated data of Kaiso binding sites obtained in vitro. Here, we studied this discrepancy by characterizing the distribution profile of Kaiso binding sites in Caki-1 cells using Kaiso-deficient cells as a negative control, and compared its pattern on chromatin with that in lymphoblastoid cell lines. RESULTS We employed Caki-1 kidney carcinoma cells and their derivative, which lacks the Kaiso gene, as a model system to identify the genomic targets of Kaiso. The principal binding motifs for Kaiso are CGCG and CTGCNAT, with 60% of all binding sites containing both sequences. The significance of methyl-DNA binding activity was confirmed through examination of the genomic distribution of the E535A mutant variant of Kaiso, which cannot bind methylated DNA in vitro but is able to interact with CTGCNA sequences. Our findings indicate that Kaiso is present at CpG islands with a preference for methylated ones. We identified Kaiso target genes whose methylation and transcription are dependent on its expression. Furthermore, Kaiso binding sites are enriched at CpG islands, with partial methylation at the 5' and/or 3' boundaries. We discovered CpG islands exhibiting wave-like methylation patterns, with Kaiso detected in the majority of these areas. Similar data were obtained in other cell lines. CONCLUSION The present study delineates the genomic distribution of Kaiso in cancer cells, confirming its role as a factor with a complex mode of DNA binding and a strong association with CpG islands, particularly with methylated and eroded CpG islands, revealing a new potential Kaiso target gene-SQSTM1, involved in differentiation of acute myeloid leukemia cells. Furthermore, we discovered the existence of a new class of CpG islands characterized by wave-like DNA methylation.
Collapse
Affiliation(s)
- Alexey Starshin
- Federal Research Centre, Fundamentals of Biotechnology», Russian Academy of Sciences, 119071, Moscow, Russia
| | - Pavel Abramov
- Federal Research Centre, Fundamentals of Biotechnology», Russian Academy of Sciences, 119071, Moscow, Russia
| | - Yaroslava Lobanova
- Federal Research Centre, Fundamentals of Biotechnology», Russian Academy of Sciences, 119071, Moscow, Russia
| | - Fedor Sharko
- Federal Research Centre, Fundamentals of Biotechnology», Russian Academy of Sciences, 119071, Moscow, Russia
| | - Galina Filonova
- Federal Research Centre, Fundamentals of Biotechnology», Russian Academy of Sciences, 119071, Moscow, Russia
| | - Dmitry Kaluzhny
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991, Moscow, Russia
| | - Daria Kaplun
- Federal Research Centre, Fundamentals of Biotechnology», Russian Academy of Sciences, 119071, Moscow, Russia
| | - Igor Deyev
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997, Moscow, Russia
| | - Alexander Mazur
- Federal Research Centre, Fundamentals of Biotechnology», Russian Academy of Sciences, 119071, Moscow, Russia
| | - Egor Prokhortchou
- Federal Research Centre, Fundamentals of Biotechnology», Russian Academy of Sciences, 119071, Moscow, Russia
- Institute of Gene Biology, Russian Academy of Sciences, 119334, Moscow, Russia
| | - Svetlana Zhenilo
- Federal Research Centre, Fundamentals of Biotechnology», Russian Academy of Sciences, 119071, Moscow, Russia.
| |
Collapse
|
5
|
Zhang Y, Li J. Recent advancements in understanding of biological role of homeobox C9 in human cancers. World J Clin Oncol 2024; 15:1168-1176. [PMID: 39351453 PMCID: PMC11438841 DOI: 10.5306/wjco.v15.i9.1168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/14/2024] [Accepted: 08/02/2024] [Indexed: 08/29/2024] Open
Abstract
Homeobox (HOX) C9, a member of the HOX family, is an important transcription factor, and it plays a significant role in various biological processes. This family of genes is highly valued for their essential roles in establishing and maintaining the body axis during embryonic development and adult tissues. Further, HOXC9 plays a central role in neuronal differentiation, angiogenesis, and adipose distribution, which are essential for the development of the nervous system, maturation of tissues and organs, and maintenance of energy balance and metabolic health. Recent research has found that abnormal HOXC9 expression is closely associated with the development and progression of various tumor types. The HOXC9 expression level can be an indicator of tumor prognosis. Therefore, elucidating the association between HOXC9 expression and its regulatory mechanisms and tumorigenesis can provide novel insights on the diagnosis and treatment of patients with cancer.
Collapse
Affiliation(s)
- Yong Zhang
- Department of Clinical Laboratory, The Affiliated Lianyungang Oriental Hospital of Kangda College of Nanjing Medical University, Lianyungang 222042, Jiangsu Province, China
| | - Jing Li
- Department of Respiratory and Critical Care Medicine, The Affiliated Lianyungang Oriental Hospital of Kangda College of Nanjing Medical University, Lianyungang 222042, Jiangsu Province, China
| |
Collapse
|
6
|
Lee SY, Oh TJ, An S, Lee SH. Overexpression of Hypermethylated Homeobox A11 (HOXA11) Inhibits Tumor Cell Growth and Induces Apoptosis in Cervical Cancer. Dev Reprod 2024; 28:37-45. [PMID: 39055103 PMCID: PMC11268892 DOI: 10.12717/dr.2024.28.2.37] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/11/2024] [Accepted: 05/16/2024] [Indexed: 07/27/2024]
Abstract
This study aimed to elucidate the potential of Homeobox A11 (HOXA11) as a therapeutic target and a diagnostic methylation marker for cervical cancer. Gene expression analysis using cDNA microarray in cervical cancer cell lines revealed significantly reduced expression of the HOXA11 gene. Subsequent investigation of HOXA11 promoter methylation in samples from normal individuals and invasive cervical cancer patients showed over 53.2% higher methylation in cancer scrapes compared to normal scrapes. Furthermore, overexpression of HOXA11, which is downregulated in cervical cancer, strongly suppressed cell growth in cervical cancer cell lines, HeLa and HT3. Additionally, we performed transferase dUTP nick end labeling assay and confirmed that the inhibition of cervical cancer cell proliferation occurred via apoptosis. Mechanistically, overexpression of HOXA11 led to mitochondrial apoptosis characterized by PARP cleavage due to increased c-Myc and enhanced cytochrome C secretion into the cytoplasm. These findings suggest that HOXA11 could potentially serve as a methylation marker for diagnosing cervical cancer and as a novel therapeutic target for its treatment.
Collapse
Affiliation(s)
| | | | | | - Seung-Hoon Lee
- Department of Life Science, College of
Health Science and Welfare, Yongin University,
Yongin 17092, Korea
| |
Collapse
|
7
|
Lobanova YV, Zhenilo SV. Genomic Imprinting and Random Monoallelic Expression. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:84-96. [PMID: 38467547 DOI: 10.1134/s000629792401005x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 12/08/2023] [Accepted: 12/08/2023] [Indexed: 03/13/2024]
Abstract
The review discusses the mechanisms of monoallelic expression, such as genomic imprinting, in which gene transcription depends on the parental origin of the allele, and random monoallelic transcription. Data on the regulation of gene activity in the imprinted regions are summarized with a particular focus on the areas controlling imprinting and factors influencing the variability of the imprintome. The prospects of studies of the monoallelic expression are discussed.
Collapse
Affiliation(s)
- Yaroslava V Lobanova
- Federal Research Center of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| | - Svetlana V Zhenilo
- Federal Research Center of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia.
| |
Collapse
|