1
|
Lenka J, González-Tortuero E, Kuba S, Ferry N. Bacterial community profiling and identification of bacteria with lignin-degrading potential in different gut segments of African palm weevil larvae ( Rhynchophorus phoenicis). Front Microbiol 2025; 15:1401965. [PMID: 39831119 PMCID: PMC11739302 DOI: 10.3389/fmicb.2024.1401965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 11/12/2024] [Indexed: 01/22/2025] Open
Abstract
The microbiota within the guts of insects plays beneficial roles for their hosts, such as facilitating digestion and extracting energy from their diet. The African palm weevil (APW) lives within and feeds on the high lignin-containing trunk of palm trees; therefore, their guts could harbour a large community of lignin-degrading microbes. In this study, we aimed to explore the bacterial community within the gut of the APW larvae, specifically with respect to the potential for lignin degradation in various gut segments as a first step to determining the viability of mining bacterial lignin-degrading enzymes for the bioconversion of lignocellulosic biomass to biofuels and biomaterials. Bacterial metagenomic DNA was extracted from the foregut, midgut, and hindgut of larvae of the APW, and the V3-V4 hypervariable region of the 16S rRNA gene was sequenced using the Illumina MiSeq platform. The generated data were analysed and taxonomically classified to identify the different bacterial phylotypes within the gut community cumulatively and per gut segment. We then determined the presence, diversity, and abundance of bacteria associated with lignin degradation within each larval gut compartment as a basis for suggesting the gut segment(s) where lignin degradation occurs the most. All sequences were classified and belonged to the bacterial kingdom. Firmicutes (54.3%) and Proteobacteria (42.5%) were the most dominant phyla within the gut, followed distantly by Bacteroidota (1.7%) and Actinobacteriota (1.4%). Enterococcus, Levilactobacillus, Lactococcus, Shimwellia, Megasphaera, Klebsiella, Pectinatus, Salmonella, Lelliotia, and Enterobacter constituted the most abundant genera found across all gut segments. The foregut and midgut had many similar genera, whilst the hindgut appeared unique. Overall, 29.5% of total gut bacteria comprising 21 genera were lignin degraders found predominantly in the Firmicutes and Proteobacteria phyla (56.8 and 39.5%, respectively), then moderately in Actinobacteriota (2.5%) and Bacteroidota (1.1%). The most abundant ligninolytic genera were Levilactobacillus (46.4%), Klebsiella (22.9%), Enterobacter (10.7%), Lactiplantibacillus (5.9%), Citrobacter (2.2%), Corynebacterium (1.8%), Paucilactobacillus (1.8%), Serratia (1.5%), Bacteroides (1.1%), and Leucobacter (1.0%) found in different amounts in different gut compartments. The foregut had the most diverse and highest abundance of lignin-degrading phylotypes, and we present reasons that point to the foregut as the main location for the depolymerization of lignin in the APW larval gut.
Collapse
Affiliation(s)
- Jessica Lenka
- School of Science, Engineering and Environment, University of Salford, Salford, United Kingdom
- School of Life Sciences, Faculty of Natural Sciences, Keele University, Staffordshire, United Kingdom
| | - Enrique González-Tortuero
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Shweta Kuba
- School of Health and Life Sciences, Teesside University, Middlesborough, United Kingdom
| | - Natalie Ferry
- School of Science, Engineering and Environment, University of Salford, Salford, United Kingdom
| |
Collapse
|
2
|
He L, Yan M, Naeem M, Chen M, Chen Y, Ni Z, Chen H. Enhancing Manganese Peroxidase: Innovations in Genetic Modification, Screening Processes, and Sustainable Agricultural Applications. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:26040-26056. [PMID: 39535434 DOI: 10.1021/acs.jafc.4c05878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Manganese peroxidase (MnP), a vital extracellular enzyme for the degradation of lignin and other organic pollutants, has demonstrated immense potential for agricultural and environmental applications, including straw pretreatment, feed fermentation, mycotoxin degradation, and water treatment. However, current research remains in its exploratory phase, with naturally sourced MnP unable to meet industrial-scale demands and no mature commercial enzyme preparations available on the market. This comprehensive review innovatively constructs a framework for MnP research, probing into its molecular conformation and catalytic principles, while providing an overview of the advancements in high-throughput screening and In silco designing strategies. Specifically, this review focuses on the practical applications of MnP in sustainable agriculture, elaborating on its potential and challenges in straw resource utilization, efficient feed fermentation, mycotoxin control, and water quality improvement. Furthermore, this review summarizes the recent achievements in optimizing MnP activity through enzyme engineering techniques and discuss customized mutation strategies tailored to specific agricultural and environmental requirements, thereby laying a solid theoretical foundation and scientific basis for the industrial production and commercialization of MnP.
Collapse
Affiliation(s)
- Lu He
- School of the Life Sciences, Jiangsu University, Zhenjiang 212000, China
| | - Mingchen Yan
- School of the Life Sciences, Jiangsu University, Zhenjiang 212000, China
| | - Muhammad Naeem
- School of the Life Sciences, Jiangsu University, Zhenjiang 212000, China
| | - Minghaonan Chen
- School of the Life Sciences, Jiangsu University, Zhenjiang 212000, China
| | - Yong Chen
- School of the Life Sciences, Jiangsu University, Zhenjiang 212000, China
| | - Zhong Ni
- School of the Life Sciences, Jiangsu University, Zhenjiang 212000, China
| | - Huayou Chen
- School of the Life Sciences, Jiangsu University, Zhenjiang 212000, China
| |
Collapse
|
3
|
Rammala BJ, Ramchuran S, Chunilall V, Zhou N. Enterobacter spp. isolates from an underground coal mine reveal ligninolytic activity. BMC Microbiol 2024; 24:382. [PMID: 39354380 PMCID: PMC11443738 DOI: 10.1186/s12866-024-03537-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 09/20/2024] [Indexed: 10/03/2024] Open
Abstract
Lignin, the second most abundant renewable carbon source on earth, holds significant potential for producing biobased specialty chemicals. However, its complex, highly branched structure, consisting of phenylpropanoic units and strong carbon-carbon and ether bonds, makes it highly resistant to depolymerisation. This recalcitrancy highlights the need to search for robust lignin-degrading microorganisms with potential for use as industrial strains. Bioprospecting for microorganisms from lignin-rich niches is an attractive approach among others. Here, we explored the ligninolytic potential of bacteria isolated from a lignin-rich underground coalmine, the Morupule Coal Mine, in Botswana. Using a culture-dependent approach, we screened for the presence of bacteria that could grow on 2.5% kraft lignin-supplemented media and identified them using 16 S rRNA sequencing. The potential ligninolytic isolates were evaluated for their ability to tolerate industry-associated stressors. We report the isolation of twelve isolates with ligninolytic abilities. Of these, 25% (3) isolates exhibited varying robust ligninolytic ability and tolerance to various industrial stressors. The molecular identification revealed that the isolates belonged to the Enterobacter genus. Two of three isolates had a 16 S rRNA sequence lower than the identity threshold indicating potentially novel species pending further taxonomic review. ATR-FTIR analysis revealed the ligninolytic properties of the isolates by demonstrating structural alterations in lignin, indicating potential KL degradation, while Py-GC/MS identified the resulting biochemicals. These isolates produced chemicals of diverse functional groups and monomers as revealed by both methods. The use of coalmine-associated ligninolytic bacteria in biorefineries has potential.
Collapse
Affiliation(s)
- Bame J Rammala
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, Private Bag 16, Palapye, Botswana, South Africa.
| | - Santosh Ramchuran
- Council for Science and Industrial Research, Chemicals Cluster, Pretoria, South Africa
| | - Viren Chunilall
- Council for Science and Industrial Research, Biorefinery Industry Development Facility, Durban, South Africa
- School of Life Sciences, School of Engineering, University of KwaZulu Natal, Durban, South Africa
| | - Nerve Zhou
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, Private Bag 16, Palapye, Botswana, South Africa.
| |
Collapse
|
4
|
Sun C, Wang Z, Yu X, Zhang H, Cao J, Fang J, Wang J, Zhang L. The Phylogeny and Metabolic Potentials of an Aromatics-Degrading Marivivens Bacterium Isolated from Intertidal Seawater in East China Sea. Microorganisms 2024; 12:1308. [PMID: 39065077 PMCID: PMC11278965 DOI: 10.3390/microorganisms12071308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/16/2024] [Accepted: 06/18/2024] [Indexed: 07/28/2024] Open
Abstract
Lignocellulosic materials, made up of cellulose, hemicellulose, and lignin, constitute some of the most prevalent types of biopolymers in marine ecosystems. The degree to which marine microorganisms participate in the breakdown of lignin and their impact on the cycling of carbon in the oceans is not well understood. Strain LCG002, a novel Marivivens species isolated from Lu Chao Harbor's intertidal seawater, is distinguished by its ability to metabolize lignin and various aromatic compounds, including benzoate, 3-hydroxybenzoate, 4-hydroxybenzoate and phenylacetate. It also demonstrates a broad range of carbon source utilization, including carbohydrates, amino acids and carboxylates. Furthermore, it can oxidize inorganic gases, such as hydrogen and carbon monoxide, providing alternative energy sources in diverse marine environments. Its diversity of nitrogen metabolism is supported by nitrate/nitrite, urea, ammonium, putrescine transporters, as well as assimilatory nitrate reductase. For sulfur assimilation, it employs various pathways to utilize organic and inorganic substrates, including the SOX system and DSMP utilization. Overall, LCG002's metabolic versatility and genetic profile contribute to its ecological significance in marine environments, particularly in the degradation of lignocellulosic material and aromatic monomers.
Collapse
Affiliation(s)
- Chengwen Sun
- Shanghai Engineering Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, China; (C.S.); (Z.W.); (X.Y.); (H.Z.); (J.C.); (J.F.)
| | - Zekai Wang
- Shanghai Engineering Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, China; (C.S.); (Z.W.); (X.Y.); (H.Z.); (J.C.); (J.F.)
| | - Xi Yu
- Shanghai Engineering Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, China; (C.S.); (Z.W.); (X.Y.); (H.Z.); (J.C.); (J.F.)
| | - Hongcai Zhang
- Shanghai Engineering Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, China; (C.S.); (Z.W.); (X.Y.); (H.Z.); (J.C.); (J.F.)
| | - Junwei Cao
- Shanghai Engineering Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, China; (C.S.); (Z.W.); (X.Y.); (H.Z.); (J.C.); (J.F.)
| | - Jiasong Fang
- Shanghai Engineering Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, China; (C.S.); (Z.W.); (X.Y.); (H.Z.); (J.C.); (J.F.)
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Jiahua Wang
- Shanghai Engineering Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, China; (C.S.); (Z.W.); (X.Y.); (H.Z.); (J.C.); (J.F.)
| | - Li Zhang
- Shanghai Engineering Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, China; (C.S.); (Z.W.); (X.Y.); (H.Z.); (J.C.); (J.F.)
| |
Collapse
|
5
|
Xu X, Lin X, Ma W, Huo M, Tian X, Wang H, Huang L. Biodegradation strategies of veterinary medicines in the environment: Enzymatic degradation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169598. [PMID: 38157911 DOI: 10.1016/j.scitotenv.2023.169598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 12/12/2023] [Accepted: 12/20/2023] [Indexed: 01/03/2024]
Abstract
One Health closely integrates healthy farming, human medicine, and environmental ecology. Due to the ecotoxicity and risk of transmission of drug resistance, veterinary medicines (VMs) are regarded as emerging environmental pollutants. To reduce or mitigate the environmental risk of VMs, developing friendly, safe, and effective removal technologies is an important means of environmental remediation for VMs. Many previous studies have proved that biodegradation has significant advantages in removing VMs, and biodegradation based on enzyme catalysis presents higher operability and specificity. This review focused on biodegradation strategies of environmental pollutants and reviewed the enzymatic degradation of VMs including antimicrobial drugs, insecticides, and disinfectants. We reviewed the sources and catalytic mechanisms of peroxidase, laccase, and organophosphorus hydrolases, and summarized the latest research status of immobilization methods and bioengineering techniques in improving the performance of degrading enzymes. The mechanism of enzymatic degradation for VMs was elucidated in the current research. Suggestions and prospects for researching and developing enzymatic degradation of VMs were also put forward. This review will offer new ideas for the biodegradation of VMs and have a guide significance for the risk mitigation and detoxification of VMs in the environment.
Collapse
Affiliation(s)
- Xiangyue Xu
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Wuhan 430070, China
| | - Xvdong Lin
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Wuhan 430070, China
| | - Wenjin Ma
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Wuhan 430070, China
| | - Meixia Huo
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Wuhan 430070, China
| | - Xiaoyuan Tian
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Wuhan 430070, China
| | - Hanyu Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Wuhan 430070, China; National Laboratory for Veterinary Drug Safety Evaluation, Huazhong Agriculture University, Wuhan 430070, China; College of Veterinary Medicine, Huazhong Agriculture University, Wuhan 430070, China
| | - Lingli Huang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Wuhan 430070, China; National Laboratory for Veterinary Drug Safety Evaluation, Huazhong Agriculture University, Wuhan 430070, China; College of Veterinary Medicine, Huazhong Agriculture University, Wuhan 430070, China.
| |
Collapse
|
6
|
Zhang H, Wang Z, Yu X, Cao J, Bao T, Liu J, Sun C, Wang J, Fang J. The Phylogeny and Metabolic Potentials of a Lignocellulosic Material-Degrading Aliiglaciecola Bacterium Isolated from Intertidal Seawater in East China Sea. Microorganisms 2024; 12:144. [PMID: 38257972 PMCID: PMC10821302 DOI: 10.3390/microorganisms12010144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/02/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Lignocellulosic materials are composed of cellulose, hemicellulose and lignin and are one of the most abundant biopolymers in marine environments. The extent of the involvement of marine microorganisms in lignin degradation and their contribution to the oceanic carbon cycle remains elusive. In this study, a novel lignin-degrading bacterial strain, LCG003, was isolated from intertidal seawater in Lu Chao Harbor, East China Sea. Phylogenetically, strain LCG003 was affiliated with the genus Aliiglaciecola within the family Alteromonadaceae. Metabolically, strain LCG003 contains various extracellular (signal-fused) glycoside hydrolase genes and carbohydrate transporter genes and can grow with various carbohydrates as the sole carbon source, including glucose, fructose, sucrose, rhamnose, maltose, stachyose and cellulose. Moreover, strain LCG003 contains many genes of amino acid and oligopeptide transporters and extracellular peptidases and can grow with peptone as the sole carbon and nitrogen source, indicating a proteolytic lifestyle. Notably, strain LCG003 contains a gene of dyp-type peroxidase and strain-specific genes involved in the degradation of 4-hydroxy-benzoate and vanillate. We further confirmed that it can decolorize aniline blue and grow with lignin as the sole carbon source. Our results indicate that the Aliiglaciecola species can depolymerize and mineralize lignocellulosic materials and potentially play an important role in the marine carbon cycle.
Collapse
Affiliation(s)
- Hongcai Zhang
- Shanghai Engineering Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, China; (H.Z.); (Z.W.); (X.Y.); (J.C.); (T.B.); (J.L.); (C.S.)
| | - Zekai Wang
- Shanghai Engineering Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, China; (H.Z.); (Z.W.); (X.Y.); (J.C.); (T.B.); (J.L.); (C.S.)
| | - Xi Yu
- Shanghai Engineering Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, China; (H.Z.); (Z.W.); (X.Y.); (J.C.); (T.B.); (J.L.); (C.S.)
| | - Junwei Cao
- Shanghai Engineering Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, China; (H.Z.); (Z.W.); (X.Y.); (J.C.); (T.B.); (J.L.); (C.S.)
| | - Tianqiang Bao
- Shanghai Engineering Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, China; (H.Z.); (Z.W.); (X.Y.); (J.C.); (T.B.); (J.L.); (C.S.)
| | - Jie Liu
- Shanghai Engineering Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, China; (H.Z.); (Z.W.); (X.Y.); (J.C.); (T.B.); (J.L.); (C.S.)
| | - Chengwen Sun
- Shanghai Engineering Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, China; (H.Z.); (Z.W.); (X.Y.); (J.C.); (T.B.); (J.L.); (C.S.)
| | - Jiahua Wang
- Shanghai Engineering Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, China; (H.Z.); (Z.W.); (X.Y.); (J.C.); (T.B.); (J.L.); (C.S.)
| | - Jiasong Fang
- Shanghai Engineering Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, China; (H.Z.); (Z.W.); (X.Y.); (J.C.); (T.B.); (J.L.); (C.S.)
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| |
Collapse
|
7
|
Gu J, Qiu Q, Yu Y, Sun X, Tian K, Chang M, Wang Y, Zhang F, Huo H. Bacterial transformation of lignin: key enzymes and high-value products. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:2. [PMID: 38172947 PMCID: PMC10765951 DOI: 10.1186/s13068-023-02447-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 12/08/2023] [Indexed: 01/05/2024]
Abstract
Lignin, a natural organic polymer that is recyclable and inexpensive, serves as one of the most abundant green resources in nature. With the increasing consumption of fossil fuels and the deterioration of the environment, the development and utilization of renewable resources have attracted considerable attention. Therefore, the effective and comprehensive utilization of lignin has become an important global research topic, with the goal of environmental protection and economic development. This review focused on the bacteria and enzymes that can bio-transform lignin, focusing on the main ways that lignin can be utilized to produce high-value chemical products. Bacillus has demonstrated the most prominent effect on lignin degradation, with 89% lignin degradation by Bacillus cereus. Furthermore, several bacterial enzymes were discussed that can act on lignin, with the main enzymes consisting of dye-decolorizing peroxidases and laccase. Finally, low-molecular-weight lignin compounds were converted into value-added products through specific reaction pathways. These bacteria and enzymes may become potential candidates for efficient lignin degradation in the future, providing a method for lignin high-value conversion. In addition, the bacterial metabolic pathways convert lignin-derived aromatics into intermediates through the "biological funnel", achieving the biosynthesis of value-added products. The utilization of this "biological funnel" of aromatic compounds may address the heterogeneous issue of the aromatic products obtained via lignin depolymerization. This may also simplify the separation of downstream target products and provide avenues for the commercial application of lignin conversion into high-value products.
Collapse
Affiliation(s)
- Jinming Gu
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun, 130117, China
| | - Qing Qiu
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun, 130117, China
| | - Yue Yu
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun, 130117, China
| | - Xuejian Sun
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun, 130117, China
| | - Kejian Tian
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun, 130117, China
| | - Menghan Chang
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun, 130117, China
| | - Yibing Wang
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun, 130117, China
| | - Fenglin Zhang
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun, 130117, China
| | - Hongliang Huo
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun, 130117, China.
- Engineering Lab for Water Pollution Control and Resources Recovery of Jilin Province, Changchun, 130117, China.
- Engineering Research Center of Low-Carbon Treatment and Green Development of Polluted Water in Northeast China, Ministry of Education, Changchun, 130117, China.
| |
Collapse
|
8
|
Ali NS, Huang F, Qin W, Yang TC. A high throughput screening process and quick isolation of novel lignin-degrading microbes from large number of natural biomasses. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2023; 39:e00809. [PMID: 37583477 PMCID: PMC10423689 DOI: 10.1016/j.btre.2023.e00809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 07/14/2023] [Accepted: 07/26/2023] [Indexed: 08/17/2023]
Abstract
High throughput screening approaches can significantly speed up the identification of novel enzymes from natural microbial consortiums. A two-step high throughput screening process was proposed and explored to screen lignin-degrading microorganisms. By employing this modified culture enrichment method and screening based on enzyme activity, a total of 82 bacterial and 46 fungal strains were isolated from fifty decayed wood samples (100 liquid cultures) collected from the banks of the Ottawa River in Canada. Among them, ten bacterial and five fungal strains were selected and identified based on their high laccase activities by 16S rDNA and ITS gene sequencing, respectively. The study identified bacterial strains from various genera including Serratia, Enterobacter, Raoultella, and Bacillus, along with fungal counterparts including Mucor, Trametes, Conifera and Aspergillus. Moreover, Aspergillus sydowii (AORF21), Mucor sp. (AORF43), Trametes versicolor (AORF3) and Enterobacter sp. (AORB55) exhibited xylanase and β- glucanase activities in addition to laccase production. The proposed approach allowed for the quick identification of promising consortia and enhanced the chance of isolating desired strains based on desired enzyme activities. This method is not limited to lignocellulose and lignin-degrading microorganisms but can be applied to identify novel microbial strains and enzymes from different natural samples.
Collapse
Affiliation(s)
- Nadia Sufdar Ali
- Department of Biology, Lakehead University, Thunder Bay, ON, Canada
- Aquatic and Crop Resource Development Research Centre, National Research Council, Ottawa, ON, Canada
| | - Fang Huang
- Aquatic and Crop Resource Development Research Centre, National Research Council, Ottawa, ON, Canada
| | - Wensheng Qin
- Department of Biology, Lakehead University, Thunder Bay, ON, Canada
| | - Trent Chunzhong Yang
- Aquatic and Crop Resource Development Research Centre, National Research Council, Ottawa, ON, Canada
| |
Collapse
|
9
|
Singh AK, Iqbal HMN, Cardullo N, Muccilli V, Fernández-Lucas J, Schmidt JE, Jesionowski T, Bilal M. Structural insights, biocatalytic characteristics, and application prospects of lignin-modifying enzymes for sustainable biotechnology. Int J Biol Macromol 2023; 242:124968. [PMID: 37217044 DOI: 10.1016/j.ijbiomac.2023.124968] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/22/2023] [Accepted: 05/17/2023] [Indexed: 05/24/2023]
Abstract
Lignin modifying enzymes (LMEs) have gained widespread recognition in depolymerization of lignin polymers by oxidative cleavage. LMEs are a robust class of biocatalysts that include lignin peroxidase (LiP), manganese peroxidase (MnP), versatile peroxidase (VP), laccase (LAC), and dye-decolorizing peroxidase (DyP). Members of the LMEs family act on phenolic, non-phenolic substrates and have been widely researched for valorization of lignin, oxidative cleavage of xenobiotics and phenolics. LMEs implementation in the biotechnological and industrial sectors has sparked significant attention, although its potential future applications remain underexploited. To understand the mechanism of LMEs in sustainable pollution mitigation, several studies have been undertaken to assess the feasibility of LMEs in correlating to diverse pollutants for binding and intermolecular interactions at the molecular level. However, further investigation is required to fully comprehend the underlying mechanism. In this review we presented the key structural and functional features of LMEs, including the computational aspects, as well as the advanced applications in biotechnology and industrial research. Furthermore, concluding remarks and a look ahead, the use of LMEs coupled with computational framework, built upon artificial intelligence (AI) and machine learning (ML), has been emphasized as a recent milestone in environmental research.
Collapse
Affiliation(s)
- Anil Kumar Singh
- Environmental Microbiology Laboratory, Environmental Toxicology Group CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| | - Nunzio Cardullo
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, V.le A. Doria 6, 95125 Catania, Italy
| | - Vera Muccilli
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, V.le A. Doria 6, 95125 Catania, Italy
| | - Jesús Fernández-Lucas
- Applied Biotechnology Group, Universidad Europea de Madrid, Urbanización El Bosque, 28670, Villaviciosa de Odón, Spain; Grupo de Investigación en Ciencias Naturales y Exactas, GICNEX, Universidad de la Costa, CUC, Calle 58 # 55-66, 080002, Barranquilla, Colombia
| | - Jens Ejbye Schmidt
- Department of Green Technology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Teofil Jesionowski
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland
| | - Muhammad Bilal
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland; Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdansk University of Technology, G. Narutowicza 11/12 Str., 80-233 Gdansk, Poland.
| |
Collapse
|
10
|
Dube SL, Osunsanmi FO, Ngcobo BP, Mkhwanazi LB, Jobe ZZ, Aruleba RT, Mosa RA, Opoku AR. Isolation and Characterization of Potential Lignin Peroxidase-Producing Bacteria from Compost Samples at Richards Bay (South Africa). Pol J Microbiol 2023:pjm-2023-003. [PMID: 37218281 DOI: 10.33073/pjm-2023-003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 02/27/2023] [Indexed: 05/24/2023] Open
Abstract
Lignin recalcitrance is a key issue in producing value-added products from lignocellulose biomass. In situ biodegradable lignin-modifying enzymes-producing bacteria are considered a suitable solution to lignin biodegradation problems, but exploitation of ligninolytic bacteria is still limited to date. Hence, this study aimed to isolate and characterize potential lignin peroxidase ligninolytic bacteria from decomposing soil, sawdust, and cow dung at Richard Bay, South Africa. The samples were collected and cultured in the lignin-enriched medium. Pure isolated colonies were characterized through 16S rRNA gene sequencing. The ability of the isolates to grow and utilize aromatic monomers (veratryl and guaiacol alcohol) and decolorize lignin-like dyes (Azure B, Congo Red, Remazol Brilliant Blue R) was evaluated. Of the twenty-six (26) bacteria isolates 10 isolates, including Pseudomonas spp. (88%), Enterobacter spp. (8%), and Escherichia coli (4%) were identified as true lignin peroxidase producers. Pseudomonas aeruginosa (CP031449.2) and E. coli (LR025096.1) exhibited the highest ligninolytic activities. These isolates could potentially be exploited in the industry and wastewater treatment as effective lignin degrading agents.
Collapse
|
11
|
Rodriguez-Yupanqui M, De La Cruz-Noriega M, Quiñones C, Otiniano NM, Quezada-Alvarez MA, Rojas-Villacorta W, Vergara-Medina GA, León-Vargas FR, Solís-Muñoz H, Rojas-Flores S. Lignin-Degrading Bacteria in Paper Mill Sludge. Microorganisms 2023; 11:1168. [PMID: 37317142 DOI: 10.3390/microorganisms11051168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/30/2023] [Accepted: 04/19/2023] [Indexed: 06/16/2023] Open
Abstract
The effluents generated in the paper industry, such as black liquor, have a high content of lignin and other toxic components; however, they represent a source of lignin-degrading bacteria with biotechnological potential. Therefore, the present study aimed to isolate and identify lignin-degrading bacteria species in paper mill sludge. A primary isolation was carried out from samples of sludge present in environments around a paper company located in the province of Ascope (Peru). Bacteria selection was made by the degradation of Lignin Kraft as the only carbon source in a solid medium. Finally, the laccase activity (Um-L-1) of each selected bacteria was determined by oxidation of 2,2'-azinobis-(3-etilbencenotiazolina-6-sulfonate) (ABTS). Bacterial species with laccase activity were identified by molecular biology techniques. Seven species of bacteria with laccase activity and the ability to degrade lignin were identified. The bacteria Agrobacterium tumefasciens (2), Klebsiella grimontii (1), and Beijeinckia fluminensis (1) were reported for first time. K. grimowntii and B. fluminensis presented the highest laccase activity, with values of 0.319 ± 0.005 UmL-1 and 0.329 ± 0.004 UmL-1, respectively. In conclusion, paper mill sludge may represent a source of lignin-degrading bacteria with laccase activity, and they could have potential biotechnological applications.
Collapse
Affiliation(s)
- Magda Rodriguez-Yupanqui
- Escuela de Ingeniería Ambiental, Facultad de Ingeniería y Arquitectura, Universidad Cesar Vallejo, Trujillo 13007, Peru
| | | | - Claudio Quiñones
- Laboratorio de Biotecnología e Ingeniería Genética, Departamento de Microbiología y Parasitología, Universidad Nacional de Trujillo, Trujillo 13011, Peru
| | - Nélida Milly Otiniano
- Instituto de Investigación en Ciencia y Tecnología, Universidad César Vallejo, Trujillo 13001, Peru
| | | | | | - Gino A Vergara-Medina
- Facultad de Ingeniería Civil y Ambiental, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01001, Peru
| | - Frank R León-Vargas
- Departamento de Ingeniería Química, Facultad de Ingeniería Química, Universidad Nacional de la Amazonia Peruana, Iquitos 16002, Peru
| | - Haniel Solís-Muñoz
- Escuela de Ingeniería Industrial, Facultad de Ingeniería, Universidad Cesar Vallejo, Trujillo 13007, Peru
| | - Segundo Rojas-Flores
- Vicerrectorado de Investigación, Universidad Autónoma del Perú, Lima 15842, Peru
| |
Collapse
|
12
|
Zhao G, Sun T, Zhang Z, Zhang J, Bian Y, Hou C, Zhang D, Han S, Wang D. Management of take-all disease caused by Gaeumannomyces graminis var. tritici in wheat through Bacillus subtilis strains. Front Microbiol 2023; 14:1118176. [PMID: 36819043 PMCID: PMC9929034 DOI: 10.3389/fmicb.2023.1118176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 01/09/2023] [Indexed: 02/04/2023] Open
Abstract
Wheat (Triticum aestivum) is the second largest grain crop worldwide, and one of the three major grain crops produced in China. Take-all disease, caused by Gaeumannomyces graminis var. tritici (Ggt) infection, is a widespread and devastating soil-borne disease that harms wheat production. At present, the prevention and control of wheat take-all depend largely on the application of chemical pesticides. Chemical pesticides, however, not only lead to increased drug resistance of pathogens but also leave significant residues in the soil, causing serious environmental pollution. In this study, we investigated the application of Bacillus subtilis to achieve take-all disease control in wheat while reducing pesticide application. Antagonistic bacteria were screened by plate test, species identification of strains was performed by Gram staining and sequencing of 16s rDNA, secondary metabolite activity of strains was detected by clear circle method, strain compatibility and effect of compounding on Ggt were detected by plate, and the application prospects of specific strains were analyzed by greenhouse and field experiments. We found that five B. subtilis strains, JY122, JY214, ZY133, NW03, Z-14, had significant antagonistic effects against Ggt, and could secrete antimicrobial proteins including amylase, protease, and cellulase. Furthermore, Z-14 and JY214 cultures have also been shown to change the morphology of Ggt mycelium. These results also showed that Z-14, JY214, and their combination can control take-all disease in wheat at a reduced level of pesticide use. In summary, we screened two Bacillus spp. strains, Z-14 and JY214, that could act as antagonists that contribute to the biological control of wheat take-all disease. These findings provide resources and ideas for controlling crop diseases in an environmentally friendly manner.
Collapse
Affiliation(s)
- Gangyi Zhao
- State Key Laboratory of North China Crop Improvement and Regulation, Baoding, China,Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Baoding, China,College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Tianjie Sun
- State Key Laboratory of North China Crop Improvement and Regulation, Baoding, China,Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Baoding, China,College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Zina Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, Baoding, China,Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Baoding, China,College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Jingjing Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, Baoding, China,Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Baoding, China,College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Yinbo Bian
- State Key Laboratory of North China Crop Improvement and Regulation, Baoding, China,Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Baoding, China,College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Chunyan Hou
- State Key Laboratory of North China Crop Improvement and Regulation, Baoding, China,Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Baoding, China,College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Dongdong Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, Baoding, China,Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Baoding, China,College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Shengfang Han
- State Key Laboratory of North China Crop Improvement and Regulation, Baoding, China,Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Baoding, China,College of Life Sciences, Hebei Agricultural University, Baoding, China,*Correspondence: Shengfang Han ✉
| | - Dongmei Wang
- State Key Laboratory of North China Crop Improvement and Regulation, Baoding, China,Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Baoding, China,College of Life Sciences, Hebei Agricultural University, Baoding, China,Dongmei Wang ✉
| |
Collapse
|
13
|
Tan F, Cheng J, Zhang Y, Jiang X, Liu Y. Genomics analysis and degradation characteristics of lignin by Streptomyces thermocarboxydus strain DF3-3. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:78. [PMID: 35831866 PMCID: PMC9277890 DOI: 10.1186/s13068-022-02175-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 07/01/2022] [Indexed: 11/27/2022]
Abstract
Background Lignocellulose is an important raw material for biomass-to-energy conversion, and it exhibits a complex but inefficient degradation mechanism. Microbial degradation is promising due to its environmental adaptability and biochemical versatility, but the pathways used by microbes for lignin degradation have not been fully studied. Degradation intermediates and complex metabolic pathways require more study. Results A novel actinomycete DF3-3, with the potential for lignin degradation, was screened and isolated. After morphological and molecular identification, DF3-3 was determined to be Streptomyces thermocarboxydus. The degradation of alkali lignin reached 31% within 15 days. Manganese peroxidase and laccase demonstrated their greatest activity levels, 1821.66 UL−1 and 1265.58 UL−1, respectively, on the sixth day. The highest lignin peroxidase activity was 480.33 UL−1 on the fourth day. A total of 19 lignin degradation intermediates were identified by gas chromatography–mass spectrometry (GC–MS), including 9 aromatic compounds. Genome sequencing and annotation identified 107 lignin-degrading enzyme-coding genes containing three core enzymatic systems for lignin depolymerization: laccases, peroxidases and manganese peroxidase. In total, 7 lignin metabolic pathways were predicted. Conclusions Streptomyces thermocarboxydus strain DF3-3 has good lignin degradation ability. Degradation products and genomics analyses of DF3-3 show that it has a relatively complete lignin degradation pathway, including the β-ketoadipate pathway and peripheral reactions, gentisate pathway, anthranilate pathway, homogentisic pathway, and catabolic pathway for resorcinol. Two other pathways, the phenylacetate–CoA pathway and the 2,3-dihydroxyphenylpropionic acid pathway, are predicted based on genome data alone. This study provides the basis for future characterization of potential biotransformation enzyme systems for biomass energy conversion. Supplementary Information The online version contains supplementary material available at 10.1186/s13068-022-02175-1.
Collapse
|
14
|
Isolation of functional ligninolytic Bacillus aryabhattai from paper mill sludge and its lignin degradation potential. BIOTECHNOLOGY REPORTS 2022; 35:e00755. [PMID: 35880093 PMCID: PMC9307452 DOI: 10.1016/j.btre.2022.e00755] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Isolation of a functional lignin-degrading Bacillus aryabhattai. Production of growth-associated LiP and MnP enzymes. Almost 84% KL degradation at 500 mg L−1 KL concentration. KL biodegradation process was revealed by chemical analysis.
Kraft lignin (KL), is the major pollutant in pulp and paper effluent and due to its heterogeneous structure, it is resistant to the depolymerization process. It has drawn much attention from the researcher due to its challenging degradation process. In this study, a KL-degrading bacterium was isolated and screened from paper mill sludge. This bacterium was identified as ligninolytic Bacillus aryabhattai using biochemical and 16SrRNA gene analysis. B. aryabhattai showed maximum activities of lignin peroxidase-LiP (0.74 IU mL−1) and manganese peroxidase-MnP (9.2 IU mL−1) on the 4th day, and 5th day, respectively. A total 84% of KL (500 mg L−1) reduction was observed after 14 days. The KL bio-degradation was confirmed based on changes in chemical stracture of KL and new metabolites identification using FTIR and GC–MS, respectively. The study concluded that B. aryabhattai maybe becomes a potential biological agent in KL biodegradation and treatment of other lignin-containing industrial effluents.
Collapse
|
15
|
Lad BC, Coleman SM, Alper HS. Microbial valorization of underutilized and nonconventional waste streams. J Ind Microbiol Biotechnol 2022; 49:kuab056. [PMID: 34529075 PMCID: PMC9118980 DOI: 10.1093/jimb/kuab056] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 09/14/2021] [Indexed: 12/12/2022]
Abstract
The growing burden of waste disposal coupled with natural resource scarcity has renewed interest in the remediation, valorization, and/or repurposing of waste. Traditional approaches such as composting, anaerobic digestion, use in fertilizers or animal feed, or incineration for energy production extract very little value out of these waste streams. In contrast, waste valorization into fuels and other biochemicals via microbial fermentation is an area of growing interest. In this review, we discuss microbial valorization of nonconventional, aqueous waste streams such as food processing effluents, wastewater streams, and other industrial wastes. We categorize these waste streams as carbohydrate-rich food wastes, lipid-rich wastes, and other industrial wastes. Recent advances in microbial valorization of these nonconventional waste streams are highlighted, along with a discussion of the specific challenges and opportunities associated with impurities, nitrogen content, toxicity, and low productivity.
Collapse
Affiliation(s)
- Beena C Lad
- Department of Molecular Biosciences, The University of Texas at Austin, 100 East 24th St. Stop A5000, Austin, Texas 78712, USA
| | - Sarah M Coleman
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E. Dean Keeton St. Stop C0400, Austin, Texas 78712, USA
| | - Hal S Alper
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E. Dean Keeton St. Stop C0400, Austin, Texas 78712, USA
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, 2500 Speedway Avenue, Austin, Texas 78712, USA
| |
Collapse
|
16
|
Kangale LJ, Raoult D, Fournier PE, Ghigo E. Culturomics revealed the bacterial constituents of the microbiota of a 10-year-old laboratory culture of planarian species S. mediterranea. Sci Rep 2021; 11:24311. [PMID: 34934139 PMCID: PMC8692324 DOI: 10.1038/s41598-021-03719-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 12/06/2021] [Indexed: 11/09/2022] Open
Abstract
The planarian species Schmidtea mediterranea is a flatworm living in freshwater that is used in the research laboratory as a model to study developmental and regeneration mechanisms, as well as antibacterial mechanisms. However, the cultivable microbial repertoire of the microbes comprising its microbiota remains unknown. Here, we characterized the bacterial constituents of a 10-year-old laboratory culture of planarian species S. mediterranea via culturomics analysis. We isolated 40 cultivable bacterial species, including 1 unidentifiable species. The predominant phylum is Proteobacteria, and the most common genus is Pseudomonas. We discovered that parts of the bacterial flora of the planarian S. mediterranea can be classified as fish pathogens and opportunistic human pathogens.
Collapse
Affiliation(s)
- Luis Johnson Kangale
- Aix-Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France.,IHU-Méditerranée-Infection, Marseille, France
| | - Didier Raoult
- IHU-Méditerranée-Infection, Marseille, France.,Aix-Marseille Univ, IRD, AP-HM, MEPHI, Marseille, France.,Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Pierre-Edouard Fournier
- Aix-Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France. .,IHU-Méditerranée-Infection, Marseille, France.
| | - Eric Ghigo
- IHU-Méditerranée-Infection, Marseille, France. .,TechnoJouvence, 19-21 Boulevard Jean Moulin, 13385, Marseille Cedex 05, France.
| |
Collapse
|