1
|
Nick HJ, Johnson CA, Stewart AR, Christeson SE, Bloomquist LA, Appel AS, Donkor AB, Veress LA, Logue BA, Bratcher PE, White CW. Mesna Improves Outcomes of Sulfur Mustard Inhalation Toxicity in an Acute Rat Model. J Pharmacol Exp Ther 2024; 388:576-585. [PMID: 37541763 PMCID: PMC10801720 DOI: 10.1124/jpet.123.001683] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/10/2023] [Accepted: 07/14/2023] [Indexed: 08/06/2023] Open
Abstract
Inhalation of high levels of sulfur mustard (SM), a potent vesicating and alkylating agent used in chemical warfare, results in acutely lethal pulmonary damage. Sodium 2-mercaptoethane sulfonate (mesna) is an organosulfur compound that is currently Food and Drug Administration (FDA)-approved for decreasing the toxicity of mustard-derived chemotherapeutic alkylating agents like ifosfamide and cyclophosphamide. The nucleophilic thiol of mesna is a suitable reactant for the neutralization of the electrophilic group of toxic mustard intermediates. In a rat model of SM inhalation, treatment with mesna (three doses: 300 mg/kg intraperitoneally 20 minutes, 4 hours, and 8 hours postexposure) afforded 74% survival at 48 hours, compared with 0% survival at less than 17 hours in the untreated and vehicle-treated control groups. Protection from cardiopulmonary failure by mesna was demonstrated by improved peripheral oxygen saturation and increased heart rate through 48 hours. Additionally, mesna normalized arterial pH and pACO2 Airway fibrin cast formation was decreased by more than 66% in the mesna-treated group at 9 hour after exposure compared with the vehicle group. Finally, analysis of mixtures of a mustard agent and mesna by a 5,5'-dithiobis(2-nitrobenzoic acid) assay and high performance liquid chromatography tandem mass spectrometry demonstrate a direct reaction between the compounds. This study provides evidence that mesna is an efficacious, inexpensive, FDA-approved candidate antidote for SM exposure. SIGNIFICANCE STATEMENT: Despite the use of sulfur mustard (SM) as a chemical weapon for over 100 years, an ideal drug candidate for treatment after real-world exposure situations has not yet been identified. Utilizing a uniformly lethal animal model, the results of the present study demonstrate that sodium 2-mercaptoethane sulfonate is a promising candidate for repurposing as an antidote, decreasing airway obstruction and improving pulmonary gas exchange, tissue oxygen delivery, and survival following high level SM inhalation exposure, and warrants further consideration.
Collapse
Affiliation(s)
- Heidi J Nick
- Department of Pediatrics, National Jewish Health, Denver, Colorado (H.J.N., S.E.C., P.E.B.); Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado (H.J.N., C.A.J., A.R.S., S.E.C., L.A.B., L.A.V., P.E.B., C.W.W.); and Department of Chemistry and Biochemistry, South Dakota State University, Brookings, South Dakota (A.S.A., A.B.D., B.A.L.)
| | - Carly A Johnson
- Department of Pediatrics, National Jewish Health, Denver, Colorado (H.J.N., S.E.C., P.E.B.); Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado (H.J.N., C.A.J., A.R.S., S.E.C., L.A.B., L.A.V., P.E.B., C.W.W.); and Department of Chemistry and Biochemistry, South Dakota State University, Brookings, South Dakota (A.S.A., A.B.D., B.A.L.)
| | - Amber R Stewart
- Department of Pediatrics, National Jewish Health, Denver, Colorado (H.J.N., S.E.C., P.E.B.); Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado (H.J.N., C.A.J., A.R.S., S.E.C., L.A.B., L.A.V., P.E.B., C.W.W.); and Department of Chemistry and Biochemistry, South Dakota State University, Brookings, South Dakota (A.S.A., A.B.D., B.A.L.)
| | - Sarah E Christeson
- Department of Pediatrics, National Jewish Health, Denver, Colorado (H.J.N., S.E.C., P.E.B.); Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado (H.J.N., C.A.J., A.R.S., S.E.C., L.A.B., L.A.V., P.E.B., C.W.W.); and Department of Chemistry and Biochemistry, South Dakota State University, Brookings, South Dakota (A.S.A., A.B.D., B.A.L.)
| | - Leslie A Bloomquist
- Department of Pediatrics, National Jewish Health, Denver, Colorado (H.J.N., S.E.C., P.E.B.); Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado (H.J.N., C.A.J., A.R.S., S.E.C., L.A.B., L.A.V., P.E.B., C.W.W.); and Department of Chemistry and Biochemistry, South Dakota State University, Brookings, South Dakota (A.S.A., A.B.D., B.A.L.)
| | - Amanda S Appel
- Department of Pediatrics, National Jewish Health, Denver, Colorado (H.J.N., S.E.C., P.E.B.); Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado (H.J.N., C.A.J., A.R.S., S.E.C., L.A.B., L.A.V., P.E.B., C.W.W.); and Department of Chemistry and Biochemistry, South Dakota State University, Brookings, South Dakota (A.S.A., A.B.D., B.A.L.)
| | - Abigail B Donkor
- Department of Pediatrics, National Jewish Health, Denver, Colorado (H.J.N., S.E.C., P.E.B.); Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado (H.J.N., C.A.J., A.R.S., S.E.C., L.A.B., L.A.V., P.E.B., C.W.W.); and Department of Chemistry and Biochemistry, South Dakota State University, Brookings, South Dakota (A.S.A., A.B.D., B.A.L.)
| | - Livia A Veress
- Department of Pediatrics, National Jewish Health, Denver, Colorado (H.J.N., S.E.C., P.E.B.); Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado (H.J.N., C.A.J., A.R.S., S.E.C., L.A.B., L.A.V., P.E.B., C.W.W.); and Department of Chemistry and Biochemistry, South Dakota State University, Brookings, South Dakota (A.S.A., A.B.D., B.A.L.)
| | - Brian A Logue
- Department of Pediatrics, National Jewish Health, Denver, Colorado (H.J.N., S.E.C., P.E.B.); Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado (H.J.N., C.A.J., A.R.S., S.E.C., L.A.B., L.A.V., P.E.B., C.W.W.); and Department of Chemistry and Biochemistry, South Dakota State University, Brookings, South Dakota (A.S.A., A.B.D., B.A.L.)
| | - Preston E Bratcher
- Department of Pediatrics, National Jewish Health, Denver, Colorado (H.J.N., S.E.C., P.E.B.); Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado (H.J.N., C.A.J., A.R.S., S.E.C., L.A.B., L.A.V., P.E.B., C.W.W.); and Department of Chemistry and Biochemistry, South Dakota State University, Brookings, South Dakota (A.S.A., A.B.D., B.A.L.)
| | - Carl W White
- Department of Pediatrics, National Jewish Health, Denver, Colorado (H.J.N., S.E.C., P.E.B.); Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado (H.J.N., C.A.J., A.R.S., S.E.C., L.A.B., L.A.V., P.E.B., C.W.W.); and Department of Chemistry and Biochemistry, South Dakota State University, Brookings, South Dakota (A.S.A., A.B.D., B.A.L.)
| |
Collapse
|
2
|
Sadeghi S, Tapak M, Ghazanfari T, Mosaffa N. A review of Sulfur Mustard-induced pulmonary immunopathology: An Alveolar Macrophage Approach. Toxicol Lett 2020; 333:115-129. [PMID: 32758513 DOI: 10.1016/j.toxlet.2020.07.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 07/30/2020] [Accepted: 07/31/2020] [Indexed: 12/27/2022]
Abstract
Despite many studies investigating the mechanism of Sulfur Mustard (SM) induced lung injury, the underlying mechanism is still unclear. Inflammatory and subsequent fibroproliferative stages of SM-toxicity are based upon several highly-related series of events controlled by the immune system. The inhalation of SM gas variably affects different cell populations within the lungs. Various studies have shown the critical role of macrophages in triggering a pulmonary inflammatory response as well as its maintenance, resolution, and repair. Importantly, macrophages can serve as either pro-inflammatory or anti-inflammatory populations depending on the present conditions at any pathological stage. Different characteristics of macrophages, including their differentiation, phenotypic, and functional properties, as well as interactions with other cell populations determine the outcomes of lung diseases and the extent of long- or short-term pulmonary damage induced by SM. In this paper, we summarize the current state of knowledge regarding the role of alveolar macrophages and their mediators in the pathogenesis of SM in pulmonary injury. Investigating the specific cells and mechanisms involved in SM-lung injury may be useful in finding new target opportunities for treatment of this injury.
Collapse
Affiliation(s)
- Somaye Sadeghi
- Student Research Committee, Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahtab Tapak
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tooba Ghazanfari
- Immunoregulation Research Center, Shahed University, Tehran, Iran; Department of Immunology, Shahed University, Tehran, Iran.
| | - Nariman Mosaffa
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|