1
|
Gaillard JB, Chapiro E, Daudignon A, Nadal N, Penther D, Chauzeix J, Nguyen-Khac F, Veronese L, Lefebvre C. Cytogenetics in the management of mature T-cell and NK-cell neoplasms: Guidelines from the Groupe Francophone de Cytogénétique Hématologique (GFCH). Curr Res Transl Med 2023; 71:103428. [PMID: 38016421 DOI: 10.1016/j.retram.2023.103428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 11/30/2023]
Abstract
Mature T-cell and natural killer (NK)-cell neoplasms (MTNKNs) are a highly heterogeneous group of lymphomas that represent 10-15 % of lymphoid neoplasms and have usually an aggressive behavior. Diagnosis can be challenging due to their overlapping clinical, histological and immunophenotypic features. Genetic data are not a routine component of the diagnostic algorithm for most MTNKNs. Indeed, unlike B-cell lymphomas, the genomic landscape of MTNKNs is not fully understood. Only few characteristic rearrangements can be easily identified with conventional cytogenetic methods and are an integral part of the diagnostic criteria, for instance the t(14;14)/inv(14) or t(X;14) abnormality harbored by 95 % of patients with T-cell prolymphocytic leukemia, or the ALK gene translocation observed in some forms of anaplastic large cell lymphoma. However, advances in molecular and cytogenetic techniques have brought new insights into MTNKN pathogenesis. Several recurrent genetic alterations have been identified, such as chromosomal losses involving tumor suppressor genes (SETD2, CDKN2A, TP53) and gains involving oncogenes (MYC), activating mutations in signaling pathways (JAK-STAT, RAS), and epigenetic dysregulation, that have improved our understanding of these pathologies. This work provides an overview of the cytogenetics knowledge in MTNKNs in the context of the new World Health Organization classification and the International Consensus Classification of hematolymphoid tumors. It describes key genetic alterations and their clinical implications. It also proposes recommendations on cytogenetic methods for MTNKN diagnosis.
Collapse
Affiliation(s)
- Jean-Baptiste Gaillard
- Unité de Génétique Chromosomique, Service de Génétique moléculaire et cytogénomique, CHU Montpellier, Montpellier, France.
| | - Elise Chapiro
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, Inserm UMRS_1138, Drug Resistance in Hematological Malignancies Team, F-75006 Paris, France; Sorbonne Université, Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Service d'Hématologie Biologique, F-75013 Paris, France
| | - Agnès Daudignon
- Institut de Génétique Médicale - Hôpital Jeanne de Flandre - CHRU de Lille, France
| | - Nathalie Nadal
- Service de génétique chromosomique et moléculaire, CHU Dijon, Dijon, France
| | - Dominique Penther
- Laboratoire de Génétique Oncologique, Centre Henri Becquerel, Rouen, France
| | - Jasmine Chauzeix
- Service d'Hématologie biologique CHU de Limoges - CRIBL, UMR CNRS 7276/INSERM 1262, Limoges, France
| | - Florence Nguyen-Khac
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, Inserm UMRS_1138, Drug Resistance in Hematological Malignancies Team, F-75006 Paris, France; Sorbonne Université, Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Service d'Hématologie Biologique, F-75013 Paris, France
| | - Lauren Veronese
- Service de Cytogénétique Médicale, CHU Estaing, 1 place Lucie et Raymond Aubrac, 63003 Clermont-Ferrand; EA7453 CHELTER, Université Clermont Auvergne, France
| | - Christine Lefebvre
- Unité de Génétique des Hémopathies, Service d'Hématologie Biologique, CHU Grenoble Alpes, Grenoble, France
| |
Collapse
|
2
|
Flores-Morán MS, Rodríguez-Sevilla JJ, Arenillas L, Calvo X, Puiggros A, Espinet B, Costan B, Rodríguez-Rivera M, Salido M, Ferrer Del Álamo A. Inactive T-cell prolymphocytic leukemia with negative surface CD3: Cytogenetic pitfalls. Int J Lab Hematol 2022; 45:e55-e59. [PMID: 36513944 DOI: 10.1111/ijlh.14000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 11/21/2022] [Indexed: 12/15/2022]
Affiliation(s)
- Marie Solange Flores-Morán
- Laboratori de Citologia Hematològica, Servei de Patologia, GRETNHE, IMIM Hospital del Mar Research Institute, Barcelona, Spain.,Servei d'Hematologia, Grup de Recerca Clínica Aplicada en Neoplàsies Hematològiques, IMIM Hospital del Mar Research Institute, Barcelona, Spain
| | - Juan José Rodríguez-Sevilla
- Servei d'Hematologia, Grup de Recerca Clínica Aplicada en Neoplàsies Hematològiques, IMIM Hospital del Mar Research Institute, Barcelona, Spain
| | - Leonor Arenillas
- Laboratori de Citologia Hematològica, Servei de Patologia, GRETNHE, IMIM Hospital del Mar Research Institute, Barcelona, Spain
| | - Xavier Calvo
- Laboratori de Citologia Hematològica, Servei de Patologia, GRETNHE, IMIM Hospital del Mar Research Institute, Barcelona, Spain
| | - Ana Puiggros
- Laboratori de Citogenètica Molecular, Servei de Patologia, GRETNHE, IMIM Hospital del Mar Research Institute, Barcelona, Spain
| | - Blanca Espinet
- Laboratori de Citogenètica Molecular, Servei de Patologia, GRETNHE, IMIM Hospital del Mar Research Institute, Barcelona, Spain
| | - Beatriz Costan
- Laboratori de Citologia Hematològica, Servei de Patologia, GRETNHE, IMIM Hospital del Mar Research Institute, Barcelona, Spain
| | - Maria Rodríguez-Rivera
- Laboratori de Citogenètica Molecular, Servei de Patologia, GRETNHE, IMIM Hospital del Mar Research Institute, Barcelona, Spain
| | - Marta Salido
- Laboratori de Citogenètica Molecular, Servei de Patologia, GRETNHE, IMIM Hospital del Mar Research Institute, Barcelona, Spain
| | - Ana Ferrer Del Álamo
- Laboratori de Citologia Hematològica, Servei de Patologia, GRETNHE, IMIM Hospital del Mar Research Institute, Barcelona, Spain
| |
Collapse
|
3
|
El-Sharkawi D, Attygalle A, Dearden C. Mature T-Cell leukemias: Challenges in Diagnosis. Front Oncol 2022; 12:777066. [PMID: 35359424 PMCID: PMC8961294 DOI: 10.3389/fonc.2022.777066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 01/11/2022] [Indexed: 11/29/2022] Open
Abstract
T-cell clones can frequently be identified in peripheral blood. It can be difficult to appreciate whether these are benign and transient or whether they signify a clonal disorder. We review factors that aid in understanding the relevance of T-cell clones. Conversely, obvious pathological T-cell clones can be detected in blood, but there is uncertainty in how to categorize this clonal T cell population, thus, we adopt a multidisciplinary review of the clinical features, diagnostic material and radiology before making the diagnosis. In this review we shall discuss some of these challenges faced when diagnosing mature T-cell leukemias.
Collapse
Affiliation(s)
- Dima El-Sharkawi
- Department of Haematology, The Royal Marsden NHS Foundation Trust, London, United Kingdom.,Division of Molecular Pathology, The Institute of Cancer Research, London, United Kingdom
| | - Ayoma Attygalle
- Department of Histopathology, The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Claire Dearden
- Department of Haematology, The Royal Marsden NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
4
|
Cuesta-Mateos C, Fuentes P, Schrader A, Juárez-Sánchez R, Loscertales J, Mateu-Albero T, Vega-Piris L, Espartero-Santos M, Marcos-Jimenez A, Sánchez-López BA, Pérez-García Y, Jungherz D, Oberbeck S, Wahnschaffe L, Kreutzman A, Andersson EI, Mustjoki S, Faber E, Urzainqui A, Fresno M, Stamatakis K, Alfranca A, Terrón F, Herling M, Toribio ML, Muñoz-Calleja C. CCR7 as a novel therapeutic target in t-cell PROLYMPHOCYTIC leukemia. Biomark Res 2020; 8:54. [PMID: 33110606 PMCID: PMC7585232 DOI: 10.1186/s40364-020-00234-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 10/12/2020] [Indexed: 12/20/2022] Open
Abstract
T-cell prolymphocytic leukemia (T-PLL) is a poor prognostic disease with very limited options of efficient therapies. Most patients are refractory to chemotherapies and despite high response rates after alemtuzumab, virtually all patients relapse. Therefore, there is an unmet medical need for novel therapies in T-PLL. As the chemokine receptor CCR7 is a molecule expressed in a wide range of malignancies and relevant in many tumor processes, the present study addressed the biologic role of this receptor in T-PLL. Furthermore, we elucidated the mechanisms of action mediated by an anti-CCR7 monoclonal antibody (mAb) and evaluated whether its anti-tumor activity would warrant development towards clinical applications in T-PLL. Our results demonstrate that CCR7 is a prognostic biomarker for overall survival in T-PLL patients and a functional receptor involved in the migration, invasion, and survival of leukemic cells. Targeting CCR7 with a mAb inhibited ligand-mediated signaling pathways and induced tumor cell killing in primary samples. In addition, directing antibodies against CCR7 was highly effective in T-cell leukemia xenograft models. Together, these findings make CCR7 an attractive molecule for novel mAb-based therapeutic applications in T-PLL, a disease where recent drug screen efforts and studies addressing new compounds have focused on chemotherapy or small molecules.
Collapse
Affiliation(s)
- Carlos Cuesta-Mateos
- Immunology Department, Hospital Universitario de La Princesa, IIS-IP, C/ Diego de León 62, 28006 Madrid, Spain.,IMMED S.L., Immunological and Medicinal Products, Madrid, Spain
| | - Patricia Fuentes
- Immune System Development and Function Unit, Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain
| | - Alexandra Schrader
- Department I of Internal Medicine, Center for Integrated Oncology (CIO) Aachen-Bonn-Cologne-Duesseldorf (ABCD), Cologne Cluster of Excellence in Cellular Stress Response and Aging-Associated Diseases (CECAD), and Center of Molecular Medicine Cologne (CMMC), The University of Cologne, Cologne, Germany
| | - Raquel Juárez-Sánchez
- Immunology Department, Hospital Universitario de La Princesa, IIS-IP, C/ Diego de León 62, 28006 Madrid, Spain.,IMMED S.L., Immunological and Medicinal Products, Madrid, Spain
| | - Javier Loscertales
- Hematology Department, Hospital Universitario de La Princesa, IIS-IP, Madrid, Spain
| | - Tamara Mateu-Albero
- Immunology Department, Hospital Universitario de La Princesa, IIS-IP, C/ Diego de León 62, 28006 Madrid, Spain
| | - Lorena Vega-Piris
- Methodology Unit, Hospital Universitario de La Princesa, IIS-IP, Madrid, Spain
| | - Marina Espartero-Santos
- Immunology Department, Hospital Universitario de La Princesa, IIS-IP, C/ Diego de León 62, 28006 Madrid, Spain
| | - Ana Marcos-Jimenez
- Immunology Department, Hospital Universitario de La Princesa, IIS-IP, C/ Diego de León 62, 28006 Madrid, Spain
| | - Blanca Andrea Sánchez-López
- Immunology Department, Hospital Universitario de La Princesa, IIS-IP, C/ Diego de León 62, 28006 Madrid, Spain
| | - Yaiza Pérez-García
- Immunology Department, Hospital Universitario de La Princesa, IIS-IP, C/ Diego de León 62, 28006 Madrid, Spain
| | - Dennis Jungherz
- Department I of Internal Medicine, Center for Integrated Oncology (CIO) Aachen-Bonn-Cologne-Duesseldorf (ABCD), Cologne Cluster of Excellence in Cellular Stress Response and Aging-Associated Diseases (CECAD), and Center of Molecular Medicine Cologne (CMMC), The University of Cologne, Cologne, Germany
| | - Sebastian Oberbeck
- Department I of Internal Medicine, Center for Integrated Oncology (CIO) Aachen-Bonn-Cologne-Duesseldorf (ABCD), Cologne Cluster of Excellence in Cellular Stress Response and Aging-Associated Diseases (CECAD), and Center of Molecular Medicine Cologne (CMMC), The University of Cologne, Cologne, Germany
| | - Linus Wahnschaffe
- Department I of Internal Medicine, Center for Integrated Oncology (CIO) Aachen-Bonn-Cologne-Duesseldorf (ABCD), Cologne Cluster of Excellence in Cellular Stress Response and Aging-Associated Diseases (CECAD), and Center of Molecular Medicine Cologne (CMMC), The University of Cologne, Cologne, Germany
| | - Anna Kreutzman
- Immunology Department, Hospital Universitario de La Princesa, IIS-IP, C/ Diego de León 62, 28006 Madrid, Spain
| | - Emma I Andersson
- Department of Hematology, Hematology Research Unit Helsinki, Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
| | - Satu Mustjoki
- Department of Hematology, Hematology Research Unit Helsinki, Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland.,Translational Immunology Research Program and Department of Clinical Chemistry, University of Helsinki, Helsinki, Finland
| | - Edgar Faber
- Department of Hemato-Oncology, Faculty Hospital Olomouc, Faculty of Medicine and Dentistry Palacky University, Olomouc, Czech Republic
| | - Ana Urzainqui
- Immunology Department, Hospital Universitario de La Princesa, IIS-IP, C/ Diego de León 62, 28006 Madrid, Spain
| | - Manuel Fresno
- Department of Cell Biology and Immunology, Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain
| | - Kostantino Stamatakis
- Department of Cell Biology and Immunology, Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain
| | - Arantzazu Alfranca
- Immunology Department, Hospital Universitario de La Princesa, IIS-IP, C/ Diego de León 62, 28006 Madrid, Spain
| | - Fernando Terrón
- IMMED S.L., Immunological and Medicinal Products, Madrid, Spain
| | - Marco Herling
- Department I of Internal Medicine, Center for Integrated Oncology (CIO) Aachen-Bonn-Cologne-Duesseldorf (ABCD), Cologne Cluster of Excellence in Cellular Stress Response and Aging-Associated Diseases (CECAD), and Center of Molecular Medicine Cologne (CMMC), The University of Cologne, Cologne, Germany
| | - María Luisa Toribio
- Immune System Development and Function Unit, Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain
| | - Cecilia Muñoz-Calleja
- Immunology Department, Hospital Universitario de La Princesa, IIS-IP, C/ Diego de León 62, 28006 Madrid, Spain.,Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
5
|
Sun S, Fang W. Current understandings on T-cell prolymphocytic leukemia and its association with TCL1 proto-oncogene. Biomed Pharmacother 2020; 126:110107. [PMID: 32247279 DOI: 10.1016/j.biopha.2020.110107] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/16/2020] [Accepted: 03/17/2020] [Indexed: 01/02/2023] Open
Abstract
T-cell prolymphocytic leukemia (T-PLL) is a rare mature T cell leukemia with aggressive clinical course, poor response to conventional therapies and high mortality rates. Classical cytogenetics and various genetic techniques have observed complex karyotypes and associated genes involved in the molecular pathogenesis of T-PLL, among which the proto-oncogene T-cell leukemia/lymphoma 1 (TCL1) as a hallmark of malignancy is hyper-activated and abnormally expressed in many T-PLL cases. Progress has been made to identify the presence of chromosomal rearrangements and subsequent changes in key molecular pathways typically involving Akt, which may hint cytogenetic mechanisms underlying the pathogenesis of T-PLL and indicate new treatment targets. In this article, we describe current insights of T-PLL with an emphasis on the potential role of TCL1 gene disorders and TCL1-Akt interactions in cell transformation and disease progression, followed by discussion on current treatment options and novel therapeutic approaches based on cytogenetics, which still remains to be explored for the effective management of T-PLL and other TCL1-driven hematological malignancies.
Collapse
Affiliation(s)
- Siyu Sun
- Medical College of Nanchang University, Nanchang, 330000, China; Queen Mary University of London, London, E1 4NS, UK.
| | - Wenjia Fang
- Medical College of Nanchang University, Nanchang, 330000, China; Queen Mary University of London, London, E1 4NS, UK.
| |
Collapse
|
6
|
Laribi K, Lemaire P, Sandrini J, Baugier de Materre A. Advances in the understanding and management of T-cell prolymphocytic leukemia. Oncotarget 2017; 8:104664-104686. [PMID: 29262669 PMCID: PMC5732835 DOI: 10.18632/oncotarget.22272] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 08/27/2017] [Indexed: 12/02/2022] Open
Abstract
T-prolymphocytic leukemia (T-PLL) is a rare T-cell neoplasm with an aggressive clinical course. Leukemic T-cells exhibit a post-thymic T-cell phenotype (Tdt-, CD1a-, CD5+, CD2+ and CD7+) and are generally CD4+/CD8-, but CD4+/CD8+ or CD8+/CD4- T-PLL have also been reported. The hallmark of T-PLL is the rearrangement of chromosome 14 involving genes for the subunits of the T-cell receptor (TCR) complex, leading to overexpression of the proto-oncogene TCL1. In addition, molecular analysis shows that T-PLL exhibits substantial mutational activation of the IL2RG-JAK1-JAK3-, STAT5B axis. T-PLL patients have a poor prognosis, due to a poor response to conventional chemotherapy. Monoclonal antibody therapy with antiCD52-alemtuzumab has considerably improved outcomes, but the responses to treatment are transient; hence, patients who achieve a response to therapy are considered for stem cell transplantation (SCT). This combined approach has extended the median survival to four years or more. Nevertheless, new approaches using well-tolerated therapies that target growth and survival signals are needed for most patients unable to receive intensive chemotherapy.
Collapse
Affiliation(s)
- Kamel Laribi
- Department of Hematology, Centre Hospitalier du Mans, Le Mans, France
| | - Pierre Lemaire
- Laboratory of Biology and Hematology, Centre Hospitalier du Mans, Le Mans, France
| | - Jeremy Sandrini
- Laboratory of Anatomopathology, Centre Hospitalier du Mans, Le Mans, France
| | | |
Collapse
|
7
|
Rinke J, Müller JP, Blaess MF, Chase A, Meggendorfer M, Schäfer V, Winkelmann N, Haferlach C, Cross NCP, Hochhaus A, Ernst T. Molecular characterization of EZH2 mutant patients with myelodysplastic/myeloproliferative neoplasms. Leukemia 2017. [DOI: 10.1038/leu.2017.190] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
8
|
Hu Z, Medeiros LJ, Fang L, Sun Y, Tang Z, Tang G, Sun T, Quesada AE, Hu S, Wang SA, Pei L, Lu X. Prognostic significance of cytogenetic abnormalities in T-cell prolymphocytic leukemia. Am J Hematol 2017; 92:441-447. [PMID: 28194886 DOI: 10.1002/ajh.24679] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 01/30/2017] [Accepted: 02/08/2017] [Indexed: 01/04/2023]
Abstract
T-cell prolymphocytic leukemia (T-PLL) is an aggressive mature T-cell neoplasm. The most common cytogenetic abnormality associated with T-PLL is inv(14)(q11.2q32) involving TCL1, but other abnormalities also have been reported. In this study, we correlated cytogenetic abnormalities with clinical outcome in 97 T-PLL patients, including 66 men and 31 women with a median age of 63 years (range, 34-81). Twenty-seven patients had a normal karyotype (NK), one had two chromosomal aberrations, and 69 had a complex karyotype (CK). Patients with a CK had poorer overall survival (OS) than patients with a NK (P = .0016). In the CK group, the most common aberrations involved 14q (n = 45) and 8q (n = 38). Additional deletions of chromosomes 17p, 11q, 6q, 12p, 13q were observed frequently. No individual cytogenetic abnormality impacted OS. Patients with ≥5 aberrations had an OS of 11 months versus 22 months in patients with <5 aberrations (P = 0.0132). Fluorescence in situ hybridization for TCL1 successfully performed in 27 cases showed rearrangement in 8/10 (80%) NK versus 16/17 (94%) CK cases. OS of patients with TCL1 rearrangement and/or 14q aberrations was not significantly different from patients without TCL1 rearrangement and 14q aberrations (P = .3467). Patients with refractory disease showed worse OS in both the NK and CK groups (P = .0014 and P < .0001, respectively), compared with patients who achieved remission but then relapsed. Stem cell transplantation did not appear to improve OS regardless of karyotype complexity. In conclusion, patients with T-PLL often have a CK which is a poor prognostic factor, particularly in patients with ≥5 cytogenetic aberrations.
Collapse
Affiliation(s)
- Zhihong Hu
- Department of HematopathologyThe University of Texas MD Anderson Cancer CenterHouston Texas USA
| | - L. Jeffrey Medeiros
- Department of HematopathologyThe University of Texas MD Anderson Cancer CenterHouston Texas USA
| | - Lianghua Fang
- Department of HematopathologyThe University of Texas MD Anderson Cancer CenterHouston Texas USA
- Department of OncologyJiangsu Province Hospital of Traditional Chinese MedicineNanjing Jiangsu China
| | - Yi Sun
- Department of HematopathologyThe University of Texas MD Anderson Cancer CenterHouston Texas USA
| | - Zhenya Tang
- Department of HematopathologyThe University of Texas MD Anderson Cancer CenterHouston Texas USA
| | - Guilin Tang
- Department of HematopathologyThe University of Texas MD Anderson Cancer CenterHouston Texas USA
| | - Tsieh Sun
- Department of HematopathologyThe University of Texas MD Anderson Cancer CenterHouston Texas USA
| | - Andres E. Quesada
- Department of HematopathologyThe University of Texas MD Anderson Cancer CenterHouston Texas USA
| | - Shimin Hu
- Department of HematopathologyThe University of Texas MD Anderson Cancer CenterHouston Texas USA
| | - Sa A. Wang
- Department of HematopathologyThe University of Texas MD Anderson Cancer CenterHouston Texas USA
| | - Lin Pei
- Department of HematopathologyThe University of Texas MD Anderson Cancer CenterHouston Texas USA
| | - Xinyan Lu
- Department of HematopathologyThe University of Texas MD Anderson Cancer CenterHouston Texas USA
| |
Collapse
|
9
|
Song J, Shao H. SNP Array in Hematopoietic Neoplasms: A Review. MICROARRAYS 2015; 5:microarrays5010001. [PMID: 27600067 PMCID: PMC5003446 DOI: 10.3390/microarrays5010001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 11/13/2015] [Accepted: 12/14/2015] [Indexed: 12/03/2022]
Abstract
Cytogenetic analysis is essential for the diagnosis and prognosis of hematopoietic neoplasms in current clinical practice. Many hematopoietic malignancies are characterized by structural chromosomal abnormalities such as specific translocations, inversions, deletions and/or numerical abnormalities that can be identified by karyotype analysis or fluorescence in situ hybridization (FISH) studies. Single nucleotide polymorphism (SNP) arrays offer high-resolution identification of copy number variants (CNVs) and acquired copy-neutral loss of heterozygosity (LOH)/uniparental disomy (UPD) that are usually not identifiable by conventional cytogenetic analysis and FISH studies. As a result, SNP arrays have been increasingly applied to hematopoietic neoplasms to search for clinically-significant genetic abnormalities. A large numbers of CNVs and UPDs have been identified in a variety of hematopoietic neoplasms. CNVs detected by SNP array in some hematopoietic neoplasms are of prognostic significance. A few specific genes in the affected regions have been implicated in the pathogenesis and may be the targets for specific therapeutic agents in the future. In this review, we summarize the current findings of application of SNP arrays in a variety of hematopoietic malignancies with an emphasis on the clinically significant genetic variants.
Collapse
Affiliation(s)
- Jinming Song
- Department of Hematopathology and Laboratory Medicine, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612, USA.
| | - Haipeng Shao
- Department of Hematopathology and Laboratory Medicine, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612, USA.
| |
Collapse
|
10
|
Stengel A, Kern W, Zenger M, Perglerová K, Schnittger S, Haferlach T, Haferlach C. Genetic characterization of T-PLL reveals two major biologic subgroups and JAK3 mutations as prognostic marker. Genes Chromosomes Cancer 2015; 55:82-94. [PMID: 26493028 DOI: 10.1002/gcc.22313] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 09/04/2015] [Accepted: 09/10/2015] [Indexed: 01/26/2023] Open
Abstract
T-cell prolymphocytic leukemia (T-PLL) is a rare post-thymic T-cell neoplasm with aggressive clinical course and short overall survival. So far, due to the rareness of this disease, genetic data are available only from individual cases or small cohorts. In our study, we aimed at performing a comprehensive cytogenetic and molecular genetic characterization of T-PLL comprising the largest cohort of patients with T-PLL analyzed so far, including correlations between the respective markers and their impact on prognosis. Genetic abnormalities were found in all 51 cases with T-PLL, most frequently involving the TCRA/D locus (86%). Deletions were detected for ATM (69%) and TP53 (31%), whereas i(8)(q10) was observed in 61% of cases. Mutations in ATM, TP53, JAK1, and JAK3 were detected in 73, 14, 6, and 21% of patients, respectively. Additionally, BCOR mutations were observed for the first time in a lymphoid malignancy (8%). Two distinct genetic subgroups of T-PLL were identified: A large subset (86% of patients) showed abnormalities involving the TCRA/D locus activating the proto-oncogenes TCL1 or MTCP1, while the second group was characterized by a high frequency of TP53 mutations (4/7 cases). Further, analyses of overall survival identified JAK3 mutations as important prognostic marker, showing a significant negative impact.
Collapse
Affiliation(s)
- Anna Stengel
- MLL Munich Leukemia Laboratory, Max-Lebsche-Platz 31, Munich, 81377, Germany
| | - Wolfgang Kern
- MLL Munich Leukemia Laboratory, Max-Lebsche-Platz 31, Munich, 81377, Germany
| | - Melanie Zenger
- MLL Munich Leukemia Laboratory, Max-Lebsche-Platz 31, Munich, 81377, Germany
| | | | - Susanne Schnittger
- MLL Munich Leukemia Laboratory, Max-Lebsche-Platz 31, Munich, 81377, Germany
| | - Torsten Haferlach
- MLL Munich Leukemia Laboratory, Max-Lebsche-Platz 31, Munich, 81377, Germany
| | - Claudia Haferlach
- MLL Munich Leukemia Laboratory, Max-Lebsche-Platz 31, Munich, 81377, Germany
| |
Collapse
|
11
|
Abstract
Mature T-cell leukemias are a group of uncommon lymphoid neoplasms. These disorders have widely variable clinical features, ranging from indolent, slowly progressive processes to diseases with rapidly progressive courses, leading to death. Cytogenetic aberrations have long been identified in some of these diseases, and recent studies have found recurrent genetic mutations that contribute to their pathogenesis. Conventional multiagent chemotherapy lacks significant efficacy in this group of diseases and therapies vary from immunosuppression to treatment with monoclonal antibodies, antiviral agents, and hematopoietic stem cell transplantation. The recent expansion of knowledge regarding the underlying genetic basis of these disorders raises hope that new, more targeted therapeutic approaches will be available to patients in the near future.
Collapse
Affiliation(s)
- Nathanael G Bailey
- Department of Pathology, University of Michigan, M5242 Medical Science 1 1301 Catherine St, Ann Arbor, MI, 48109, USA.
| | - Kojo S J Elenitoba-Johnson
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, 422 Curie Boulevard, Philadelphia, PA, 19104, USA.
| |
Collapse
|
12
|
Integrated genomic sequencing reveals mutational landscape of T-cell prolymphocytic leukemia. Blood 2014; 124:1460-72. [PMID: 24825865 DOI: 10.1182/blood-2014-03-559542] [Citation(s) in RCA: 191] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The comprehensive genetic alterations underlying the pathogenesis of T-cell prolymphocytic leukemia (T-PLL) are unknown. To address this, we performed whole-genome sequencing (WGS), whole-exome sequencing (WES), high-resolution copy-number analysis, and Sanger resequencing of a large cohort of T-PLL. WGS and WES identified novel mutations in recurrently altered genes not previously implicated in T-PLL including EZH2, FBXW10, and CHEK2. Strikingly, WGS and/or WES showed largely mutually exclusive mutations affecting IL2RG, JAK1, JAK3, or STAT5B in 38 of 50 T-PLL genomes (76.0%). Notably, gain-of-function IL2RG mutations are novel and have not been reported in any form of cancer. Further, high-frequency mutations in STAT5B have not been previously reported in T-PLL. Functionally, IL2RG-JAK1-JAK3-STAT5B mutations led to signal transducer and activator of transcription 5 (STAT5) hyperactivation, transformed Ba/F3 cells resulting in cytokine-independent growth, and/or enhanced colony formation in Jurkat T cells. Importantly, primary T-PLL cells exhibited constitutive activation of STAT5, and targeted pharmacologic inhibition of STAT5 with pimozide induced apoptosis in primary T-PLL cells. These results for the first time provide a portrait of the mutational landscape of T-PLL and implicate deregulation of DNA repair and epigenetic modulators as well as high-frequency mutational activation of the IL2RG-JAK1-JAK3-STAT5B axis in the pathogenesis of T-PLL. These findings offer opportunities for novel targeted therapies in this aggressive leukemia.
Collapse
|
13
|
Wafa A, Aljapawe A, Othman MA, Liehr T, Alhourani E, Al Achkar W. Do novo del(9)(p13) in a childhood T-cell prolymphocytic leukemia as sole abnormality. Exp Hematol Oncol 2014; 3:28. [PMID: 25954594 PMCID: PMC4423402 DOI: 10.1186/2162-3619-3-28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 11/12/2014] [Indexed: 11/22/2022] Open
Abstract
T-cell prolymphocytic leukemia (T-PLL) is a rare and aggressive subtype of chronic lymphocytic leukemia. Usually it presents in older people with a median age of 61 years. T-PLL is characterized by elevated white blood cell (WBC) count with anemia and thrombocytopenia, hepatosplenomegaly, and lymphadenopathy; less common findings are skin infiltration and pleural effusions. The most frequent chromosomal abnormalities in T-PLL include 14q11.2, chromosome 8, and 11q rearrangements. Also deletions in the short arm of a chromosome 9 are reported in ~30% of T-PLL together with other aberrations. Here we report a childhood T-PLL case with a de novo del(9)(p13) as sole acquired anomaly leading to monosomy of the tumor suppressor gene CDKN2A (cyclin-dependent kinase inhibitor 2A). Also, to the best of our knowledge this is the first case of a childhood T-PLL with this aberration.
Collapse
Affiliation(s)
- Abdulsamad Wafa
- Human Genetics Division, Department of Molecular Biology and Biotechnology, Atomic Energy Commission of Syria, P.O. Box 6091, Damascus, Syria
| | - Abdulmunim Aljapawe
- Molecular Biology and Biotechnology Department, Mammalians Biology Division, Flow-cytometry Laboratory, Atomic Energy Commission of Syria, P.O. Box 6091, Damascus, Syria
| | - Moneeb Ak Othman
- Jena University Hospital, Institute of Human Genetics, Kollegiengasse 10, Jena, D-07743 Germany
| | - Thomas Liehr
- Jena University Hospital, Institute of Human Genetics, Kollegiengasse 10, Jena, D-07743 Germany
| | - Eyad Alhourani
- Jena University Hospital, Institute of Human Genetics, Kollegiengasse 10, Jena, D-07743 Germany
| | - Walid Al Achkar
- Human Genetics Division, Department of Molecular Biology and Biotechnology, Atomic Energy Commission of Syria, P.O. Box 6091, Damascus, Syria
| |
Collapse
|
14
|
Tirado CA, Starshak P, Delgado P, Rao N. "T-cell prolymphocytic leukemia (T-PLL), a heterogeneous disease exemplified by two cases and the important role of cytogenetics: a multidisciplinary approach". Exp Hematol Oncol 2012; 1:21. [PMID: 23211026 PMCID: PMC3514161 DOI: 10.1186/2162-3619-1-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2012] [Accepted: 08/16/2012] [Indexed: 11/10/2022] Open
Abstract
T-cell prolymphocytic leukemia (T-PLL) is a rare form of leukemia composed of mature T-cells that usually presents in older people with a median age of 65. Most cases of T-PLL will harbor chromosomal abnormalities involving 14q11.2 (TCR alpha/delta), 14q32 (TCL1) or Xq28 (MTCP-1), abnormalities of chromosome 8, 12p and deletions of the long arm of chromosomes 5, 6, 11 and 13. Cytogenetics, FISH, comparative genomic hybridization (CGH) , SNP arrays with high resolution analysis have provided more precisely frequent submicroscopic gene and genomic lesions as well as breakpoints involved in the pathogenesis of this disease. One of the cornerstones to diagnose T-PLL are cytogenetic analysis. Here we summarize the current cytogenetic findings and we also describe two distinct cases of T-PLL where cytogenetics, FISH , morphologic analysis and flow cytometry helped to diagnose them accurately.
Collapse
Affiliation(s)
- Carlos A Tirado
- Department of Pathology & Laboratory Medicine, David Geffen UCLA School of Medicine, Los Angeles, CA, 90095, USA
| | - Phillip Starshak
- Department of Pathology & Laboratory Medicine, David Geffen UCLA School of Medicine, Los Angeles, CA, 90095, USA
| | - Paul Delgado
- Department of Ecology and Evolutionary Biology, UCLA, Los Angeles, CA, 90095, USA
| | - Nagesh Rao
- Department of Pathology & Laboratory Medicine, David Geffen UCLA School of Medicine, Los Angeles, CA, 90095, USA
| |
Collapse
|
15
|
Yin B, Lee BS, Yang-Iott KS, Sleckman BP, Bassing CH. Redundant and nonredundant functions of ATM and H2AX in αβ T-lineage lymphocytes. THE JOURNAL OF IMMUNOLOGY 2012; 189:1372-9. [PMID: 22730535 DOI: 10.4049/jimmunol.1200829] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The ataxia telangiectasia mutated (ATM) kinase and H2AX histone tumor suppressor proteins are each critical for maintenance of cellular genomic stability and suppression of lymphomas harboring clonal translocations. ATM is the predominant kinase that phosphorylates H2AX in chromatin around DNA double-strand breaks, including along lymphocyte Ag receptor loci cleaved during V(D)J recombination. However, combined germline inactivation of Atm and H2ax in mice causes early embryonic lethality associated with substantial cellular genomic instability, indicating that ATM and H2AX exhibit nonredundant functions in embryonic cells. To evaluate potential nonredundant roles of ATM and H2AX in somatic cells, we generated and analyzed Atm-deficient mice with conditional deletion of H2ax in αβ T-lineage lymphocytes. Combined Atm/H2ax inactivation starting in early-stage CD4(-)/CD8(-) thymocytes resulted in lower numbers of later-stage CD4(+)/CD8(+) thymocytes, but led to no discernible V(D)J recombination defect in G1 phase cells beyond that observed in Atm-deficient cells. H2ax deletion in Atm-deficient thymocytes also did not affect the incidence or mortality of mice from thymic lymphomas with clonal chromosome 14 (TCRα/δ) translocations. Yet, in vitro-stimulated Atm/H2ax-deficient splenic αβ T cells exhibited a higher frequency of genomic instability, including radial chromosome translocations and TCRβ translocations, compared with cells lacking Atm or H2ax. Collectively, our data demonstrate that both redundant and nonredundant functions of ATM and H2AX are required for normal recombination of TCR loci, proliferative expansion of developing thymocytes, and maintenance of genomic stability in cycling αβ T-lineage cells.
Collapse
Affiliation(s)
- Bu Yin
- Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | |
Collapse
|
16
|
Nowak D, Klaumuenzer M, Hanfstein B, Mossner M, Nolte F, Nowak V, Oblaender J, Hecht A, Hütter G, Ogawa S, Kohlmann A, Haferlach C, Schlegelberger B, Braess J, Seifarth W, Fabarius A, Erben P, Saussele S, Müller MC, Reiter A, Buechner T, Weiss C, Hofmann WK, Lengfelder E. SNP array analysis of acute promyelocytic leukemia may be of prognostic relevance and identifies a potential high risk group with recurrent deletions on chromosomal subband 1q31.3. Genes Chromosomes Cancer 2012; 51:756-67. [DOI: 10.1002/gcc.21961] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Accepted: 03/13/2012] [Indexed: 12/11/2022] Open
|
17
|
Wiktor-Jedrzejczak W, Dearden C, de Wreede L, van Biezen A, Brinch L, Leblond V, Brune M, Volin L, Kazmi M, Nagler A, Schetelig J, de Witte T, Dreger P. Hematopoietic stem cell transplantation in T-prolymphocytic leukemia: a retrospective study from the European Group for Blood and Marrow Transplantation and the Royal Marsden Consortium. Leukemia 2011; 26:972-6. [DOI: 10.1038/leu.2011.304] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
18
|
Okamoto R, Ogawa S, Nowak D, Kawamata N, Akagi T, Kato M, Sanada M, Weiss T, Haferlach C, Dugas M, Ruckert C, Haferlach T, Koeffler HP. Genomic profiling of adult acute lymphoblastic leukemia by single nucleotide polymorphism oligonucleotide microarray and comparison to pediatric acute lymphoblastic leukemia. Haematologica 2010; 95:1481-8. [PMID: 20435627 DOI: 10.3324/haematol.2009.011114] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Differences in survival have been reported between pediatric and adult acute lymphoblastic leukemia. The inferior prognosis in adult acute lymphoblastic leukemia is not fully understood but could be attributed, in part, to differences in genomic alterations found in adult as compared to in pediatric acute lymphoblastic leukemia. DESIGN AND METHODS We compared two different sets of high-density single nucleotide polymorphism array genotyping data from 75 new diagnostic adult and 399 previously published diagnostic pediatric acute lymphoblastic leukemia samples. The patients' samples were randomly acquired from among Caucasian and Asian populations and hybridized to either Affymetrix 50K or 250K single nucleotide polymorphism arrays. The array data were investigated with Copy Number Analysis for GeneChips (CNAG) software for allele-specific copy number analysis. RESULTS The high density single nucleotide polymorphism array analysis of 75 samples of adult acute lymphoblastic leukemia led to the identification of numerous cryptic and submicroscopic genomic lesions with a mean of 7.6 genomic alterations per sample. The patterns and frequencies of lesions detected in the adult samples largely reproduced known genomic hallmarks detected in previous single nucleotide polymorphism-array studies of pediatric acute lymphoblastic leukemia, such as common deletions of 3p14.2 (FHIT), 5q33.3 (EBF), 6q, 9p21.3 (CDKN2A/B), 9p13.2 (PAX5), 13q14.2 (RB1) and 17q11.2 (NF1). Some differences between adult and pediatric acute lymphoblastic leukemia were identified when the pediatric data set was partitioned into hyperdiploid and non-hyperdiploid cases and then compared to the nearly exclusively non-hyperdiploid adult samples. In this analysis, adult samples had a higher rate of deletions of chromosome 17p (TP53) and duplication of 17q. CONCLUSIONS Our analysis of adult acute lymphoblastic leukemia cases led to the identification of new potential target lesions relevant for the pathogenesis of acute lymphoblastic leukemia. However, no unequivocal pattern of submicroscopic genomic alterations was found to separate adult acute lymphoblastic leukemia from pediatric acute lymphoblastic leukemia. Therefore, apart from different therapy regimen, differences of prognosis between adult and pediatric acute lymphoblastic leukemia are probably based on genetic subgroups according to cytogenetically detectable lesions but not focal genomic copy number microlesions.
Collapse
Affiliation(s)
- Ryoko Okamoto
- Division of Hematology and Oncology, Cedars-Sinai Medical Center, UCLA School of Medicine, 8700, Beverly Blvd, Los Angeles, CA90048, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
SNP array analysis of tyrosine kinase inhibitor-resistant chronic myeloid leukemia identifies heterogeneous secondary genomic alterations. Blood 2009; 115:1049-53. [PMID: 19965645 DOI: 10.1182/blood-2009-03-210377] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
To elucidate whether tyrosine kinase inhibitor (TKI) resistance in chronic myeloid leukemia is associated with characteristic genomic alterations, we analyzed DNA samples from 45 TKI-resistant chronic myeloid leukemia patients with 250K single nucleotide polymorphism arrays. From 20 patients, matched serial samples of pretreatment and TKI resistance time points were available. Eleven of the 45 TKI-resistant patients had mutations of BCR-ABL1, including 2 T315I mutations. Besides known TKI resistance-associated genomic lesions, such as duplication of the BCR-ABL1 gene (n = 8) and trisomy 8 (n = 3), recurrent submicroscopic alterations, including acquired uniparental disomy, were detectable on chromosomes 1, 8, 9, 17, 19, and 22. On chromosome 22, newly acquired and recurrent deletions of the IGLC1 locus were detected in 3 patients, who had previously presented with lymphoid or myeloid blast crisis. This may support a hypothesis of TKI-induced selection of subclones differentiating into immature B-cell progenitors as a mechanism of disease progression and evasion of TKI sensitivity.
Collapse
|
20
|
Nowak D, Hofmann WK, Koeffler HP. Genome-wide Mapping of Copy Number Variations Using SNP Arrays. ACTA ACUST UNITED AC 2009; 36:246-251. [PMID: 21049075 DOI: 10.1159/000225372] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2009] [Accepted: 06/09/2009] [Indexed: 01/17/2023]
Abstract
The availability of high-density single nucleotide polymorphism (SNP) microarrays in recent years has proven to be a great step forward in the context of global analysis of genomic abnormalities in disease. SNP arrays offer great robustness, high resolution and the possibility to detect a variety of different genomic copy number variations such as submicroscopic deletions, amplifications, loss of heterozygosity and uniparental disomy. Moreover, they can be used to perform genome wide association studies. Therefore, SNP arrays harbor several advancements over traditional molecular methods to analyze genomic aberrations, such as cytogenetic analyses, fluorescence in situ hybridization or comparative genomic hybridization methods. Until now, SNP arrays have exclusively been used in experimental research and have enabled seminal new discoveries in many fields by identifying common genomic lesions underlying specific diseases, especially cancer. However, it is foreseeable that SNP arrays will also take up a position in routine diagnostic processes in the future. This review focuses on technical principles of the SNP array technology and their utilization to detect submicroscopic genomic and polymorphic markers associated with disease.
Collapse
Affiliation(s)
- Daniel Nowak
- Division of Hematology and Oncology, Cedars Sinai Medical Center, UCLA School of Medicine, Los Angeles, USA
| | | | | |
Collapse
|