1
|
Nemethova V, Babiakova P, Teglasova B, Uhelska L, Babelova A, Selc M, Jakic K, Mitrovsky O, Myslivcova D, Zackova M, Poturnayova A, Batorova A, Drgona L, Razga F. ASP210: a potent oligonucleotide-based inhibitor effective against TKI-resistant CML cells. Am J Physiol Cell Physiol 2024; 327:C184-C192. [PMID: 38826137 PMCID: PMC11371327 DOI: 10.1152/ajpcell.00188.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/13/2024] [Accepted: 05/25/2024] [Indexed: 06/04/2024]
Abstract
Clinical experience with tyrosine kinase inhibitors (TKIs) over the past two decades has shown that, despite the apparent therapeutic benefit, nearly 30% of patients with chronic myelogenous leukemia (CML) display primary resistance or intolerance to TKIs, and approximately 25% of those treated are forced to switch TKIs at least once during therapy due to acquired resistance. Safe and effective treatment modalities targeting leukemic clones that escape TKI therapy could hence be game changers in the professional management of these patients. Here, we aimed to investigate the efficacy of a novel therapeutic oligonucleotide of unconventional design, called ASP210, to reduce BCR-ABL1 mRNA levels in TKI-resistant CML cells, with the assumption of inducing their apoptosis. Imatinib- and dasatinib-resistant sublines of BCR-ABL1-positive MOLM-7 and CML-T1 cells were established and exposed to 0.25 and 2.5 µM ASP210 for 10 days. RT-qPCR showed a remarkable reduction of the target mRNA level by >99% after a single application. Cell viability was monitored daily by trypan blue staining. In response to the lack of driver oncoprotein BCR-ABL1, TKI-resistant CML cells underwent apoptosis regardless of the presence of the clinically relevant T315I mutation by day 5 after redosing with ASP210. The effect was selective for cancer cells, indicating a favorable safety profile for this therapeutic modality. Furthermore, the spontaneous uptake and high intracellular concentrations of ASP210 suggest its potential to be effective at relatively low doses. The present findings suggest that ASP210 is a promising therapeutic avenue for patients with CML who fail to respond to TKI therapy.NEW & NOTEWORTHY Effective treatment modalities targeting leukemic clones that escape tyrosine kinase inhibitor (TKI) therapy could be game changers in the professional management of patients displaying primary resistance, intolerance, or acquired resistance to TKIs. Although delivering authentic innovations today is more complex than ever, we developed a highly potent and safe oligonucleotide-based modality against BCR-ABL1 mRNA named ASP210 that effectively induces cell death in BCR-ABL1-positive TKI-resistant cells while sparing BCR-ABL1-negative healthy cells.
Collapse
MESH Headings
- Humans
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Drug Resistance, Neoplasm/drug effects
- Protein Kinase Inhibitors/pharmacology
- Fusion Proteins, bcr-abl/genetics
- Fusion Proteins, bcr-abl/antagonists & inhibitors
- Fusion Proteins, bcr-abl/metabolism
- Cell Line, Tumor
- Oligonucleotides/pharmacology
- Apoptosis/drug effects
- Imatinib Mesylate/pharmacology
- Imatinib Mesylate/therapeutic use
- Dasatinib/pharmacology
- Antineoplastic Agents/pharmacology
- Cell Survival/drug effects
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
Collapse
Affiliation(s)
- Veronika Nemethova
- Selecta Biotech SE, Bratislava, Slovakia
- Department of Hematology and Transfusiology, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | | | | | | | - Andrea Babelova
- Department of Nanobiology, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
- Centre for Advanced Materials Application, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Michal Selc
- Department of Nanobiology, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
- Centre for Advanced Materials Application, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Kristina Jakic
- Department of Nanobiology, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Ondrej Mitrovsky
- Department of Proteomics, Institute of Hematology and Blood Transfusion, Prague, Czech Republic
- Department of Biochemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Denisa Myslivcova
- Department of Proteomics, Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Marketa Zackova
- Department of Proteomics, Institute of Hematology and Blood Transfusion, Prague, Czech Republic
- Department of Condensed Matter Physics, Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic
| | - Alexandra Poturnayova
- Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Angelika Batorova
- Department of Hematology and Transfusiology, Faculty of Medicine, Comenius University, Bratislava, Slovakia
- Department of Hematology and Transfusiology, Faculty of Medicine, Medical School Comenius University, Slovak Medical University, University Hospital, Bratislava, Slovakia
| | - Lubos Drgona
- Department of Oncohematology, Comenius University and National Cancer Institute, Bratislava, Slovakia
| | - Filip Razga
- Selecta Biotech SE, Bratislava, Slovakia
- Department of Hematology and Transfusiology, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| |
Collapse
|
2
|
Vysochinskaya V, Zabrodskaya Y, Dovbysh O, Emelyanov A, Klimenko V, Knyazev N, Terterov I, Egorova M, Bogdanov A, Maslov M, Vasin A, Dubina M. Cell-penetrating peptide and cationic liposomes mediated siRNA delivery to arrest growth of chronic myeloid leukemia cells in vitro. Biochimie 2024; 221:1-12. [PMID: 38215931 DOI: 10.1016/j.biochi.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 01/09/2024] [Accepted: 01/09/2024] [Indexed: 01/14/2024]
Abstract
Gene silencing through RNA interference (RNAi) is a promising therapeutic approach for a wide range of disorders, including cancer. Non-viral gene therapy, using specific siRNAs against BCR-ABL1, can be a supportive or alternative measure to traditional chronic myeloid leukemia (CML) tyrosine kinase inhibitor (TKIs) therapies, given the prevalence of clinical TKI resistance. The main challenge for such approaches remains the development of the effective delivery system for siRNA tailored to the specific disease model. The purpose of this study was to examine and compare the efficiency of endosomolytic cell penetrating peptide (CPP) EB1 and PEG2000-decorated cationic liposomes composed of polycationic lipid 1,26-bis(cholest-5-en-3-yloxycarbonylamino)-7,11,16,20-tetraazahexacosane tetrahydrochloride (2Х3) and helper lipid 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) for anti-bcr-abl siRNA delivery into the K562 human CML cell line. We show that both EB1 and 2Х3-DOPE-DSPE-PEG2000 (0.62 % mol.) liposomes effectively deliver siRNA into K562 cells by endocytic mechanisms, and the use of liposomes leads to more effective inhibition of expression of the targeted gene (BCR-ABL1) and cancer cell proliferation. Taken together, these findings suggest that PEG-decorated cationic liposomes mediated siRNA delivery allows an effective antisense suppression of certain oncogenes, and represents a promising new class of therapies for CML.
Collapse
MESH Headings
- Humans
- Liposomes/chemistry
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/therapy
- Cell-Penetrating Peptides/chemistry
- Cell-Penetrating Peptides/pharmacology
- RNA, Small Interfering/genetics
- RNA, Small Interfering/administration & dosage
- Fusion Proteins, bcr-abl/genetics
- Fusion Proteins, bcr-abl/metabolism
- Fusion Proteins, bcr-abl/antagonists & inhibitors
- Cell Proliferation/drug effects
- Polyethylene Glycols/chemistry
- K562 Cells
- Phosphatidylethanolamines/chemistry
- Cations/chemistry
Collapse
Affiliation(s)
- Vera Vysochinskaya
- Smorodintsev Research Institute of Influenza, Russian Ministry of Health, 15/17 Ulitsa Prof. Popova, St. Petersburg, 197376, Russian Federation; Institute of Biomedical Systems and Biotechnology, Peter the Great Saint Petersburg Polytechnic University, 29 Ulitsa Polytechnicheskaya, St. Petersburg, 194064, Russian Federation.
| | - Yana Zabrodskaya
- Smorodintsev Research Institute of Influenza, Russian Ministry of Health, 15/17 Ulitsa Prof. Popova, St. Petersburg, 197376, Russian Federation; Institute of Biomedical Systems and Biotechnology, Peter the Great Saint Petersburg Polytechnic University, 29 Ulitsa Polytechnicheskaya, St. Petersburg, 194064, Russian Federation
| | - Olesya Dovbysh
- Institute of Biomedical Systems and Biotechnology, Peter the Great Saint Petersburg Polytechnic University, 29 Ulitsa Polytechnicheskaya, St. Petersburg, 194064, Russian Federation
| | - Anton Emelyanov
- First Pavlov State Medical University of St. Petersburg, L'va Tolstogo str. 6-8, St. Petersburg, 197022, Russian Federation
| | - Vladimir Klimenko
- Saint Petersburg Clinical Research and Practical Center of Specialized Types of Medical Care (Oncological) named after N.P., Napalkov, St. Petersburg, 197758, Russian Federation
| | - Nikolay Knyazev
- Saint Petersburg Clinical Research and Practical Center of Specialized Types of Medical Care (Oncological) named after N.P., Napalkov, St. Petersburg, 197758, Russian Federation
| | - Ivan Terterov
- ITMO University, School of Physics and Engineering, Kronverkskiy pr. 49, St. Petersburg, 197101, Russian Federation
| | - Marya Egorova
- Smorodintsev Research Institute of Influenza, Russian Ministry of Health, 15/17 Ulitsa Prof. Popova, St. Petersburg, 197376, Russian Federation
| | - Alexey Bogdanov
- Saint Petersburg Clinical Research and Practical Center of Specialized Types of Medical Care (Oncological) named after N.P., Napalkov, St. Petersburg, 197758, Russian Federation
| | - Michael Maslov
- Lomonosov Institute of Fine Chemical Technologies, MIREA-Russian Technological University, 86 Vernadsky Ave, Moscow, 119571, Russian Federation
| | - Andrey Vasin
- Smorodintsev Research Institute of Influenza, Russian Ministry of Health, 15/17 Ulitsa Prof. Popova, St. Petersburg, 197376, Russian Federation; Institute of Biomedical Systems and Biotechnology, Peter the Great Saint Petersburg Polytechnic University, 29 Ulitsa Polytechnicheskaya, St. Petersburg, 194064, Russian Federation
| | - Michael Dubina
- Russian Academy of Sciences, 14 Leninskiy pr., Moscow, 119991, Russian Federation
| |
Collapse
|
3
|
Vysochinskaya V, Dovbysh O, Gorshkov A, Brodskaia A, Dubina M, Vasin A, Zabrodskaya Y. Advancements and Future Prospects in Molecular Targeted and siRNA Therapies for Chronic Myeloid Leukemia. Biomolecules 2024; 14:644. [PMID: 38927048 PMCID: PMC11201692 DOI: 10.3390/biom14060644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024] Open
Abstract
Chronic myeloid leukemia (CML) is an oncological myeloproliferative disorder that accounts for 15 to 20% of all adult leukemia cases. The molecular basis of this disease lies in the formation of a chimeric oncogene BCR-ABL1. The protein product of this gene, p210 BCR-ABL1, exhibits abnormally high constitutive tyrosine kinase activity. Over recent decades, several targeted tyrosine kinase inhibitors (TKIs) directed against BCR-ABL1 have been developed and introduced into clinical practice. These inhibitors suppress BCR-ABL1 activity through various mechanisms. Furthermore, the advent of RNA interference technology has enabled the highly specific inhibition of BCR-ABL1 transcript expression using small interfering RNA (siRNA). This experimental evidence opens avenues for the development of a novel therapeutic strategy for CML, termed siRNA therapy. The review delves into molecular genetic mechanisms underlying the pathogenesis of CML, challenges in CML therapy, potential molecular targets for drug development, and the latest results from the application of siRNAs in in vitro and in vivo CML models.
Collapse
MESH Headings
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/therapy
- Humans
- RNA, Small Interfering/genetics
- RNA, Small Interfering/therapeutic use
- Fusion Proteins, bcr-abl/genetics
- Fusion Proteins, bcr-abl/antagonists & inhibitors
- Fusion Proteins, bcr-abl/metabolism
- Molecular Targeted Therapy
- Animals
- Protein Kinase Inhibitors/therapeutic use
- Protein Kinase Inhibitors/pharmacology
- RNA Interference
Collapse
Affiliation(s)
- Vera Vysochinskaya
- Institute of Biomedical Systems and Biotechnology, Peter the Great Saint Petersburg Polytechnic University, 29 Ulitsa Polytechnicheskaya, 194064 St. Petersburg, Russia (Y.Z.)
- Smorodintsev Research Institute of Influenza, Russian Ministry of Health, 15/17 Ulitsa Prof. Popova, 197376 St. Petersburg, Russia
| | - Olesya Dovbysh
- Institute of Biomedical Systems and Biotechnology, Peter the Great Saint Petersburg Polytechnic University, 29 Ulitsa Polytechnicheskaya, 194064 St. Petersburg, Russia (Y.Z.)
| | - Andrey Gorshkov
- Smorodintsev Research Institute of Influenza, Russian Ministry of Health, 15/17 Ulitsa Prof. Popova, 197376 St. Petersburg, Russia
- Almazov National Research Centre, Akkuratova str. 2, 197341 St. Petersburg, Russia
| | - Alexandra Brodskaia
- Institute of Biomedical Systems and Biotechnology, Peter the Great Saint Petersburg Polytechnic University, 29 Ulitsa Polytechnicheskaya, 194064 St. Petersburg, Russia (Y.Z.)
- Smorodintsev Research Institute of Influenza, Russian Ministry of Health, 15/17 Ulitsa Prof. Popova, 197376 St. Petersburg, Russia
| | - Michael Dubina
- Russian Academy of Sciences, 14 Leninskiy pr., 119991 Moscow, Russia
| | - Andrey Vasin
- Institute of Biomedical Systems and Biotechnology, Peter the Great Saint Petersburg Polytechnic University, 29 Ulitsa Polytechnicheskaya, 194064 St. Petersburg, Russia (Y.Z.)
- Smorodintsev Research Institute of Influenza, Russian Ministry of Health, 15/17 Ulitsa Prof. Popova, 197376 St. Petersburg, Russia
| | - Yana Zabrodskaya
- Institute of Biomedical Systems and Biotechnology, Peter the Great Saint Petersburg Polytechnic University, 29 Ulitsa Polytechnicheskaya, 194064 St. Petersburg, Russia (Y.Z.)
- Smorodintsev Research Institute of Influenza, Russian Ministry of Health, 15/17 Ulitsa Prof. Popova, 197376 St. Petersburg, Russia
| |
Collapse
|
4
|
Cao S, Lin C, Liang S, Tan CH, Er Saw P, Xu X. Enhancing Chemotherapy by RNA Interference. BIO INTEGRATION 2020. [DOI: 10.15212/bioi-2020-0003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Abstract Small interfering RNA (siRNA) has shown tremendous potential for treating human diseases in the past decades. siRNA can selectively silence a pathological pathway through the targeting and degradation of a specific mRNA, significantly reducing the off-target side
effects of anticancer drugs. However, the poor pharmacokinetics of RNA significantly restricted the clinical use of RNAi technology. In this review, we examine in-depth the siRNA therapeutics currently in preclinical and clinical trials, multiple challenges faced in siRNA therapy, feasibility
of siRNA treatment with anticancer drugs in combined with siRNA in nanoparticles or modified to be parental drugs, sequential therapy of siRNA treatment prior to drug treatment with siRNA and drugs loaded in nanoparticles. We focused on the combinatorial activation of apoptosis by different
pathways, namely Bcl-2, survivin, and Pgp protein. Taken together, this review would serve to establish the pathway of effective and efficient combination therapy of siRNA and drugs as a new strategy.
Collapse
Affiliation(s)
- Shuwen Cao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chunhao Lin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shunung Liang
- The First Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Baiyun District, Guangzhou, China
| | - Chee Hwee Tan
- The First Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Baiyun District, Guangzhou, China
| | - Phei Er Saw
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaoding Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
5
|
Huang T, Fu Y, Wang S, Xu M, Yin X, Zhou M, Wang X, Chen C. miR-96 acts as a tumor suppressor via targeting the BCR-ABL1 oncogene in chronic myeloid leukemia blastic transformation. Biomed Pharmacother 2019; 119:109413. [PMID: 31518872 DOI: 10.1016/j.biopha.2019.109413] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 08/15/2019] [Accepted: 08/29/2019] [Indexed: 12/26/2022] Open
Abstract
MicroRNA-mediated posttranscriptional regulation is an important epigenetic regulatory mechanism of gene expression, and its dysregulation is involved in the development and progression of a variety of malignancies, including chronic myeloid leukemia (CML). The BCR-ABL1 fusion gene is not only the initiating factor of CML, but it is also an important driving factor for blastic transformation. Tyrosine kinase inhibitors (TKIs) targeting BCR-ABL1 tyrosine kinase activity, represented by imatinib, are currently the first-line treatment for CML. However, due to primary resistance or secondary resistance caused by mutations in the BCR-ABL1 kinase domain, TKIs cannot completely prevent the progression of CML; thus, the study of BCR-ABL1 gene expression regulation is of great significance. In this study, bioinformatics analysis and our results showed that miR-96 could directly bind to the 3'UTR region of BCR-ABL1 to regulate fusion protein expression, thereby regulating its downstream signaling pathway activity. We also found that miR-96 was downregulated during the progression from the chronic phase (CML-CP) to the blast crisis (CML-BC). Downregulation of miR-96 could promote the proliferation and participate in the cell differentiation of CML-BC cells. Additionally, we found that the novel histone deacetylase drug chidamide and the DNA methyltransferase inhibitor decitabine could restore the low expression of miR-96 in CML cells, and there were two abnormal hypermethylated sites in the promoter region of miR-96 in CML, suggesting that its low expression might be at least partially regulated by epigenetic mechanisms. In addition, re-expression of miR-96 could increase the sensitivity of CML-BC cells to imatinib. Thus, miR-96 functions as a tumor suppressor, and re-expression of this microRNA might have therapeutic benefits in CML blastic transformation.
Collapse
Affiliation(s)
- Tao Huang
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, PR China; School of Medicine, Shandong University, Jinan, Shandong, PR China
| | - Yue Fu
- School of Medicine, Shandong University, Jinan, Shandong, PR China; Shandong Provincial Key Laboratory of Immunohematology, Qilu Hospital of Shandong University, Jinan, Shandong, PR China
| | - Siqi Wang
- Liaocheng People's Hospital, Liaocheng, Shandong, PR China
| | - Man Xu
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, PR China
| | - Xiaolin Yin
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, PR China
| | - Minran Zhou
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, PR China
| | - Xiaoming Wang
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, Shandong, PR China
| | - Chunyan Chen
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, PR China.
| |
Collapse
|
6
|
Saw PE, Song EW. siRNA therapeutics: a clinical reality. SCIENCE CHINA-LIFE SCIENCES 2019; 63:485-500. [PMID: 31054052 DOI: 10.1007/s11427-018-9438-y] [Citation(s) in RCA: 200] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 10/14/2018] [Indexed: 12/17/2022]
Abstract
Since the revolutionary discovery of RNA interference (RNAi), a remarkable progress has been achieved in understanding and harnessing gene silencing mechanism; especially in small interfering RNA (siRNA) therapeutics. Despite its tremendous potential benefits, major challenges in most siRNA therapeutics remains unchanged-safe, efficient and target oriented delivery of siRNA. Twenty years after the discovery of RNAi, siRNA therapeutics finally charts its way into clinics. As we journey through the decades, we reminisce the history of siRNA discovery and its application in a myriad of disease treatments. Herein, we highlight the breakthroughs in siRNA therapeutics, with special feature on the first FDA approved RNAi therapeutics Onpattro (Patisiran) and the consideration of effective siRNA delivery system focusing on current siRNA nanocarrier in clinical trials. Lastly, we present some challenges and multiple barriers that are yet to be fully overcome in siRNA therapeutics.
Collapse
Affiliation(s)
- Phei Er Saw
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Er-Wei Song
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China. .,Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China. .,Zhongshan School of Medicine, Breast Surgery, Guangzhou, 510080, China.
| |
Collapse
|
7
|
Kc R, Thapa B, Ubeda A, Jiang X, Uludağ H. BCR-Abl Silencing by siRNA: A Potent Approach to Sensitize Chronic Myeloid Leukemia Cells to Tyrosine Kinase Inhibitor Therapy. Stem Cells Dev 2019; 28:734-744. [PMID: 30585758 DOI: 10.1089/scd.2018.0196] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Nonviral gene therapy with specific short interfering RNAs (siRNAs) against BCR-Abl can be an alternative and/or supportive therapy of chronic myeloid leukemia (CML) with tyrosine kinase inhibitors (TKIs), given the often observed resistance to TKIs in clinical setting. In this study, we explored the feasibility of BCR-Abl siRNA therapy in CML K562 cells in vitro by employing a cationic polymer derived from cholesterol (Chol) grafted low-molecular weight polyethyleneimine (PEI). The first generation TKI imatinib upregulated the expression of BCR-Abl in K562 cells as expected. Delivery of BCR-Abl siRNA in both drug-sensitive and drug-resistant K562 cells significantly downregulated the mRNA levels in both cell types. Similarly, the BCR-Abl siRNA treatment arrested the growth of both drug-sensitive and drug-resistant K562 cells with no obvious differences despite a large difference in drug responsiveness. The BCR-Abl gene silencing in combination with TKI treatments exhibited significant synergism in drug-resistant K562 cells in generating substantial antileukemic activity, where the TKIs on their own were not effective. The effect of BCR-Abl siRNA and TKIs on non-CML cells (Jurkat and primary fibroblast) was negligible, indicating the specificity of the proposed therapy. This strategy can significantly overcome TKI resistance in CML cells, suggesting a feasible and effective treatment model for CML patients suffering from clinical resistances.
Collapse
Affiliation(s)
- Remant Kc
- 1 Department of Chemical & Materials Engineering, Faculty of Engineering, University of Alberta, Edmonton, Canada
| | - Bindu Thapa
- 2 Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada
| | - Anyeld Ubeda
- 3 Department of Biomedical Engineering, Faculty of Medicine, University of Alberta, Edmonton, Canada
| | - Xiaoyan Jiang
- 4 Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Hasan Uludağ
- 1 Department of Chemical & Materials Engineering, Faculty of Engineering, University of Alberta, Edmonton, Canada.,2 Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada.,3 Department of Biomedical Engineering, Faculty of Medicine, University of Alberta, Edmonton, Canada
| |
Collapse
|
8
|
Metabolic synthetic lethality in cancer therapy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1858:723-731. [PMID: 27956047 DOI: 10.1016/j.bbabio.2016.12.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 11/23/2016] [Accepted: 12/05/2016] [Indexed: 12/20/2022]
Abstract
Our understanding of cancer has recently seen a major paradigm shift resulting in it being viewed as a metabolic disorder, and altered cellular metabolism being recognised as a hallmark of cancer. This concept was spurred by the findings that the oncogenic mutations driving tumorigenesis induce a reprogramming of cancer cell metabolism that is required for unrestrained growth and proliferation. The recent discovery that mutations in key mitochondrial enzymes play a causal role in tumorigenesis suggested that dysregulation of metabolism could also be a driver of tumorigenesis. These mutations induce profound adaptive metabolic alterations that are a prerequisite for the survival of the mutated cells. Because these metabolic events are specific to cancer cells, they offer an opportunity to develop new therapies that specifically target tumour cells without affecting healthy tissue. Here, we will describe recent developments in metabolism-based cancer therapy, in particular focusing on the concept of metabolic synthetic lethality. This article is part of a Special Issue entitled Mitochondria in Cancer, edited by Giuseppe Gasparre, Rodrigue Rossignol and Pierre Sonveaux.
Collapse
|
9
|
Freire JM, Rego de Figueiredo I, Valle J, Veiga AS, Andreu D, Enguita FJ, Castanho MARB. siRNA-cell-penetrating peptides complexes as a combinatorial therapy against chronic myeloid leukemia using BV173 cell line as model. J Control Release 2016; 245:127-136. [PMID: 27890856 DOI: 10.1016/j.jconrel.2016.11.027] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 11/21/2016] [Accepted: 11/23/2016] [Indexed: 12/31/2022]
Abstract
Chronic myeloid leukemia (CML) is a myeloproliferative disorder caused by a single gene mutation, a reciprocal translocation that originates the Bcr-Abl gene with constitutive tyrosine kinase activity. As a monogenic disease, it is an optimum target for RNA silencing therapy. We developed a siRNA-based therapeutic approach in which the siRNA is delivered by pepM or pepR, two cell-penetrating peptides (CPPs) derived from the dengue virus capsid protein. These peptides have a dual role: siRNA delivery into cells and direct action as bioportides, i.e. intracellularly bioactive CPPs, targetting cancer-related signaling processes. Both pepM and pepR penetrate the positive Bcr-Abl+ Cell Line (BV173). Five in silico designed anti-Bcr-Abl siRNA were selected for in vitro analysis after thorough screening. The Bcr-Abl downregulation kinetics (48h to 168h) was followed by quantitative PCR. The bioportide action of the peptide vectors was evaluated by genome-wide microarray analysis and further validated by testing BV173 cell cycle and cell proliferation monitoring different genes involved in housekeeping/cell stress (RPL13A, HPRT1), cell proliferation (ki67), cell apoptosis (Caspase 3 and Caspase 9) and cell cycle steps (CDK2, CCDN2, CDKN1A). Assays with a commercial transfection agent were carried out for comparison purposes. Maximal Bcr-Abl gene knockdown was observed for one of the siRNA when delivered by pepM at 120h. Both pepM and pepR showed downregulation effects on proliferative CML-related signaling pathways having direct impact on BV173 cell cycle and proliferation, thus reinforcing the siRNA effect by acting as anticancer molecules. With this work we show the therapeutic potential of a CPP shuttle that combines intrinsic anticancer properties with the ability to deliver functional siRNA into CML cell models. By such combination, the pepM-siRNA conjugates lowered Bcr-Abl gene expression levels more extensively than conventional siRNA delivery technologies and perturbed leukemogenic cell homeostasis, hence revealing their potential as novel alternative scaffolds for CML therapy.
Collapse
Affiliation(s)
- João Miguel Freire
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal
| | - Inês Rego de Figueiredo
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal
| | - Javier Valle
- Department of Experimental and Health Sciences, Pompeu Fabra University, Barcelona Biomedical Research Park, E-08003 Barcelona, Spain
| | - Ana Salomé Veiga
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal
| | - David Andreu
- Department of Experimental and Health Sciences, Pompeu Fabra University, Barcelona Biomedical Research Park, E-08003 Barcelona, Spain
| | - Francisco J Enguita
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal.
| | - Miguel A R B Castanho
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal.
| |
Collapse
|
10
|
Hershkovitz-Rokah O, Modai S, Pasmanik-Chor M, Toren A, Shomron N, Raanani P, Shpilberg O, Granot G. Restoration of miR-424 suppresses BCR-ABL activity and sensitizes CML cells to imatinib treatment. Cancer Lett 2015; 360:245-56. [PMID: 25697481 DOI: 10.1016/j.canlet.2015.02.031] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 02/11/2015] [Accepted: 02/12/2015] [Indexed: 01/29/2023]
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs that participate in many biological processes by posttranscriptionally regulating gene expression. Dysregulation of miRNA expression has been shown to be typical of many neoplasms. Chronic myeloid leukemia (CML) is a disorder of hematopoietic stem cells carrying the Philadelphia (Ph) chromosome and an oncogenic BCR-ABL tyrosine kinase fusion gene. While the development of tyrosine kinase inhibitors (TKIs) like imatinib has revolutionized treatment of CML, it has become increasingly clear in recent years that TKI treatment alone will not be curative in many cases. Thus, further dissection of the regulatory networks that drive BCR-ABL-induced malignant transformation may help to identify other novel therapeutic approaches that complement TKI treatment. In this study we demonstrate that the expression of miR-424 is markedly low in CML cell lines and patient samples at time of diagnosis. With the aid of bioinformatics analysis we revealed a conserved target site for miR-424 in the 3'-untranslated region (UTR) of the ABL gene. Via luciferase assays, we showed that miR-424 directly targets BCR-ABL. Overexpression of miR-424 was shown to suppress proliferation and induce apoptosis of K562 cells as well as sensitize these cells to imatinib treatment. These findings strongly suggest that miR-424 acts as a tumor suppressor by downregulating BCR-ABL expression. Up-regulation of miR-424 in CML cells may therefore have a therapeutic effect against this disease.
Collapse
Affiliation(s)
- Oshrat Hershkovitz-Rokah
- Felsenstein Medical Research Center, Beilinson Hospital, Sackler School of Medicine, Tel Aviv University, Israel
| | - Shira Modai
- Department of Cell and Developmental Biology, Sackler School of Medicine, Tel Aviv University, Israel
| | | | - Amos Toren
- Department of Pediatric Hematology-Oncology, Safra Children's Hospital, Tel-Hashomer, Israel
| | - Noam Shomron
- Department of Cell and Developmental Biology, Sackler School of Medicine, Tel Aviv University, Israel
| | - Pia Raanani
- Felsenstein Medical Research Center, Beilinson Hospital, Sackler School of Medicine, Tel Aviv University, Israel; Institute of Hematology, Davidoff Cancer Center, Beilinson Hospital, Sackler School of Medicine, Tel Aviv University, Israel
| | - Ofer Shpilberg
- Institute of Hematology, Assuta Medical Center, Tel-Aviv, Israel
| | - Galit Granot
- Felsenstein Medical Research Center, Beilinson Hospital, Sackler School of Medicine, Tel Aviv University, Israel.
| |
Collapse
|
11
|
Koldehoff M. Targeting bcr-abl transcripts with siRNAs in an imatinib-resistant chronic myeloid leukemia patient: challenges and future directions. Methods Mol Biol 2015; 1218:277-292. [PMID: 25319658 DOI: 10.1007/978-1-4939-1538-5_17] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Within the recent years, RNA interference (RNAi) has become an almost standard method for in vitro knockdown of any target gene of interest. Now, one major focus is to further explore its potential therapeutic use. From the mechanism, it becomes clear that small interfering RNAs (siRNAs) play a pivotal role in triggering RNAi. This chapter describes the in vivo application of targeted non-virally delivered synthetic bcr-abl siRNA in a female patient with recurrent Philadelphia chromosome positive chronic myeloid leukemia (CML) resistant to imatinib (Y253F mutation) and chemotherapy after allogeneic hematopoietic stem cell transplantation. A remarkable inhibition of the overexpressed bcr-abl oncogene resulting in increased apoptosis of CML cells was found. In vivo siRNA application was well tolerated without any clinically adverse events. The current findings imply that the clinical application of synthetic siRNA is feasible and safe and has real potential for genetic-based therapies using synthetic non-viral carriers.
Collapse
MESH Headings
- Antineoplastic Agents/administration & dosage
- Apoptosis
- Benzamides/administration & dosage
- Drug Resistance, Neoplasm
- Fatty Acids, Monounsaturated/chemistry
- Fatty Acids, Monounsaturated/metabolism
- Female
- Fusion Proteins, bcr-abl/antagonists & inhibitors
- Fusion Proteins, bcr-abl/genetics
- Fusion Proteins, bcr-abl/metabolism
- Gene Expression Regulation, Leukemic
- Genetic Therapy/methods
- Hematopoietic Stem Cell Transplantation
- Humans
- Imatinib Mesylate
- K562 Cells
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/therapy
- Middle Aged
- Piperazines/administration & dosage
- Protein Kinase Inhibitors/administration & dosage
- Pyrimidines/administration & dosage
- Quaternary Ammonium Compounds/chemistry
- Quaternary Ammonium Compounds/metabolism
- RNA Interference
- RNA, Messenger/antagonists & inhibitors
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- Treatment Outcome
Collapse
Affiliation(s)
- Michael Koldehoff
- Faculty of Medicine, Department of Bone Marrow Transplantation, West German Cancer Center, University of Duisburg-Essen, Hufelandstr. 55, 45122, Essen, Germany,
| |
Collapse
|
12
|
Combination therapy with nilotinib for drug-sensitive and drug-resistant BCR-ABL-positive leukemia and other malignancies. Arch Toxicol 2014; 88:2233-42. [DOI: 10.1007/s00204-014-1385-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 10/08/2014] [Indexed: 11/26/2022]
|
13
|
Koldehoff M, Zakrzewski JL, Beelen DW, Elmaagacli AH. Additive antileukemia effects by GFI1B- and BCR–ABL-specific siRNA in advanced phase chronic myeloid leukemic cells. Cancer Gene Ther 2013; 20:421-7. [DOI: 10.1038/cgt.2013.31] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Accepted: 05/15/2013] [Indexed: 11/09/2022]
|
14
|
Inhibition of BCR/ABL protein expression by miR-203 sensitizes for imatinib mesylate. PLoS One 2013; 8:e61858. [PMID: 23613955 PMCID: PMC3627914 DOI: 10.1371/journal.pone.0061858] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 03/15/2013] [Indexed: 01/30/2023] Open
Abstract
Selective inhibition of BCR/ABL expression by RNA interference has been demonstrated as an effective strategy in CML treatment and a reversal to imatinib resistance. microRNAs (miRNAs) are small regulatory RNAs involved in post-transcriptional gene regulation. miR-203 is supposed to directly regulate ABL and BCR/ABL expression, however, the role of miR-203 in imatinib-resistant cells is not clear. Here, we report that overexpression of miR-203 in BaF3-BCR/ABL cells with T315I mutant inhibited cell growth and colony formation ability. Furthermore, miR-203 increased sensitivity to imatinib in BaF3-BCR/ABLT315I cells, thereby antagonizing the main mechanism of resistance to imatinib.
Collapse
|
15
|
Cleavage of BCR–ABL transcripts at the T315I point mutation by DNAzyme promotes apoptotic cell death in imatinib-resistant BCR–ABL leukemic cells. Leukemia 2013; 27:1650-8. [DOI: 10.1038/leu.2013.60] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Revised: 02/19/2013] [Accepted: 02/20/2013] [Indexed: 12/22/2022]
|
16
|
Landry B, Aliabadi HM, Samuel A, Gül-Uludağ H, Jiang X, Kutsch O, Uludağ H. Effective non-viral delivery of siRNA to acute myeloid leukemia cells with lipid-substituted polyethylenimines. PLoS One 2012; 7:e44197. [PMID: 22952927 PMCID: PMC3432090 DOI: 10.1371/journal.pone.0044197] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 07/30/2012] [Indexed: 11/23/2022] Open
Abstract
Use of small interfering RNA (siRNA) is a promising approach for AML treatment as the siRNA molecule can be designed to specifically target proteins that contribute to aberrant cell proliferation in this disease. However, a clinical-relevant means of delivering siRNA molecules must be developed, as the cellular delivery of siRNA is problematic. Here, we report amphiphilic carriers combining a cationic polymer (2 kDa polyethyleneimine, PEI2) with lipophilic moieties to facilitate intracellular delivery of siRNA to AML cell lines. Complete binding of siRNA by the designed carriers was achieved at a polymer:siRNA ratio of ∼0.5 and led to siRNA/polymer complexes of ∼100 nm size. While the native PEI2 did not display cytotoxicity on AML cell lines THP-1, KG-1 and HL-60, lipid-modification on PEI2 slightly increased the cytotoxicity, which was consistent with increased interaction of polymers with cell membranes. Cellular delivery of siRNA was dependent on the nature of lipid substituent and the extent of lipid substitution, and varied among the three AML cell lines used. Linoleic acid-substituted polymers performed best among the prepared polymers and gave a siRNA delivery equivalent to better performing commercial reagents. Using THP-1 cells and a reporter (GFP) and an endogenous (CXCR4) target, effective silencing of the chosen targets was achieved with 25 to 50 nM of siRNA concentrations, and without adversely affecting subsequent cell growth. We conclude that lipid-substituted PEI2 can serve as an effective delivery of siRNA to leukemic cells and could be employed in molecular therapy of leukemia.
Collapse
MESH Headings
- Cell Death
- Cell Line, Tumor
- Down-Regulation/genetics
- Gene Expression
- Gene Expression Regulation, Leukemic
- Gene Silencing
- Gene Transfer Techniques
- Genes, Reporter
- Green Fluorescent Proteins/metabolism
- Humans
- Indicators and Reagents
- Inhibitory Concentration 50
- Leukemia, Myeloid, Acute/metabolism
- Lipids/chemistry
- Microscopy, Electron, Transmission
- Polyethyleneimine/chemistry
- RNA, Small Interfering/metabolism
- Receptors, CXCR4/genetics
- Receptors, CXCR4/metabolism
- Serum/metabolism
- Temperature
- Trypan Blue
- Viruses/metabolism
Collapse
Affiliation(s)
- Breanne Landry
- Department of Chemical & Materials Engineering, Faculty of Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Hamidreza Montazeri Aliabadi
- Department of Chemical & Materials Engineering, Faculty of Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Anuja Samuel
- Department of Chemical & Materials Engineering, Faculty of Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Hilal Gül-Uludağ
- Department of Biomedical Engineering, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Xiaoyan Jiang
- Terry Fox Laboratories, BC Cancer Agency, Vancouver, British Columbia, Canada
| | - Olaf Kutsch
- Centre for AIDS Research, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Hasan Uludağ
- Department of Chemical & Materials Engineering, Faculty of Engineering, University of Alberta, Edmonton, Alberta, Canada
- Department of Biomedical Engineering, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
- * E-mail:
| |
Collapse
|
17
|
Medves S, Demoulin JB. Tyrosine kinase gene fusions in cancer: translating mechanisms into targeted therapies. J Cell Mol Med 2012; 16:237-48. [PMID: 21854543 PMCID: PMC3823288 DOI: 10.1111/j.1582-4934.2011.01415.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Tyrosine kinase fusion genes represent an important class of oncogenes associated with leukaemia and solid tumours. They are produced by translocations and other chromosomal rearrangements of a subset of tyrosine kinase genes, including ABL, PDGFRA, PDGFRB, FGFR1, SYK, RET, JAK2 and ALK. Based on recent findings, this review discusses the common mechanisms of activation of these fusion genes. Enforced oligomerization and inactivation of inhibitory domains are the two key processes that switch on the kinase domain. Activated tyrosine kinase fusions then signal via an array of transduction cascades, which are largely shared. In addition, the fusion partner provides a scaffold for the recruitment of proteins that contribute to signalling, protein stability, cellular localization and oligomerization. The expression level of the fusion protein is another critical parameter. Its transcription is controlled by the partner gene promoter, while translation may be regulated by miRNA. Several mechanisms also prevent the degradation of the oncoprotein by proteasomes and lysosomes, leading to its accumulation in cells. The selective inhibition of the tyrosine kinase activity by adenosine-5'-triphosphate competitors, such as imatinib, is a major therapeutic success. Imatinib induces remission in leukaemia patients that are positive for BCR-ABL or PDGFR fusions. Recently, crizotinib produced promising results in a subtype of lung cancers with ALK fusion. However, resistance was reported in both cases, partially due to mutations. To tackle this problem, additional levels of therapeutic interventions are suggested by the complex mechanisms of fusion tyrosine kinase activation. New approaches include allosteric inhibition and interfering with oligomerization or chaperones.
Collapse
Affiliation(s)
- Sandrine Medves
- De Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | | |
Collapse
|
18
|
Burke AC, Swords RT, Kelly K, Giles FJ. Current status of agents active against the T315I chronic myeloid leukemia phenotype. Expert Opin Emerg Drugs 2011; 16:85-103. [DOI: 10.1517/14728214.2011.531698] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
19
|
Spirin PV, Baskaran D, Orlova NN, Rulina AV, Nikitenko NA, Chernolovskaya EL, Zenkova MA, Vlassov VV, Rubtsov PM, Chumakov PM, Stocking C, Prassolov VS. Downregulation of activated leukemic oncogenes AML1-ETO and RUNX1(K83N) expression with RNA-interference. Mol Biol 2010. [DOI: 10.1134/s0026893310050146] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
20
|
Okabe S, Tauchi T, Ohyashiki K. Establishment of a new Philadelphia chromosome-positive acute lymphoblastic leukemia cell line (SK-9) with T315I mutation. Exp Hematol 2010; 38:765-72. [PMID: 20471447 DOI: 10.1016/j.exphem.2010.04.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2009] [Revised: 04/16/2010] [Accepted: 04/28/2010] [Indexed: 11/27/2022]
Abstract
OBJECTIVE The BCR-ABL mutation, T315I, is a common mutation and is resistant to both imatinib and second-generation Abl kinase inhibitors. Although strategies to overcome resistance-mediated T315I mutation may improve the survival of BCR-ABL-positive leukemia patients, there is little information on cell-based studies. MATERIALS AND METHODS We established a new human BCR-ABL-positive acute lymphoblastic leukemia (ALL) cell line, SK-9 with the T315I mutation, from the peripheral blood of a 36-year-old female patient. RESULTS Growth kinetic studies revealed an approximate population doubling time of 48 hours. The common B-cell phenotype is a feature of the SK-9 cell line. Cells have the Philadelphia chromosome (Ph) with many structural abnormalities, as well as the T315I mutation in the BCR-ABL gene. Insertion of SK-9 cells into athymic nude mice induced the formation of tumors in the lymph node that infiltrated into the spleen and bone marrow. We examined the drug sensitivity of imatinib, dasatinib, and nilotinib using a cell proliferation assay and an immunoblot assay. Cell proliferation did not decrease after imatinib, dasatinib, or nilotinib treatment as compared to the BCR-ABL-positive chronic myeloid leukemia cell line K562. Because phosphorylation of BCR-ABL and Crk-L did not decrease after imatinib and dasatinib treatment, it is suggested that SK-9 is resistant to imatinib, dasatinib, and nilotinib. CONCLUSION This cell line may provide a useful model for in vitro and in vivo cellular and molecular studies of BCR-ABL-positive ALL with T315I mutation.
Collapse
Affiliation(s)
- Seiichi Okabe
- First Department of Internal Medicine, Tokyo Medical University, Shinjuku-ku, Tokyo, Japan.
| | | | | |
Collapse
|