1
|
Yang G, Alarcon C, Chanfreau C, Lee NH, Friedman P, Nutescu E, Tuck M, O'Brien T, Gong L, Klein TE, Chang K, Tsao PS, Meltzer DO, Lynch JA, Tuteja S, Perera MA. Investigation of Genomic and Transcriptomic Risk Factors of Clopidogrel Response in African Americans. Clin Pharmacol Ther 2025; 117:1313-1324. [PMID: 39868839 PMCID: PMC11993291 DOI: 10.1002/cpt.3552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 12/17/2024] [Indexed: 01/28/2025]
Abstract
Clopidogrel, an anti-platelet drug, is used to prevent thrombosis after percutaneous coronary intervention. Clopidogrel resistance results in recurring ischemic events, with African Americans (AA) suffering disproportionately. The aim of this study was to discover novel biomarkers of clopidogrel resistance in African Americans using genome and transcriptome data. We conducted a genome-wide association study (GWAS), including local ancestry adjustment, in 141 AA on clopidogrel to identify genetic associations with high on-treatment platelet reactivity (HTPR), with validation of genome-wide significant and suggestive loci in an independent cohort of AA clopidogrel patients (N = 823) from the Million Veteran's Program (MVP) along with in vitro functional analysis. We performed differential gene expression (DGE) analysis in whole blood to identify transcriptomic predictors of response, followed by functional validation in MEG-01 cells. GWAS identified one signal on Chromosome 7 as significantly associated with increasing risk of HTPR. The lead single-nucleotide polymorphism (SNP), rs7807369, within thrombospondin 7A (THSD7A) was associated with an increased risk of HTPR (odds ratio (OR) = 4.02, P = 4.56 × 10-9). Higher THSD7A gene expression was associated with HTPR in an independent cohort of clopidogrel-treated patients (P = 0.004) and carrying a risk allele showed increased gene expression in primary human endothelial cells. Notably, the CYP2C19*2 variants showed no association with clopidogrel response in the discovery or MVP cohorts. DGE analysis identified an association with decreased LAIR1 and AP3B2 expression to HTPR. LAIR1 knockdown in MEG-01 cells resulted in increased expression of SYK and AKT1, suggesting an inhibitory role of LAIR1 in the Glycoprotein VI pathway. In summary, these findings suggest that other variants and genes outside of CYP2C19 star alleles play an important role in clopidogrel response in AA.
Collapse
Affiliation(s)
- Guang Yang
- Department of Pharmacology, Center for Pharmacogenomics, Feinberg School of MedicineNorthwestern UniversityChicagoIllinoisUSA
- Center for Applied BioinformaticsSt. Jude Children's Research HospitalMemphisTennesseeUSA
| | - Cristina Alarcon
- Department of Pharmacology, Center for Pharmacogenomics, Feinberg School of MedicineNorthwestern UniversityChicagoIllinoisUSA
| | - Catherine Chanfreau
- VA Informatics and Computing Infrastructure (VINCI)VA Salt Lake City Health Care SystemSalt Lake CityUtahUSA
| | - Norman H. Lee
- Department of Pharmacology and PhysiologyGeorge Washington UniversityWashingtonDCUSA
- GW Cancer CenterGeorge Washington UniversityWashington, DCUSA
| | - Paula Friedman
- Department of Pharmacology, Center for Pharmacogenomics, Feinberg School of MedicineNorthwestern UniversityChicagoIllinoisUSA
| | - Edith Nutescu
- Department of Pharmacy PracticeRetzky College of Pharmacy, University of Illinois ChicagoChicagoIllinoisUSA
| | - Matthew Tuck
- Washington DC VA Medical CenterWashingtonDCUSA
- The George Washington UniversityWashingtonDCUSA
| | - Travis O'Brien
- Department of Pharmacology and PhysiologyGeorge Washington UniversityWashingtonDCUSA
| | - Li Gong
- Department of Biomedical Data ScienceStanford UniversityStanfordCaliforniaUSA
| | - Teri E. Klein
- Department of Biomedical Data Science and Department of MedicineStanford UniversityStanfordCaliforniaUSA
| | - Kyong‐Mi Chang
- Corporal Michael J. Crescenz VA Medical CenterPhiladelphiaPennsylvaniaUSA
- University of Pennsylvania Perelman School of MedicinePhiladelphiaPennsylvaniaUSA
| | - Philip S. Tsao
- VA Palo Alto Healthcare System and Stanford UniversityPalo AltoCaliforniaUSA
| | - David O. Meltzer
- Section of Hospital Medicine, Department of MedicineUniversity of ChicagoChicagoIllinoisUSA
| | - Julie A. Lynch
- VA Informatics and Computing Infrastructure (VINCI)VA Salt Lake City Health Care SystemSalt Lake CityUtahUSA
| | | | - Sony Tuteja
- Corporal Michael J. Crescenz VA Medical CenterPhiladelphiaPennsylvaniaUSA
- University of Pennsylvania Perelman School of MedicinePhiladelphiaPennsylvaniaUSA
| | - Minoli A. Perera
- Department of Pharmacology, Center for Pharmacogenomics, Feinberg School of MedicineNorthwestern UniversityChicagoIllinoisUSA
| |
Collapse
|
2
|
Yang G, Alarcon C, Chanfreau C, Lee NH, Friedman P, Nutescu E, Tuck M, O'Brien T, Gong L, Klein TE, Chang KM, Tsao PS, Meltzer DO, Tuteja S, Perera MA. Investigation of genomic and transcriptomic risk factors in clopidogrel response in African Americans. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.12.05.23299140. [PMID: 38106031 PMCID: PMC10723512 DOI: 10.1101/2023.12.05.23299140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Clopidogrel, an anti-platelet drug, used to prevent thrombosis after percutaneous coronary intervention. Clopidogrel resistance results in recurring ischemic episodes, with African Americans suffering disproportionately. The aim of this study was to identify biomarkers of clopidogrel resistance in African American patients. We conducted a genome-wide association study, including local ancestry adjustment, in 141 African Americans on clopidogrel to identify associations with high on-treatment platelet reactivity (HTPR). We validated genome-wide and suggestive hits in an independent cohort of African American clopidogrel patients (N = 823) from the Million Veteran's Program (MVP) along with in vitro functional follow up. We performed differential gene expression (DGE) analysis in whole blood with functional follow-up in MEG-01 cells. We identified rs7807369, within thrombospondin 7A (THSD7A), as significantly associated with increasing risk of HTPR (p = 4.56 × 10-9). Higher THSD7A expression was associated with HTPR in an independent gene expression cohort of clopidogrel treated patients (p = 0.004) and supported by increased gene expression on THSD7A in primary human endothelial cells carrying the risk haplotype. Two SNPs (rs1149515 and rs191786) were validated in the MVP cohort. DGE analysis identified an association with decreased LAIR1 expression to HTPR. LAIR1 knockdown in a MEG-01 cells resulted in increased expression of SYK and AKT1, suggesting an inhibitory role of LAIR1 in the Glycoprotein VI pathway. Notably, the CYP2C19 variants showed no association with clopidogrel response in the discovery or MVP cohorts. In summary, these finding suggest that other variants outside of CYP2C19 star alleles play an important role in clopidogrel response in African Americans.
Collapse
Affiliation(s)
- Guang Yang
- Department of Pharmacology, Center for Pharmacogenomics, Fienberg School of Medicine, Northwestern University, Chicago IL
| | - Cristina Alarcon
- Department of Pharmacology, Center for Pharmacogenomics, Fienberg School of Medicine, Northwestern University, Chicago IL
| | | | - Norman H Lee
- Department of Pharmacology and Physiology, George Washington University, 2300 I Street NW, Washington, DC, 20037, USA
| | - Paula Friedman
- Department of Pharmacology, Center for Pharmacogenomics, Fienberg School of Medicine, Northwestern University, Chicago IL
| | - Edith Nutescu
- Department of Pharmacy Practice and Center for Pharmacoepidemiology and Pharmacoeconomic Research, University of Illinois Chicago, College of Pharmacy, Chicago, IL
| | - Matthew Tuck
- Washington DC VA Medical Center, Washington, DC and The George Washington University, Washington, DC
| | - Travis O'Brien
- Department of Pharmacology and Physiology, George Washington University, 2300 I Street NW, Washington, DC, 20037, USA
| | - Li Gong
- Department of Biomedical Data Science, Stanford University, Stanford, CA
| | - Teri E Klein
- Department of Biomedical Data Science and Department of Medicine, Stanford University, Stanford, CA
| | - Kyong-Mi Chang
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Philip S Tsao
- VA Palo Alto Healthcare System and Stanford University, Palo Alto, CA
| | - David O Meltzer
- Section of Hospital Medicine, Department of Medicine, University of Chicago, Chicago, IL
| | - Sony Tuteja
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Minoli A Perera
- Department of Pharmacology, Center for Pharmacogenomics, Fienberg School of Medicine, Northwestern University, Chicago IL
| |
Collapse
|
3
|
Tripathi AS, Zaki MEA, Al-Hussain SA, Dubey BK, Singh P, Rind L, Yadav RK. Material matters: exploring the interplay between natural biomaterials and host immune system. Front Immunol 2023; 14:1269960. [PMID: 37936689 PMCID: PMC10627157 DOI: 10.3389/fimmu.2023.1269960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/02/2023] [Indexed: 11/09/2023] Open
Abstract
Biomaterials are widely used for various medical purposes, for instance, implants, tissue engineering, medical devices, and drug delivery systems. Natural biomaterials can be obtained from proteins, carbohydrates, and cell-specific sources. However, when these biomaterials are introduced into the body, they trigger an immune response which may lead to rejection and failure of the implanted device or tissue. The immune system recognizes natural biomaterials as foreign substances and triggers the activation of several immune cells, for instance, macrophages, dendritic cells, and T cells. These cells release pro-inflammatory cytokines and chemokines, which recruit other immune cells to the implantation site. The activation of the immune system can lead to an inflammatory response, which can be beneficial or detrimental, depending on the type of natural biomaterial and the extent of the immune response. These biomaterials can also influence the immune response by modulating the behavior of immune cells. For example, biomaterials with specific surface properties, such as charge and hydrophobicity, can affect the activation and differentiation of immune cells. Additionally, biomaterials can be engineered to release immunomodulatory factors, such as anti-inflammatory cytokines, to promote a tolerogenic immune response. In conclusion, the interaction between biomaterials and the body's immune system is an intricate procedure with potential consequences for the effectiveness of therapeutics and medical devices. A better understanding of this interplay can help to design biomaterials that promote favorable immune responses and minimize adverse reactions.
Collapse
Affiliation(s)
| | - Magdi E A Zaki
- Department of Chemistry, Faculty of Science, Imam Mohammad lbn Saud Islamic University, Riyadh, Saudi Arabia
| | - Sami A Al-Hussain
- Department of Chemistry, Faculty of Science, Imam Mohammad lbn Saud Islamic University, Riyadh, Saudi Arabia
| | - Bidhyut Kumar Dubey
- Department of Pharmaceutical Chemistry, Era College of Pharmacy, Era University, Lucknow, India
| | - Prabhjot Singh
- Department of Pharmacology, Era College of Pharmacy, Era University, Lucknow, India
| | - Laiba Rind
- Department of Pharmacology, Era College of Pharmacy, Era University, Lucknow, India
| | - Rajnish Kumar Yadav
- Department of Pharmacology, Era College of Pharmacy, Era University, Lucknow, India
| |
Collapse
|
4
|
Abnormal platelet immunophenotypes and percentage of giant platelets in myelodysplastic syndrome: A pilot study. PLoS One 2022; 17:e0278040. [PMID: 36409726 PMCID: PMC9678267 DOI: 10.1371/journal.pone.0278040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 11/08/2022] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVES Myelodysplastic syndrome (MDS) is a heterogeneous hematopoietic stem cell disorder with thrombocytopenia. Flow cytometric immunophenotyping of blood cells has been instrumental in diagnosis as co-criteria, but the data regarding platelets remains lacking. This study aims to determine if there is a difference in surface antigen levels on platelets by comparing surface antigen levels in MDS patients and healthy control subjects. Concurrently, as flow cytometric gating can reveal the diameter of cells, this study will investigate differences in giant platelet percentage by comparing these percentages in high- and low-risk MDS patients. STUDY DESIGN Twenty newly diagnosed MDS patients were enrolled in this study. Platelet surface antigen levels were determined by measuring the binding capacity of antibodies with flow cytometry. RESULTS Platelets of MDS patients were shown to have a lower level of CD61 and higher levels of CD31 and CD36 than healthy controls. Judged by forward scatter (FSC), MDS patients' platelets appeared to be larger than those of healthy control subjects, whereas the MFI adjusted by diameter (MFI/FSC ratio) of CD31, CD41a, CD42a, CD42b and CD61 on platelets were lower in MDS patients than in healthy control subjects. There was a significant quantity of giant platelets found in MDS patients, and the high-risk MDS patients tended to have a higher percentage of giant platelets than low-risk patients. Conclusions: All the results indicate that MDS patients exhibit a lower antigen presentation (MFI) adjusted by diameter on platelets than healthy controls and the giant platelets detected by flow cytometry might correlate with the condition of MDS.
Collapse
|
5
|
Liu C, Wu D, Xia M, Li M, Sun Z, Shen B, Liu Y, Jiang E, Wang H, Su P, Shi L, Xiao Z, Zhu X, Zhou W, Wang Q, Gao X, Cheng T, Zhou J. Characterization of Cellular Heterogeneity and an Immune Subpopulation of Human Megakaryocytes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2100921. [PMID: 34042332 PMCID: PMC8336508 DOI: 10.1002/advs.202100921] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 04/22/2021] [Indexed: 05/09/2023]
Abstract
Megakaryocytes (MKs) and their progeny platelets function in a variety of biological processes including coagulation, hemostasis, inflammation, angiogenesis, and innate immunity. However, the divergent developmental and cellular landscape of adult MKs remains mysterious. Here, by deriving the single-cell transcriptomic profiling of MKs from human adult bone marrow (BM), cellular heterogeneity within MKs is unveiled and an MK subpopulation with high enrichment of immune-associated genes is identified. By performing the dynamic single-cell transcriptomic landscape of human megakaryopoiesis in vitro, it is found that the immune signatures of MKs can be traced back to the progenitor stage. Furthermore, two surface markers, CD148 and CD48, are identified for mature MKs with immune characteristics. At the functional level, these CD148+ CD48+ MKs can respond rapidly to immune stimuli both in vitro and in vivo, exhibit high-level expression of immune receptors and mediators, and may function as immune-surveillance cells. The findings uncover the cellular heterogeneity and a novel immune subset of human adult MKs and should greatly facilitate the understanding of the divergent functions of MKs under physiological and pathological conditions.
Collapse
Affiliation(s)
- Cuicui Liu
- State Key Laboratory of Experimental HematologyNational Clinical Research Center for Blood DiseasesInstitute of Hematology and Blood Diseases HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeTianjin300020China
- Center for Stem Cell MedicineChinese Academy of Medical Sciences and Department of Stem Cells and Regenerative MedicinePeking Union Medical CollegeTianjin300020China
| | - Dan Wu
- State Key Laboratory of Experimental HematologyNational Clinical Research Center for Blood DiseasesInstitute of Hematology and Blood Diseases HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeTianjin300020China
- Center for Stem Cell MedicineChinese Academy of Medical Sciences and Department of Stem Cells and Regenerative MedicinePeking Union Medical CollegeTianjin300020China
| | - Meijuan Xia
- State Key Laboratory of Experimental HematologyNational Clinical Research Center for Blood DiseasesInstitute of Hematology and Blood Diseases HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeTianjin300020China
- Center for Stem Cell MedicineChinese Academy of Medical Sciences and Department of Stem Cells and Regenerative MedicinePeking Union Medical CollegeTianjin300020China
| | - Minmin Li
- State Key Laboratory of Experimental HematologyNational Clinical Research Center for Blood DiseasesInstitute of Hematology and Blood Diseases HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeTianjin300020China
- Center for Stem Cell MedicineChinese Academy of Medical Sciences and Department of Stem Cells and Regenerative MedicinePeking Union Medical CollegeTianjin300020China
| | - Zhiqiang Sun
- State Key Laboratory of Experimental HematologyNational Clinical Research Center for Blood DiseasesInstitute of Hematology and Blood Diseases HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeTianjin300020China
- Center for Stem Cell MedicineChinese Academy of Medical Sciences and Department of Stem Cells and Regenerative MedicinePeking Union Medical CollegeTianjin300020China
| | - Biao Shen
- State Key Laboratory of Experimental HematologyNational Clinical Research Center for Blood DiseasesInstitute of Hematology and Blood Diseases HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeTianjin300020China
- Center for Stem Cell MedicineChinese Academy of Medical Sciences and Department of Stem Cells and Regenerative MedicinePeking Union Medical CollegeTianjin300020China
| | - Yiying Liu
- State Key Laboratory of Experimental HematologyNational Clinical Research Center for Blood DiseasesInstitute of Hematology and Blood Diseases HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeTianjin300020China
- Center for Stem Cell MedicineChinese Academy of Medical Sciences and Department of Stem Cells and Regenerative MedicinePeking Union Medical CollegeTianjin300020China
| | - Erlie Jiang
- State Key Laboratory of Experimental HematologyNational Clinical Research Center for Blood DiseasesInstitute of Hematology and Blood Diseases HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeTianjin300020China
- Center for Stem Cell MedicineChinese Academy of Medical Sciences and Department of Stem Cells and Regenerative MedicinePeking Union Medical CollegeTianjin300020China
| | - Hongtao Wang
- State Key Laboratory of Experimental HematologyNational Clinical Research Center for Blood DiseasesInstitute of Hematology and Blood Diseases HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeTianjin300020China
- Center for Stem Cell MedicineChinese Academy of Medical Sciences and Department of Stem Cells and Regenerative MedicinePeking Union Medical CollegeTianjin300020China
| | - Pei Su
- State Key Laboratory of Experimental HematologyNational Clinical Research Center for Blood DiseasesInstitute of Hematology and Blood Diseases HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeTianjin300020China
- Center for Stem Cell MedicineChinese Academy of Medical Sciences and Department of Stem Cells and Regenerative MedicinePeking Union Medical CollegeTianjin300020China
| | - Lihong Shi
- State Key Laboratory of Experimental HematologyNational Clinical Research Center for Blood DiseasesInstitute of Hematology and Blood Diseases HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeTianjin300020China
- Center for Stem Cell MedicineChinese Academy of Medical Sciences and Department of Stem Cells and Regenerative MedicinePeking Union Medical CollegeTianjin300020China
| | - Zhijian Xiao
- State Key Laboratory of Experimental HematologyNational Clinical Research Center for Blood DiseasesInstitute of Hematology and Blood Diseases HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeTianjin300020China
- Center for Stem Cell MedicineChinese Academy of Medical Sciences and Department of Stem Cells and Regenerative MedicinePeking Union Medical CollegeTianjin300020China
| | - Xiaofan Zhu
- State Key Laboratory of Experimental HematologyNational Clinical Research Center for Blood DiseasesInstitute of Hematology and Blood Diseases HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeTianjin300020China
- Center for Stem Cell MedicineChinese Academy of Medical Sciences and Department of Stem Cells and Regenerative MedicinePeking Union Medical CollegeTianjin300020China
| | - Wen Zhou
- Key Laboratory of Carcinogenesis and Cancer InvasionMinistry of EducationKey Laboratory of CarcinogenesisNational Health and Family Planning CommissionCancer Research InstituteSchool of Basic Medical ScienceCentral South UniversityChangsha410078China
| | - Qianfei Wang
- Key Laboratory of Genomic and Precision MedicineCollaborative Innovation Center of Genetics and DevelopmentBeijing Institute of GenomicsChinese Academy of SciencesBeijing100101China
| | - Xin Gao
- State Key Laboratory of Experimental HematologyNational Clinical Research Center for Blood DiseasesInstitute of Hematology and Blood Diseases HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeTianjin300020China
- Center for Stem Cell MedicineChinese Academy of Medical Sciences and Department of Stem Cells and Regenerative MedicinePeking Union Medical CollegeTianjin300020China
| | - Tao Cheng
- State Key Laboratory of Experimental HematologyNational Clinical Research Center for Blood DiseasesInstitute of Hematology and Blood Diseases HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeTianjin300020China
- Center for Stem Cell MedicineChinese Academy of Medical Sciences and Department of Stem Cells and Regenerative MedicinePeking Union Medical CollegeTianjin300020China
| | - Jiaxi Zhou
- State Key Laboratory of Experimental HematologyNational Clinical Research Center for Blood DiseasesInstitute of Hematology and Blood Diseases HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeTianjin300020China
- Center for Stem Cell MedicineChinese Academy of Medical Sciences and Department of Stem Cells and Regenerative MedicinePeking Union Medical CollegeTianjin300020China
| |
Collapse
|
6
|
Krisch L, Brachtl G, Hochmann S, Andrade AC, Oeller M, Ebner-Peking P, Schallmoser K, Strunk D. Improving Human Induced Pluripotent Stem Cell-Derived Megakaryocyte Differentiation and Platelet Production. Int J Mol Sci 2021; 22:8224. [PMID: 34360992 PMCID: PMC8348107 DOI: 10.3390/ijms22158224] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/22/2021] [Accepted: 07/28/2021] [Indexed: 11/17/2022] Open
Abstract
Several protocols exist for generating megakaryocytes (MKs) and platelets from human induced pluripotent stem cells (hiPSCs) with limited efficiency. We observed previously that mesoderm induction improved endothelial and stromal differentiation. We, therefore, hypothesized that a protocol modification prior to hemogenic endothelial cell (HEC) differentiation will improve MK progenitor (MKP) production and increase platelet output. We further asked if basic media composition affects MK maturation. In an iterative process, we first compared two HEC induction protocols. We found significantly more HECs using the modified protocol including activin A and CHIR99021, resulting in significantly increased MKs. MKs released comparable platelet amounts irrespective of media conditions. In a final validation phase, we obtained five-fold more platelets per hiPSC with the modified protocol (235 ± 84) compared to standard conditions (51 ± 15; p < 0.0001). The regenerative potency of hiPSC-derived platelets was compared to adult donor-derived platelets by profiling angiogenesis-related protein expression. Nineteen of 24 angiogenesis-related proteins were expressed equally, lower or higher in hiPSC-derived compared to adult platelets. The hiPSC-platelet's coagulation hyporeactivity compared to adult platelets was confirmed by thromboelastometry. Further stepwise improvement of hiPSC-platelet production will, thus, permit better identification of platelet-mediated regenerative mechanisms and facilitate manufacture of sufficient amounts of functional platelets for clinical application.
Collapse
Affiliation(s)
- Linda Krisch
- Cell Therapy Institute, Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University (PMU), 5020 Salzburg, Austria; (L.K.); (G.B.); (S.H.); (A.C.A.); (P.E.-P.)
- Department of Transfusion Medicine and SCI-TReCS, Paracelsus Medical University (PMU), 5020 Salzburg, Austria; (M.O.); (K.S.)
| | - Gabriele Brachtl
- Cell Therapy Institute, Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University (PMU), 5020 Salzburg, Austria; (L.K.); (G.B.); (S.H.); (A.C.A.); (P.E.-P.)
| | - Sarah Hochmann
- Cell Therapy Institute, Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University (PMU), 5020 Salzburg, Austria; (L.K.); (G.B.); (S.H.); (A.C.A.); (P.E.-P.)
| | - André Cronemberger Andrade
- Cell Therapy Institute, Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University (PMU), 5020 Salzburg, Austria; (L.K.); (G.B.); (S.H.); (A.C.A.); (P.E.-P.)
| | - Michaela Oeller
- Department of Transfusion Medicine and SCI-TReCS, Paracelsus Medical University (PMU), 5020 Salzburg, Austria; (M.O.); (K.S.)
| | - Patricia Ebner-Peking
- Cell Therapy Institute, Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University (PMU), 5020 Salzburg, Austria; (L.K.); (G.B.); (S.H.); (A.C.A.); (P.E.-P.)
| | - Katharina Schallmoser
- Department of Transfusion Medicine and SCI-TReCS, Paracelsus Medical University (PMU), 5020 Salzburg, Austria; (M.O.); (K.S.)
| | - Dirk Strunk
- Cell Therapy Institute, Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University (PMU), 5020 Salzburg, Austria; (L.K.); (G.B.); (S.H.); (A.C.A.); (P.E.-P.)
| |
Collapse
|
7
|
Montenont E, Bhatlekar S, Jacob S, Kosaka Y, Manne BK, Lee O, Parra-Izquierdo I, Tugolukova E, Tolley ND, Rondina MT, Bray PF, Rowley JW. CRISPR-edited megakaryocytes for rapid screening of platelet gene functions. Blood Adv 2021; 5:2362-2374. [PMID: 33944898 PMCID: PMC8114553 DOI: 10.1182/bloodadvances.2020004112] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/09/2021] [Indexed: 01/07/2023] Open
Abstract
Human anucleate platelets cannot be directly modified using traditional genetic approaches. Instead, studies of platelet gene function depend on alternative models. Megakaryocytes (the nucleated precursor to platelets) are the nearest cell to platelets in origin, structure, and function. However, achieving consistent genetic modifications in primary megakaryocytes has been challenging, and the functional effects of induced gene deletions on human megakaryocytes for even well-characterized platelet genes (eg, ITGA2B) are unknown. Here we present a rapid and systematic approach to screen genes for platelet functions in CD34+ cell-derived megakaryocytes called CRIMSON (CRISPR-edited megakaryocytes for rapid screening of platelet gene functions). By using CRISPR/Cas9, we achieved efficient nonviral gene editing of a panel of platelet genes in megakaryocytes without compromising megakaryopoiesis. Gene editing induced loss of protein in up to 95% of cells for platelet function genes GP6, RASGRP2, and ITGA2B; for the immune receptor component B2M; and for COMMD7, which was previously associated with cardiovascular disease and platelet function. Gene deletions affected several select responses to platelet agonists in megakaryocytes in a manner largely consistent with those expected for platelets. Deletion of B2M did not significantly affect platelet-like responses, whereas deletion of ITGA2B abolished agonist-induced integrin activation and spreading on fibrinogen without affecting the translocation of P-selectin. Deletion of GP6 abrogated responses to collagen receptor agonists but not thrombin. Deletion of RASGRP2 impaired functional responses to adenosine 5'-diphosphate (ADP), thrombin, and collagen receptor agonists. Deletion of COMMD7 significantly impaired multiple responses to platelet agonists. Together, our data recommend CRIMSON for rapid evaluation of platelet gene phenotype associations.
Collapse
Affiliation(s)
- Emilie Montenont
- Molecular Medicine Program, The University of Utah, Salt Lake City, UT
| | - Seema Bhatlekar
- Molecular Medicine Program, The University of Utah, Salt Lake City, UT
| | - Shancy Jacob
- Molecular Medicine Program, The University of Utah, Salt Lake City, UT
| | - Yasuhiro Kosaka
- Molecular Medicine Program, The University of Utah, Salt Lake City, UT
| | - Bhanu K Manne
- Molecular Medicine Program, The University of Utah, Salt Lake City, UT
| | - Olivia Lee
- Molecular Medicine Program, The University of Utah, Salt Lake City, UT
| | | | - Emilia Tugolukova
- Molecular Medicine Program, The University of Utah, Salt Lake City, UT
| | - Neal D Tolley
- Molecular Medicine Program, The University of Utah, Salt Lake City, UT
| | - Matthew T Rondina
- Molecular Medicine Program, The University of Utah, Salt Lake City, UT
- Department of Internal Medicine
- George E. Wahlen Department of Veterans Affairs Medical Center
- Department of Internal Medicine and Geriatric Research and Education Clinical Center, and
- Department of Pathology, The University of Utah, Salt Lake City, UT
| | - Paul F Bray
- Molecular Medicine Program, The University of Utah, Salt Lake City, UT
- Department of Internal Medicine
| | - Jesse W Rowley
- Molecular Medicine Program, The University of Utah, Salt Lake City, UT
- Department of Internal Medicine
| |
Collapse
|
8
|
Soriano Jerez EM, Gibbins JM, Hughes CE. Targeting platelet inhibition receptors for novel therapies: PECAM-1 and G6b-B. Platelets 2021; 32:761-769. [PMID: 33646086 DOI: 10.1080/09537104.2021.1882668] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
While current oral antiplatelet therapies benefit many patients, they deregulate the hemostatic balance leaving patients at risk of systemic side-effects such as hemorrhage. Dual antiplatelet treatment is the standard approach, combining aspirin with P2Y12 blockers. These therapies mainly target autocrine activation mechanisms (TxA2, ADP) and, more recently, the use of thrombin or thrombin receptor antagonists have been added to the available approaches. Recent efforts to develop new classes of anti-platelet drugs have begun to focus on primary platelet activation pathways such as through the immunoreceptor tyrosine-based activation motif (ITAM)-containing collagen receptor GPVI/FcRγ-chain complex. There are already encouraging results from targeting GPVI, with reduced aggregation and smaller arterial thrombi, without major bleeding complications, likely due to overlapping activation signaling pathways with other receptors such as the GPIb-V-IX complex. An alternative approach to reduce platelet activation could be to inhibit this signaling pathway by targeting the inhibitory pathways intrinsic to platelets. Stimulation of endogenous negative modulators could provide more specific inhibition of platelet function, but is this feasible? In this review, we explore the potential of the two major platelet immunoreceptor tyrosine-based inhibitory motif (ITIM)-containing inhibitory receptors, G6b-B and PECAM-1, as antithrombotic targets.
Collapse
Affiliation(s)
- Eva M Soriano Jerez
- Institute for Cardiovascular and Metabolic Research, University of Reading, Reading, UK.,Institute of Experimental Biomedicine, University Hospital Würzburg and Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Jonathan M Gibbins
- Institute for Cardiovascular and Metabolic Research, University of Reading, Reading, UK
| | - Craig E Hughes
- Institute for Cardiovascular and Metabolic Research, University of Reading, Reading, UK
| |
Collapse
|
9
|
Wang H, He J, Xu C, Chen X, Yang H, Shi S, Liu C, Zeng Y, Wu D, Bai Z, Wang M, Wen Y, Su P, Xia M, Huang B, Ma C, Bian L, Lan Y, Cheng T, Shi L, Liu B, Zhou J. Decoding Human Megakaryocyte Development. Cell Stem Cell 2020; 28:535-549.e8. [PMID: 33340451 DOI: 10.1016/j.stem.2020.11.006] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 09/25/2020] [Accepted: 11/10/2020] [Indexed: 12/25/2022]
Abstract
Despite our growing understanding of embryonic immune development, rare early megakaryocytes (MKs) remain relatively understudied. Here we used single-cell RNA sequencing of human MKs from embryonic yolk sac (YS) and fetal liver (FL) to characterize the transcriptome, cellular heterogeneity, and developmental trajectories of early megakaryopoiesis. In the YS and FL, we found heterogeneous MK subpopulations with distinct developmental routes and patterns of gene expression that could reflect early functional specialization. Intriguingly, we identified a subpopulation of CD42b+CD14+ MKs in vivo that exhibit high expression of genes associated with immune responses and can also be derived from human embryonic stem cells (hESCs) in vitro. Furthermore, we identified THBS1 as an early marker for MK-biased embryonic endothelial cells. Overall, we provide important insights and invaluable resources for dissection of the molecular and cellular programs underlying early human megakaryopoiesis.
Collapse
Affiliation(s)
- Hongtao Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; CAMS Center for Stem Cell Medicine, PUMC Department of Stem Cell and Regenerative Medicine, Tianjin 300020, China
| | - Jian He
- State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing 100071, China
| | - Changlu Xu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; CAMS Center for Stem Cell Medicine, PUMC Department of Stem Cell and Regenerative Medicine, Tianjin 300020, China
| | - Xiaoyuan Chen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; CAMS Center for Stem Cell Medicine, PUMC Department of Stem Cell and Regenerative Medicine, Tianjin 300020, China
| | - Hua Yang
- Tianjin Central Hospital of Gynecology Obstetrics, Tianjin 300052, China
| | - Shujuan Shi
- Tianjin Central Hospital of Gynecology Obstetrics, Tianjin 300052, China
| | - Cuicui Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; CAMS Center for Stem Cell Medicine, PUMC Department of Stem Cell and Regenerative Medicine, Tianjin 300020, China
| | - Yang Zeng
- Laboratory of Experimental Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing 100071, China
| | - Dan Wu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; CAMS Center for Stem Cell Medicine, PUMC Department of Stem Cell and Regenerative Medicine, Tianjin 300020, China
| | - Zhijie Bai
- State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing 100071, China
| | - Mengge Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; CAMS Center for Stem Cell Medicine, PUMC Department of Stem Cell and Regenerative Medicine, Tianjin 300020, China
| | - Yuqi Wen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; CAMS Center for Stem Cell Medicine, PUMC Department of Stem Cell and Regenerative Medicine, Tianjin 300020, China
| | - Pei Su
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; CAMS Center for Stem Cell Medicine, PUMC Department of Stem Cell and Regenerative Medicine, Tianjin 300020, China
| | - Meijuan Xia
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; CAMS Center for Stem Cell Medicine, PUMC Department of Stem Cell and Regenerative Medicine, Tianjin 300020, China
| | - Baiming Huang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; CAMS Center for Stem Cell Medicine, PUMC Department of Stem Cell and Regenerative Medicine, Tianjin 300020, China
| | - Chunyu Ma
- Department of Gynecology, Fifth Medical Center of Chinese PLA General Hospital, Beijing 100071, China
| | - Lihong Bian
- Department of Gynecology, Fifth Medical Center of Chinese PLA General Hospital, Beijing 100071, China
| | - Yu Lan
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Tao Cheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; CAMS Center for Stem Cell Medicine, PUMC Department of Stem Cell and Regenerative Medicine, Tianjin 300020, China
| | - Lihong Shi
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; CAMS Center for Stem Cell Medicine, PUMC Department of Stem Cell and Regenerative Medicine, Tianjin 300020, China.
| | - Bing Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing 100071, China; Laboratory of Experimental Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing 100071, China; Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou 510632, China.
| | - Jiaxi Zhou
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; CAMS Center for Stem Cell Medicine, PUMC Department of Stem Cell and Regenerative Medicine, Tianjin 300020, China.
| |
Collapse
|
10
|
Matrix Mechanosensation in the Erythroid and Megakaryocytic Lineages. Cells 2020; 9:cells9040894. [PMID: 32268541 PMCID: PMC7226728 DOI: 10.3390/cells9040894] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 03/30/2020] [Accepted: 04/02/2020] [Indexed: 12/21/2022] Open
Abstract
The biomechanical properties of the bone marrow microenvironment emerge from a combination of interactions between various extracellular matrix (ECM) structural proteins and soluble factors. Matrix stiffness directs stem cell fate, and both bone marrow stromal and hematopoietic cells respond to biophysical cues. Within the bone marrow, the megakaryoblasts and erythroblasts are thought to originate from a common progenitor, giving rise to fully mature magakaryocytes (the platelet precursors) and erythrocytes. Erythroid and megakaryocytic progenitors sense and respond to the ECM through cell surface adhesion receptors such as integrins and mechanosensitive ion channels. While hematopoietic stem progenitor cells remain quiescent on stiffer ECM substrates, the maturation of the erythroid and megakaryocytic lineages occurs on softer ECM substrates. This review surveys the major matrix structural proteins that contribute to the overall biomechanical tone of the bone marrow, as well as key integrins and mechanosensitive ion channels identified as ECM sensors in context of megakaryocytosis or erythropoiesis.
Collapse
|
11
|
Besteman SB, Callaghan A, Hennus MP, Westerlaken GH, Meyaard L, Bont LL. Signal inhibitory receptor on leukocytes (SIRL)-1 and leukocyte- associated immunoglobulin-like receptor (LAIR)-1 regulate neutrophil function in infants. Clin Immunol 2020; 211:108324. [DOI: 10.1016/j.clim.2019.108324] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 12/06/2019] [Accepted: 12/09/2019] [Indexed: 02/07/2023]
|
12
|
Semeniak D, Faber K, Öftering P, Manukjan G, Schulze H. Impact of Itga2-Gp6-double collagen receptor deficient mice for bone marrow megakaryocytes and platelets. PLoS One 2019; 14:e0216839. [PMID: 31398205 PMCID: PMC6688823 DOI: 10.1371/journal.pone.0216839] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 07/29/2019] [Indexed: 12/31/2022] Open
Abstract
The two main collagen receptors on platelets, GPVI and integrin α2β1, play an important role for the recognition of exposed collagen at sites of vessel injury, which leads to platelet activation and subsequently stable thrombus formation. Both receptors are already expressed on megakaryocytes, the platelet forming cells within the bone marrow. Megakaryocytes are in permanent contact with collagen filaments in the marrow cavity and at the basal lamina of sinusoids without obvious preactivation. The role of both collagen receptors for megakaryocyte maturation and thrombopoiesis is still poorly understood. To investigate the function of both collagen receptors, we generated mice that are double deficient for Gp6 and Itga2. Flow cytometric analyses revealed that the deficiency of both receptors had no impact on platelet number and led to the expected lack in GPVI responsiveness. Integrin activation and degranulation ability was comparable to wildtype mice. By immunofluorescence microscopy, we could demonstrate that both wildtype and double-deficient megakaryocytes were overall normally distributed within the bone marrow. We found megakaryocyte count and size to be normal, the localization within the bone marrow, the degree of maturation, as well as their association to sinusoids were also unaltered. However, the contact of megakaryocytes to collagen type I filaments was decreased at sinusoids compared to wildtype mice, while the interaction to type IV collagen was unaffected. Our results imply that GPVI and α2β1 have no influence on the localization of megakaryocytes within the bone marrow, their association to the sinusoids or their maturation. The decreased contact of megakaryocytes to collagen type I might at least partially explain the unaltered platelet phenotype in these mice, since proplatelet formation is mediated by these receptors and their interaction to collagen. It is rather likely that other compensatory signaling pathways and receptors play a role that needs to be elucidated.
Collapse
Affiliation(s)
- Daniela Semeniak
- Dept. of Experimental Biomedicine, Chair I, University Hospital Würzburg, Würzburg, Germany
| | - Kristina Faber
- Dept. of Experimental Biomedicine, Chair I, University Hospital Würzburg, Würzburg, Germany
| | - Patricia Öftering
- Dept. of Experimental Biomedicine, Chair I, University Hospital Würzburg, Würzburg, Germany
| | - Georgi Manukjan
- Dept. of Experimental Biomedicine, Chair I, University Hospital Würzburg, Würzburg, Germany
| | - Harald Schulze
- Dept. of Experimental Biomedicine, Chair I, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
13
|
Basak I, Bhatlekar S, Manne B, Stoller M, Hugo S, Kong X, Ma L, Rondina MT, Weyrich AS, Edelstein LC, Bray PF. miR-15a-5p regulates expression of multiple proteins in the megakaryocyte GPVI signaling pathway. J Thromb Haemost 2019; 17:511-524. [PMID: 30632265 PMCID: PMC6397079 DOI: 10.1111/jth.14382] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Indexed: 12/22/2022]
Abstract
Essentials The action of microRNAs (miRs) in human megakaryocyte signaling is largely unknown. Cord blood-derived human megakaryocytes (MKs) were used to test the function of candidate miRs. miR-15a-5p negatively regulated MK GPVI-mediated αIIbβ3 activation and α-granule release. miR-15a-5p acts as a potential "master-miR" regulating genes in the MK GPVI signaling pathway. SUMMARY: Background Megakaryocytes (MKs) invest their progeny platelets with proteins and RNAs. MicroRNAs (miRs), which inhibit mRNA translation into protein, are abundantly expressed in MKs and platelets. Although platelet miRs have been associated with platelet reactivity and disease, there is a paucity of information on the function of miRs in human MKs. Objective To identify MK miRs that regulate the GPVI signaling pathway in the MK-platelet lineage. Methods Candidate miRs associated with GPVI-mediated platelet aggregation were tested for functionality in cultured MKs derived from cord blood. Results An unbiased, transcriptome-wide screen in 154 healthy donors identified platelet miR-15a-5p as significantly negatively associated with CRP-induced platelet aggregation. Platelet agonist dose-response curves demonstrated activation of αIIbβ3 in suspensions of cord blood-derived cultured MKs. Overexpression and knockdown of miR-15a-5p in these MKs reduced and enhanced, respectively, CRP-induced αIIbβ3 activation but did not alter thrombin or ADP stimulation. FYN, SRGN, FCER1G, MYLK. and PRKCQ, genes involved in GPVI signaling, were identified as miR-15a-5p targets and were inhibited or de-repressed in MKs with miR-15a-5p overexpression or inhibition, respectively. Lentiviral overexpression of miR-15a-5p also inhibited GPVI-FcRγ-mediated phosphorylation of Syk and PLCγ2, GPVI downstream signaling molecules, but effects of miR-15a-5p on αIIbβ3 activation did not extend to other ITAM-signaling receptors (FcγRIIa and CLEC-2). Conclusion Cord blood-derived MKs are a useful human system for studying the functional effects of candidate platelet genes. miR-15a-5p is a potential "master-miR" for specifically regulating GPVI-mediated MK-platelet signaling. Targeting miR-15a-5p may have therapeutic potential in hemostasis and thrombosis.
Collapse
Affiliation(s)
- I. Basak
- Molecular Medicine Program, University of Utah, Salt Lake City, UT 84112, USA; and Division of General Internal Medicine, Department of Internal Medicine, University of Utah, Salt Lake City, UT 84112, USA; and George E. Wahlen VAMC, Salt Lake City, UT, 84148
| | - S. Bhatlekar
- Molecular Medicine Program, University of Utah, Salt Lake City, UT 84112, USA; and Division of General Internal Medicine, Department of Internal Medicine, University of Utah, Salt Lake City, UT 84112, USA; and George E. Wahlen VAMC, Salt Lake City, UT, 84148
| | - B.K. Manne
- Molecular Medicine Program, University of Utah, Salt Lake City, UT 84112, USA; and Division of General Internal Medicine, Department of Internal Medicine, University of Utah, Salt Lake City, UT 84112, USA; and George E. Wahlen VAMC, Salt Lake City, UT, 84148
| | - M. Stoller
- Molecular Medicine Program, University of Utah, Salt Lake City, UT 84112, USA; and Division of General Internal Medicine, Department of Internal Medicine, University of Utah, Salt Lake City, UT 84112, USA; and George E. Wahlen VAMC, Salt Lake City, UT, 84148
| | - S. Hugo
- Molecular Medicine Program, University of Utah, Salt Lake City, UT 84112, USA; and Division of General Internal Medicine, Department of Internal Medicine, University of Utah, Salt Lake City, UT 84112, USA; and George E. Wahlen VAMC, Salt Lake City, UT, 84148
| | - X. Kong
- The Cardeza Foundation for Hematologic Research and the Department of Medicine, Thomas Jefferson University, Jefferson Medical College, Philadelphia, PA 19107
| | - L. Ma
- The Cardeza Foundation for Hematologic Research and the Department of Medicine, Thomas Jefferson University, Jefferson Medical College, Philadelphia, PA 19107
| | - M. T. Rondina
- Molecular Medicine Program, University of Utah, Salt Lake City, UT 84112, USA; and Division of General Internal Medicine, Department of Internal Medicine, University of Utah, Salt Lake City, UT 84112, USA; and George E. Wahlen VAMC, Salt Lake City, UT, 84148
| | - A. S. Weyrich
- Molecular Medicine Program, University of Utah, Salt Lake City, UT 84112, USA; and Division of General Internal Medicine, Department of Internal Medicine, University of Utah, Salt Lake City, UT 84112, USA; and George E. Wahlen VAMC, Salt Lake City, UT, 84148
| | - L. C. Edelstein
- The Cardeza Foundation for Hematologic Research and the Department of Medicine, Thomas Jefferson University, Jefferson Medical College, Philadelphia, PA 19107
| | - P. F. Bray
- Molecular Medicine Program, University of Utah, Salt Lake City, UT 84112, USA; and Division of General Internal Medicine, Department of Internal Medicine, University of Utah, Salt Lake City, UT 84112, USA; and George E. Wahlen VAMC, Salt Lake City, UT, 84148
- Division of Hematology and Hematologic Malignancies, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
14
|
Grover SP, Bergmeier W, Mackman N. Platelet Signaling Pathways and New Inhibitors. Arterioscler Thromb Vasc Biol 2019; 38:e28-e35. [PMID: 29563117 DOI: 10.1161/atvbaha.118.310224] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Steven P Grover
- From the Thrombosis and Hemostasis Program, Division of Hematology and Oncology, Department of Medicine (S.P.G., N.M.) and McAllister Heart Institute and Department of Biochemistry and Biophysics (W.B.), University of North Carolina at Chapel Hill
| | - Wolfgang Bergmeier
- From the Thrombosis and Hemostasis Program, Division of Hematology and Oncology, Department of Medicine (S.P.G., N.M.) and McAllister Heart Institute and Department of Biochemistry and Biophysics (W.B.), University of North Carolina at Chapel Hill
| | - Nigel Mackman
- From the Thrombosis and Hemostasis Program, Division of Hematology and Oncology, Department of Medicine (S.P.G., N.M.) and McAllister Heart Institute and Department of Biochemistry and Biophysics (W.B.), University of North Carolina at Chapel Hill.
| |
Collapse
|
15
|
|
16
|
Leiva O, Leon C, Kah Ng S, Mangin P, Gachet C, Ravid K. The role of extracellular matrix stiffness in megakaryocyte and platelet development and function. Am J Hematol 2018; 93:430-441. [PMID: 29247535 DOI: 10.1002/ajh.25008] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 12/11/2017] [Accepted: 12/13/2017] [Indexed: 12/16/2022]
Abstract
The extracellular matrix (ECM) is a key acellular structure in constant remodeling to provide tissue cohesion and rigidity. Deregulation of the balance between matrix deposition, degradation, and crosslinking results in fibrosis. Bone marrow fibrosis (BMF) is associated with several malignant and nonmalignant pathologies severely affecting blood cell production. BMF results from abnormal deposition of collagen fibers and enhanced lysyl oxidase-mediated ECM crosslinking within the marrow, thereby increasing marrow stiffness. Bone marrow stiffness has been recently recognized as an important regulator of blood cell development, notably by modifying the fate and differentiation process of hematopoietic or mesenchymal stem cells. This review surveys the different components of the ECM and their influence on stem cell development, with a focus on the impact of the ECM composition and stiffness on the megakaryocytic lineage in health and disease. Megakaryocyte maturation and the biogenesis of their progeny, the platelets, are thought to respond to environmental mechanical forces through a number of mechanosensors, including integrins and mechanosensitive ion channels, reviewed here.
Collapse
Affiliation(s)
- Orly Leiva
- Department of Medicine; Whitaker Cardiovascular Institute, Boston University School of Medicine; Boston Massachusetts
| | - Catherine Leon
- Université de Strasbourg, INSERM, EFS Grand-Est, BPPS UMR-S 949, FMTS; Strasbourg F-67000 France
| | - Seng Kah Ng
- Department of Medicine; Whitaker Cardiovascular Institute, Boston University School of Medicine; Boston Massachusetts
| | - Pierre Mangin
- Université de Strasbourg, INSERM, EFS Grand-Est, BPPS UMR-S 949, FMTS; Strasbourg F-67000 France
| | - Christian Gachet
- Université de Strasbourg, INSERM, EFS Grand-Est, BPPS UMR-S 949, FMTS; Strasbourg F-67000 France
| | - Katya Ravid
- Department of Medicine; Whitaker Cardiovascular Institute, Boston University School of Medicine; Boston Massachusetts
| |
Collapse
|
17
|
ITIM receptors: more than just inhibitors of platelet activation. Blood 2017; 129:3407-3418. [PMID: 28465343 DOI: 10.1182/blood-2016-12-720185] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 04/24/2017] [Indexed: 12/12/2022] Open
Abstract
Since their discovery, immunoreceptor tyrosine-based inhibition motif (ITIM)-containing receptors have been shown to inhibit signaling from immunoreceptor tyrosine-based activation motif (ITAM)-containing receptors in almost all hematopoietic cells, including platelets. However, a growing body of evidence has emerged demonstrating that this is an oversimplification, and that ITIM-containing receptors are versatile regulators of platelet signal transduction, with functions beyond inhibiting ITAM-mediated platelet activation. PECAM-1 was the first ITIM-containing receptor identified in platelets and appeared to conform to the established model of ITIM-mediated attenuation of ITAM-driven activation. PECAM-1 was therefore widely accepted as a major negative regulator of platelet activation and thrombosis for many years, but more recent findings suggest a more complex role for this receptor, including the facilitation of αIIbβ3-mediated platelet functions. Since the identification of PECAM-1, several other ITIM-containing platelet receptors have been discovered. These include G6b-B, a critical regulator of platelet reactivity and production, and the noncanonical ITIM-containing receptor TREM-like transcript-1, which is localized to α-granules in resting platelets, binds fibrinogen, and acts as a positive regulator of platelet activation. Despite structural similarities and shared binding partners, including the Src homology 2 domain-containing protein-tyrosine phosphatases Shp1 and Shp2, knockout and transgenic mouse models have revealed distinct phenotypes and nonredundant functions for each ITIM-containing receptor in the context of platelet homeostasis. These roles are likely influenced by receptor density, compartmentalization, and as-yet unknown binding partners. In this review, we discuss the diverse repertoire of ITIM-containing receptors in platelets, highlighting intriguing new functions, controversies, and future areas of investigation.
Collapse
|
18
|
Smith CW, Thomas SG, Raslan Z, Patel P, Byrne M, Lordkipanidzé M, Bem D, Meyaard L, Senis YA, Watson SP, Mazharian A. Mice Lacking the Inhibitory Collagen Receptor LAIR-1 Exhibit a Mild Thrombocytosis and Hyperactive Platelets. Arterioscler Thromb Vasc Biol 2017; 37:823-835. [PMID: 28336561 DOI: 10.1161/atvbaha.117.309253] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 03/08/2017] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Leukocyte-associated immunoglobulin-like receptor-1 (LAIR-1) is a collagen receptor that belongs to the inhibitory immunoreceptor tyrosine-based inhibition motif-containing receptor family. It is an inhibitor of signaling via the immunoreceptor tyrosine-based activation motif-containing collagen receptor complex, glycoprotein VI-FcRγ-chain. It is expressed on hematopoietic cells, including immature megakaryocytes, but is not detectable on platelets. Although the inhibitory function of LAIR-1 has been described in leukocytes, its physiological role in megakaryocytes and in particular in platelet formation has not been explored. In this study, we investigate the role of LAIR-1 in megakaryocyte development and platelet production by generating LAIR-1-deficient mice. APPROACH AND RESULTS Mice lacking LAIR-1 exhibit a significant increase in platelet counts, a prolonged platelet half-life in vivo, and increased proplatelet formation in vitro. Interestingly, platelets from LAIR-1-deficient mice exhibit an enhanced reactivity to collagen and the glycoprotein VI-specific agonist collagen-related peptide despite not expressing LAIR-1, and mice showed enhanced thrombus formation in the carotid artery after ferric chloride injury. Targeted deletion of LAIR-1 in mice results in an increase in signaling downstream of the glycoprotein VI-FcRγ-chain and integrin αIIbβ3 in megakaryocytes because of enhanced Src family kinase activity. CONCLUSIONS Findings from this study demonstrate that ablation of LAIR-1 in megakaryocytes leads to increased Src family kinase activity and downstream signaling in response to collagen that is transmitted to platelets, rendering them hyper-reactive specifically to agonists that signal through Syk tyrosine kinases, but not to G-protein-coupled receptors.
Collapse
Affiliation(s)
- Christopher W Smith
- From the Institute of Cardiovascular Sciences, College of Medical and Dental Sciences (C.W.S., S.G.T., Z.R., P.P., M.B., M.L., Y.A.S., S.P.W., A.M.), and Institute of Applied Health Research, College of Medical and Dental Sciences (D.B.), University of Birmingham, United Kingdom; and Laboratory of Translational Immunology, Department of Immunology, University Medical Center Utrecht, the Netherlands (L.M.)
| | - Steven G Thomas
- From the Institute of Cardiovascular Sciences, College of Medical and Dental Sciences (C.W.S., S.G.T., Z.R., P.P., M.B., M.L., Y.A.S., S.P.W., A.M.), and Institute of Applied Health Research, College of Medical and Dental Sciences (D.B.), University of Birmingham, United Kingdom; and Laboratory of Translational Immunology, Department of Immunology, University Medical Center Utrecht, the Netherlands (L.M.)
| | - Zaher Raslan
- From the Institute of Cardiovascular Sciences, College of Medical and Dental Sciences (C.W.S., S.G.T., Z.R., P.P., M.B., M.L., Y.A.S., S.P.W., A.M.), and Institute of Applied Health Research, College of Medical and Dental Sciences (D.B.), University of Birmingham, United Kingdom; and Laboratory of Translational Immunology, Department of Immunology, University Medical Center Utrecht, the Netherlands (L.M.)
| | - Pushpa Patel
- From the Institute of Cardiovascular Sciences, College of Medical and Dental Sciences (C.W.S., S.G.T., Z.R., P.P., M.B., M.L., Y.A.S., S.P.W., A.M.), and Institute of Applied Health Research, College of Medical and Dental Sciences (D.B.), University of Birmingham, United Kingdom; and Laboratory of Translational Immunology, Department of Immunology, University Medical Center Utrecht, the Netherlands (L.M.)
| | - Maxwell Byrne
- From the Institute of Cardiovascular Sciences, College of Medical and Dental Sciences (C.W.S., S.G.T., Z.R., P.P., M.B., M.L., Y.A.S., S.P.W., A.M.), and Institute of Applied Health Research, College of Medical and Dental Sciences (D.B.), University of Birmingham, United Kingdom; and Laboratory of Translational Immunology, Department of Immunology, University Medical Center Utrecht, the Netherlands (L.M.)
| | - Marie Lordkipanidzé
- From the Institute of Cardiovascular Sciences, College of Medical and Dental Sciences (C.W.S., S.G.T., Z.R., P.P., M.B., M.L., Y.A.S., S.P.W., A.M.), and Institute of Applied Health Research, College of Medical and Dental Sciences (D.B.), University of Birmingham, United Kingdom; and Laboratory of Translational Immunology, Department of Immunology, University Medical Center Utrecht, the Netherlands (L.M.)
| | - Danai Bem
- From the Institute of Cardiovascular Sciences, College of Medical and Dental Sciences (C.W.S., S.G.T., Z.R., P.P., M.B., M.L., Y.A.S., S.P.W., A.M.), and Institute of Applied Health Research, College of Medical and Dental Sciences (D.B.), University of Birmingham, United Kingdom; and Laboratory of Translational Immunology, Department of Immunology, University Medical Center Utrecht, the Netherlands (L.M.)
| | - Linde Meyaard
- From the Institute of Cardiovascular Sciences, College of Medical and Dental Sciences (C.W.S., S.G.T., Z.R., P.P., M.B., M.L., Y.A.S., S.P.W., A.M.), and Institute of Applied Health Research, College of Medical and Dental Sciences (D.B.), University of Birmingham, United Kingdom; and Laboratory of Translational Immunology, Department of Immunology, University Medical Center Utrecht, the Netherlands (L.M.)
| | - Yotis A Senis
- From the Institute of Cardiovascular Sciences, College of Medical and Dental Sciences (C.W.S., S.G.T., Z.R., P.P., M.B., M.L., Y.A.S., S.P.W., A.M.), and Institute of Applied Health Research, College of Medical and Dental Sciences (D.B.), University of Birmingham, United Kingdom; and Laboratory of Translational Immunology, Department of Immunology, University Medical Center Utrecht, the Netherlands (L.M.)
| | - Steve P Watson
- From the Institute of Cardiovascular Sciences, College of Medical and Dental Sciences (C.W.S., S.G.T., Z.R., P.P., M.B., M.L., Y.A.S., S.P.W., A.M.), and Institute of Applied Health Research, College of Medical and Dental Sciences (D.B.), University of Birmingham, United Kingdom; and Laboratory of Translational Immunology, Department of Immunology, University Medical Center Utrecht, the Netherlands (L.M.)
| | - Alexandra Mazharian
- From the Institute of Cardiovascular Sciences, College of Medical and Dental Sciences (C.W.S., S.G.T., Z.R., P.P., M.B., M.L., Y.A.S., S.P.W., A.M.), and Institute of Applied Health Research, College of Medical and Dental Sciences (D.B.), University of Birmingham, United Kingdom; and Laboratory of Translational Immunology, Department of Immunology, University Medical Center Utrecht, the Netherlands (L.M.).
| |
Collapse
|
19
|
Semeniak D, Kulawig R, Stegner D, Meyer I, Schwiebert S, Bösing H, Eckes B, Nieswandt B, Schulze H. Proplatelet formation is selectively inhibited by collagen type I through Syk-independent GPVI signaling. J Cell Sci 2016; 129:3473-84. [PMID: 27505889 DOI: 10.1242/jcs.187971] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 07/28/2016] [Indexed: 12/22/2022] Open
Abstract
Collagen receptors GPVI (also known as GP6) and integrin α2β1 are highly expressed on blood platelets and megakaryocytes, their immediate precursors. After vessel injury, subendothelial collagen becomes exposed and induces platelet activation to prevent blood loss. Collagen types I and IV are thought to have opposite effects on platelet biogenesis, directing proplatelet formation (PPF) towards the blood vessels to prevent premature release within the marrow cavity. We used megakaryocytes lacking collagen receptors or treated megakaryocytes with blocking antibodies, and could demonstrate that collagen-I-mediated inhibition of PPF is specifically controlled by GPVI. Other collagen types competed for binding and diminished the inhibitory signal, which was entirely dependent on receptor-proximal Src family kinases, whereas Syk and LAT were dispensable. Adhesion assays indicate that megakaryocyte binding to collagens is mediated by α2β1, and that collagen IV at the vascular niche might displace collagen I from megakaryocytes and thus contribute to prevention of premature platelet release into the marrow cavity and thereby directionally promote PPF at the vasculature.
Collapse
Affiliation(s)
- Daniela Semeniak
- Institute of Experimental Biomedicine, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Rebecca Kulawig
- Laboratory for Pediatric Molecular Biology, Charité-University Medicine, 13353 Berlin, Germany
| | - David Stegner
- Institute of Experimental Biomedicine, University Hospital Würzburg, 97080 Würzburg, Germany Rudolf Virchow-Zentrum, University of Würzburg, 97080 Würzburg, Germany
| | - Imke Meyer
- Laboratory for Pediatric Molecular Biology, Charité-University Medicine, 13353 Berlin, Germany
| | - Silke Schwiebert
- Laboratory for Pediatric Molecular Biology, Charité-University Medicine, 13353 Berlin, Germany
| | - Hendrik Bösing
- Laboratory for Pediatric Molecular Biology, Charité-University Medicine, 13353 Berlin, Germany
| | - Beate Eckes
- Department of Dermatology, University of Cologne, 50937 Cologne, Germany
| | - Bernhard Nieswandt
- Institute of Experimental Biomedicine, University Hospital Würzburg, 97080 Würzburg, Germany Rudolf Virchow-Zentrum, University of Würzburg, 97080 Würzburg, Germany
| | - Harald Schulze
- Institute of Experimental Biomedicine, University Hospital Würzburg, 97080 Würzburg, Germany Laboratory for Pediatric Molecular Biology, Charité-University Medicine, 13353 Berlin, Germany
| |
Collapse
|
20
|
Mazharian A, Wang YJ, Mori J, Bem D, Finney B, Heising S, Gissen P, White JG, Berndt MC, Gardiner EE, Nieswandt B, Douglas MR, Campbell RD, Watson SP, Senis YA. Mice lacking the ITIM-containing receptor G6b-B exhibit macrothrombocytopenia and aberrant platelet function. Sci Signal 2012; 5:ra78. [PMID: 23112346 PMCID: PMC4973664 DOI: 10.1126/scisignal.2002936] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Platelets are highly reactive cell fragments that adhere to exposed extracellular matrix (ECM) and prevent excessive blood loss by forming clots. Paradoxically, megakaryocytes, which produce platelets in the bone marrow, remain relatively refractory to the ECM-rich environment of the bone marrow despite having the same repertoire of receptors as platelets. These include the ITAM (immunoreceptor tyrosine-based activation motif)-containing collagen receptor complex, which consists of glycoprotein VI (GPVI) and the Fc receptor γ-chain, and the ITIM (immunoreceptor tyrosine-based inhibition motif)-containing receptor G6b-B. We showed that mice lacking G6b-B exhibited macrothrombocytopenia (reduced platelet numbers and the presence of enlarged platelets) and a susceptibility to bleeding as a result of aberrant platelet production and function. Platelet numbers were markedly reduced in G6b-B-deficient mice compared to those in wild-type mice because of increased platelet turnover. Furthermore, megakaryocytes in G6b-B-deficient mice showed enhanced metalloproteinase production, which led to increased shedding of cell-surface receptors, including GPVI and GPIbα. In addition, G6b-B-deficient megakaryocytes exhibited reduced integrin-mediated functions and defective formation of proplatelets, the long filamentous projections from which platelets bud off. Together, these findings establish G6b-B as a major inhibitory receptor regulating megakaryocyte activation, function, and platelet production.
Collapse
Affiliation(s)
- Alexandra Mazharian
- Centre of Cardiovascular Sciences, Institute of Biomedical Research, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Ying-Jie Wang
- Centre of Cardiovascular Sciences, Institute of Biomedical Research, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Jun Mori
- Centre of Cardiovascular Sciences, Institute of Biomedical Research, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Danai Bem
- Centre of Cardiovascular Sciences, Institute of Biomedical Research, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Brenda Finney
- Centre of Cardiovascular Sciences, Institute of Biomedical Research, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Silke Heising
- Centre of Cardiovascular Sciences, Institute of Biomedical Research, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Paul Gissen
- Department of Medical and Molecular Genetics, School of Clinical and Experimental Medicine, University of Birmingham, Birmingham B15 2TT, UK
| | - James G. White
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Michael C. Berndt
- Biomedical Diagnostics Institute, Dublin City University and Royal College of Surgeons in Ireland, Glasnevin, Dublin 9, Ireland
| | - Elizabeth E. Gardiner
- Australian Centre for Blood Diseases, Monash University, Alfred Medical Research and Education Precinct, Melbourne, Victoria 3004, Australia
| | - Bernhard Nieswandt
- University Hospital and Rudolf Virchow Center, DFG Research Center for Experimental Biomedicine, University of Würzburg, Würzburg 97080, Germany
| | - Michael R. Douglas
- Neuropharmacology and Neurobiology Section, School of Clinical and Experimental Medicine, University of Birmingham, Birmingham B15 2TT, UK
- Department of Neurology, Dudley Group of Hospitals NHS Foundation Trust, Dudley DY1 2HQ, UK
| | - Robert D. Campbell
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, UK
| | - Steve P. Watson
- Centre of Cardiovascular Sciences, Institute of Biomedical Research, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Yotis A. Senis
- Centre of Cardiovascular Sciences, Institute of Biomedical Research, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
21
|
Xue J, Zhang X, Zhao H, Fu Q, Cao Y, Wang Y, Feng X, Fu A. Leukocyte-associated immunoglobulin-like receptor-1 is expressed on human megakaryocytes and negatively regulates the maturation of primary megakaryocytic progenitors and cell line. Biochem Biophys Res Commun 2011; 405:128-33. [PMID: 21216234 DOI: 10.1016/j.bbrc.2010.12.140] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2010] [Accepted: 12/31/2010] [Indexed: 12/19/2022]
Abstract
Leukocyte-associated immunoglobulin-like receptor-1 (LAIR-1) is an inhibitory collagen receptor which belongs to the immunoglobulin (Ig) superfamily. Although the inhibitory function of LAIR-1 has been extensively described in multiple leukocytes, its role in megakaryocyte (MK) has not been explored so far. Here, we show that LAIR-1 is expressed on human bone marrow CD34(+)CD41a(+) and CD41a(+)CD42b(+) cells. LAIR-1 is also detectable in a fraction of human cord blood CD34(+) cell-derived MK that has morphological characteristics of immature MK. In megakaryoblastic cell line Dami, the membrane protein expression of LAIR-1 is up-regulated significantly when cells are treated with phorbol ester phorbol 12-myristate 13-acetate (PMA). Furthermore, cross-linking of LAIR-1 in Dami cells with its natural ligand or anti-LAIR-1 antibody leads to the inhibition of cell proliferation and PMA-promoted differentiation when examined by the MK lineage-specific markers (CD41a and CD42b) and polyploidization. In addition, we also observed that cross-linking of LAIR-1 results in decreased MK generation from primary human CD34(+) cells cultured in a cytokines cocktail that contains TPO. These results suggest that LAIR-1 is a likely candidate for an early marker of MK differentiation, and provide initial evidence indicating that LAIR-1 serves as a negative regulator of megakaryocytopoiesis.
Collapse
Affiliation(s)
- Jiangnan Xue
- Department of Immunology, Binzhou Medical University, Yantai, China.
| | | | | | | | | | | | | | | |
Collapse
|