1
|
Tang D, Hu P, Zhu D, Luo Y, Chen M, Zhang G, Wang Y. C/EBPα is indispensable for PML/RARα-mediated suppression of long non-coding RNA NEAT1 in acute promyelocytic leukemia cells. Aging (Albany NY) 2021; 13:13179-13194. [PMID: 33901013 PMCID: PMC8148485 DOI: 10.18632/aging.203000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 03/27/2021] [Indexed: 11/25/2022]
Abstract
Better understanding of the transcriptional regulatory network in acute promyelocytic leukemia (APL) cells is critical to illustrate the pathogenesis of other types of acute myeloid leukemia. Previous studies have primarily focused on the retinoic acid signaling pathway and how it is interfered with by promyelocytic leukemia/retinoic acid receptor-α (PML/RARα) fusion protein. However, this hardly explains how APL cells are blocked at the promyelocytic stage. Here, we demonstrated that C/EBPα bound and transactivated the promoter of long non-coding RNA NEAT1, an essential element for terminal differentiation of APL cells, through C/EBP binding sites. More importantly, PML/RARα repressed C/EBPα-mediated transactivation of NEAT1 through binding to NEAT1 promoter. Consistently, mutation of the C/EBP sites or deletion of retinoic acid responsive elements (RAREs) and RARE half motifs abrogated the PML/RARα-mediated repression. Moreover, silencing of C/EBPα attenuated ATRA-induced NEAT1 upregulation and APL cell differentiation. Finally, simultaneous knockdown of C/EBPα and C/EBPβ reduces ATRA-induced upregulation of C/EBPε and dramatically impaired NEAT1 activation and APL cell differentiation. In sum, C/EBPα binds and transactivates NEAT1 whereas PML/RARα represses this process. This study describes an essential role for C/EBPα in PML/RARα-mediated repression of NEAT1 and suggests that PML/RARα could contribute to the pathogenesis of APL through suppressing C/EBPα targets.
Collapse
Affiliation(s)
- Doudou Tang
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital, Hunan Centre for Evidence-Based Medicine, Central South University, Changsha, Hunan, China
| | - Piao Hu
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Institute of Molecular Hematology, Central South University, Changsha, Hunan, China
| | - Dengqin Zhu
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Institute of Molecular Hematology, Central South University, Changsha, Hunan, China
| | - Yujiao Luo
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Institute of Molecular Hematology, Central South University, Changsha, Hunan, China
| | | | - Guangsen Zhang
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Institute of Molecular Hematology, Central South University, Changsha, Hunan, China
| | - Yewei Wang
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Institute of Molecular Hematology, Central South University, Changsha, Hunan, China
| |
Collapse
|
2
|
Kimura Y, Iwanaga E, Iwanaga K, Endo S, Inoue Y, Tokunaga K, Nagahata Y, Masuda K, Kawamoto H, Matsuoka M. A regulatory element in the 3'-untranslated region of CEBPA is associated with myeloid/NK/T-cell leukemia. Eur J Haematol 2020; 106:327-339. [PMID: 33197296 DOI: 10.1111/ejh.13551] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/11/2020] [Accepted: 11/11/2020] [Indexed: 12/01/2022]
Abstract
OBJECTIVES CCAAT/enhancer-binding protein α (CEBPA) is an essential transcription factor for myeloid differentiation. Not only mutation of the CEBPA gene, but also promoter methylation, which results in silencing of CEBPA, contributes to the pathogenesis of acute myeloid leukemia (AML). We sought for another differentially methylated region (DMR) that associates with the CEBPA silencing and disease phenotype. METHODS Using databases, we identified a conserved DMR in the CEBPA 3'-untranslated region (UTR). RESULTS Methylation-specific PCR analysis of 231 AML cases showed that hypermethylation of the 3'-UTR was associated with AML that had a myeloid/NK/T-cell phenotype and downregulated CEBPA. Most of these cases were of an immature phenotype with CD7/CD56 positivity. These cases were significantly associated with lower hemoglobin levels than the others. Furthermore, we discovered that the CEBPA 3'-UTR DMR can enhance transcription from the CEBPA native promoter. In vitro experiments identified IKZF1-binding sites in the 3'-UTR that are responsible for this increased transcription of CEBPA. CONCLUSIONS These results indicate that the CEBPA 3'-UTR DMR is a novel regulatory element of CEBPA related to myeloid/NK/T-cell lineage leukemogenesis. Transcriptional regulation of CEBPA by IKZF1 may provide a clue for understanding the fate determination of myeloid vs. NK/T-lymphoid progenitors.
Collapse
Affiliation(s)
- Yukiko Kimura
- Department of Hematology, Rheumatology and Infectious Diseases, Kumamoto University, Kumamoto, Japan
| | - Eisaku Iwanaga
- Department of Hematology, Rheumatology and Infectious Diseases, Kumamoto University, Kumamoto, Japan
| | - Kouta Iwanaga
- Department of Hematology, Rheumatology and Infectious Diseases, Kumamoto University, Kumamoto, Japan
| | - Shinya Endo
- Department of Hematology, Rheumatology and Infectious Diseases, Kumamoto University, Kumamoto, Japan
| | - Yoshitaka Inoue
- Department of Hematology, Rheumatology and Infectious Diseases, Kumamoto University, Kumamoto, Japan
| | - Kenji Tokunaga
- Department of Hematology, Rheumatology and Infectious Diseases, Kumamoto University, Kumamoto, Japan
| | - Yousuke Nagahata
- Laboratory of Immunology, Institute for Frontier Life and Medical Science, Kyoto University, Kyoto, Japan
| | - Kyoko Masuda
- Laboratory of Immunology, Institute for Frontier Life and Medical Science, Kyoto University, Kyoto, Japan
| | - Hiroshi Kawamoto
- Laboratory of Immunology, Institute for Frontier Life and Medical Science, Kyoto University, Kyoto, Japan
| | - Masao Matsuoka
- Department of Hematology, Rheumatology and Infectious Diseases, Kumamoto University, Kumamoto, Japan.,Laboratory of Virus Control, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
3
|
Chen S, Li X, Ma S, Xing X, Wang X, Zhu Z. Chemogenomics analysis of drug targets for the treatment of acute promyelocytic leukemia. Ann Hematol 2020; 99:753-763. [PMID: 32016577 DOI: 10.1007/s00277-019-03888-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 12/05/2019] [Indexed: 12/13/2022]
Abstract
The main challenges in treating acute promyelocytic leukemia (APL) are currently early mortality, relapse, refractory disease after induction therapy, and drug resistance to ATRA and ATO. In this study, a computational chemogenomics approach was used to identify new molecular targets and drugs for APL treatment. The transcriptional profiles induced by APL were compared with those induced by genetic or chemical perturbations. The genes that can reverse the transcriptional profiles induced by APL when perturbed were considered to be potential therapeutic targets for APL. Drugs targeting these genes or proteins are predicted to be able to treat APL if they can reverse the APL-induced transcriptional profiles. To improve the target identification accuracy of the above correlation method, we plotted the functional protein association networks of the predicted targets by STRING. The results determined PML, RARA, SPI1, HDAC3, CEBPA, NPM1, ABL1, BCR, PTEN, FOS, PDGFRB, FGFR1, NUP98, AFF1, and MEIS1 to be top candidates. Interestingly, the functions of PML, RARA, HDAC3, CEBPA, NPM1, ABL, and BCR in APL have been previously reported in the literature. This is the first chemogenomics analysis predicting potential APL drug targets, and the findings could be used to guide the design of new drugs targeting refractory and recurrent APL.
Collapse
MESH Headings
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Cheminformatics
- Datasets as Topic
- Drug Design
- Drug Development
- Gene Expression Profiling
- Gene Expression Regulation, Leukemic/drug effects
- Gene Expression Regulation, Leukemic/radiation effects
- Gene Targeting
- Genes, Neoplasm
- Humans
- Leukemia, Promyelocytic, Acute/drug therapy
- Molecular Targeted Therapy
- Neoplasm Proteins/antagonists & inhibitors
- Neoplasm Proteins/genetics
- Nucleophosmin
- Oncogene Proteins, Fusion/antagonists & inhibitors
- Oncogene Proteins, Fusion/genetics
- Protein Interaction Mapping
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- RNA, Neoplasm/biosynthesis
- RNA, Neoplasm/genetics
- Transcriptome
Collapse
Affiliation(s)
- Si Chen
- Department of Pharmacy, 967th Hospital of the Chinese People's Liberation Army, 80 Shengli Road, Xigang district, Dalian, 116011, Liaoning, China
- School of Medicine, Shanghai University, Shanghai, China
| | - Xiang Li
- School of Pharmacy, Second Military Medical University, 325 Guohe road, Yangpu district, Shanghai, 200433, China
| | - Shifan Ma
- School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA
| | - Xinrui Xing
- School of Pharmacy, Second Military Medical University, 325 Guohe road, Yangpu district, Shanghai, 200433, China
| | - Xiaobo Wang
- Department of Pharmacy, 967th Hospital of the Chinese People's Liberation Army, 80 Shengli Road, Xigang district, Dalian, 116011, Liaoning, China.
| | - Zhenyu Zhu
- School of Pharmacy, Second Military Medical University, 325 Guohe road, Yangpu district, Shanghai, 200433, China.
| |
Collapse
|
4
|
SHI T, YE X. [Roles of CCAAT enhancer binding protein α in acute myeloblastic leukemia]. Zhejiang Da Xue Xue Bao Yi Xue Ban 2018; 47:552-557. [PMID: 30693699 PMCID: PMC10393672 DOI: 10.3785/j.issn.1008-9292.2018.10.16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 05/10/2018] [Indexed: 06/09/2023]
Abstract
The CCAAT enhancer binding protein α (C/EBP α:p42 and p30),which encoded by CCAAT enhancer binding protein α (C/EBPα) gene,plays a pretty crucial role in the regulation of myeloid hematopoiesis.The disorder of CEBPA gene expression is an pivotal mechanism of acute myeloid leukemia (AML). The result of uncontrolled expression of C/EBP α gene is the over-expression of p30 and the incomplete loss of p42, both of which contribute to the occurrence of AML. Restoring the expression ratio of C/EBP α such as over-expression of p42 or blocking the carcinogenic pathway of p30 seems to be important for the treatment of AML caused by such causes. In order to better guide medical decision-making, this article reviews research progress on C/EBPα in the pathogenesis of AML.
Collapse
Affiliation(s)
| | - Xiujin YE
- 叶琇锦(1962-), 女, 博士, 主任医师, 硕士生导师, 主要从事血液系统恶性疾病研究, E-mail:
,
https://orcid.org/0000-0003-1264-0307
| |
Collapse
|
5
|
Salarpour F, Goudarzipour K, Mohammadi MH, Ahmadzadeh A, Faraahi S, Farsani MA. Evaluation of CCAAT/Enhancer Binding Protein (C/EBP) Alpha (CEBPA) and Runt-Related Transcription Factor 1 (RUNX1) Expression in Patients with De Novo Acute Myeloid Leukemia. Ann Hum Genet 2017; 81:276-283. [DOI: 10.1111/ahg.12210] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 07/20/2017] [Indexed: 12/19/2022]
Affiliation(s)
- Fatemeh Salarpour
- Laboratory Hematology and blood Banking Department; School of Allied Medical Sciences; Shahid Beheshti University of Medical Science; Tehran Iran
| | - Kourosh Goudarzipour
- Pediatric Congenital Hematologic Disorders Research Center; Shahid Beheshti University of Medical Science; Tehran Iran
| | - Mohammad Hossein Mohammadi
- Laboratory Hematology and Blood Bank Department; Faculty of Paramedical; Shahid Beheshti University of Medical Sciences
- HSCT Research Center; Shahid Beheshti University of Medical Sciences; Tehran
| | - Ahmad Ahmadzadeh
- Health Research Institute; Research Center of Thalassemia & Hemoglobinopathy; Ahvaz jundishapur University of Medical Science; Ahvaz Iran
| | - Sara Faraahi
- Laboratory Hematology and blood Banking Department; School of Allied Medical Sciences; Shahid Beheshti University of Medical Science; Tehran Iran
| | - Mehdi Allahbakhshian Farsani
- Laboratory Hematology and Blood Bank Department; Faculty of Paramedical; Shahid Beheshti University of Medical Sciences
- HSCT Research Center; Shahid Beheshti University of Medical Sciences; Tehran
| |
Collapse
|
6
|
C/EBPα deregulation as a paradigm for leukemogenesis. Leukemia 2017; 31:2279-2285. [PMID: 28720765 DOI: 10.1038/leu.2017.229] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 06/19/2017] [Accepted: 06/27/2017] [Indexed: 12/21/2022]
Abstract
Myeloid master regulator CCAAT enhancer-binding protein alpha (C/EBPα) is deregulated by multiple mechanisms in leukemia. Inhibition of C/EBPα function plays pivotal roles in leukemogenesis. While much is known about how C/EBPα orchestrates granulopoiesis, our understanding of molecular transformation events, the role(s) of cooperating mutations and clonal evolution during C/EBPα deregulation in leukemia remains elusive. In this review, we will summarize the latest research addressing these topics with special emphasis on CEBPA mutations. We conclude by describing emerging therapeutic strategies to restore C/EBPα function.
Collapse
|
7
|
Wurm AA, Zjablovskaja P, Kardosova M, Gerloff D, Bräuer-Hartmann D, Katzerke C, Hartmann JU, Benoukraf T, Fricke S, Hilger N, Müller AM, Bill M, Schwind S, Tenen DG, Niederwieser D, Alberich-Jorda M, Behre G. Disruption of the C/EBPα-miR-182 balance impairs granulocytic differentiation. Nat Commun 2017; 8:46. [PMID: 28663557 PMCID: PMC5491528 DOI: 10.1038/s41467-017-00032-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 04/30/2017] [Indexed: 02/04/2023] Open
Abstract
Transcription factor C/EBPα is a master regulator of myelopoiesis and its inactivation is associated with acute myeloid leukemia. Deregulation of C/EBPα by microRNAs during granulopoiesis or acute myeloid leukemia development has not been studied. Here we show that oncogenic miR-182 is a strong regulator of C/EBPα. Moreover, we identify a regulatory loop between C/EBPα and miR-182. While C/EBPα blocks miR-182 expression by direct promoter binding during myeloid differentiation, enforced expression of miR-182 reduces C/EBPα protein level and impairs granulopoiesis in vitro and in vivo. In addition, miR-182 expression is highly elevated particularly in acute myeloid leukemia patients with C-terminal CEBPA mutations, thereby depicting a mechanism by which C/EBPα blocks miR-182 expression. Furthermore, we present miR-182 expression as a prognostic marker in cytogenetically high-risk acute myeloid leukemia patients. Our data demonstrate the importance of a controlled balance between C/EBPα and miR-182 for the maintenance of healthy granulopoiesis. C/EBPα is a critical transcription factor involved in myelopoiesis and its inactivation is associated with acute myeloid leukemia (AML). Here the authors show a negative feedback loop between C/EBPα and miR-182 and identify this miRNA as a marker of high-risk AML.
Collapse
Affiliation(s)
- Alexander Arthur Wurm
- Division of Hematology and Oncology, Leipzig University Hospital, Johannisallee 32a, Leipzig, 04103, Germany
| | - Polina Zjablovskaja
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Videnska 1083, Prague 4, 142 20, Czech Republic
| | - Miroslava Kardosova
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Videnska 1083, Prague 4, 142 20, Czech Republic
| | - Dennis Gerloff
- Division of Hematology and Oncology, Leipzig University Hospital, Johannisallee 32a, Leipzig, 04103, Germany
| | - Daniela Bräuer-Hartmann
- Division of Hematology and Oncology, Leipzig University Hospital, Johannisallee 32a, Leipzig, 04103, Germany
| | - Christiane Katzerke
- Division of Hematology and Oncology, Leipzig University Hospital, Johannisallee 32a, Leipzig, 04103, Germany
| | - Jens-Uwe Hartmann
- Division of Hematology and Oncology, Leipzig University Hospital, Johannisallee 32a, Leipzig, 04103, Germany
| | - Touati Benoukraf
- Cancer Science Institute, National University of Singapore, 14 Medical Drive, Singapore, 117599, Singapore
| | - Stephan Fricke
- Fraunhofer Institute for Cell Therapy and Immunology, Perlickstraße 1, Leipzig, 04103, Germany
| | - Nadja Hilger
- Fraunhofer Institute for Cell Therapy and Immunology, Perlickstraße 1, Leipzig, 04103, Germany
| | - Anne-Marie Müller
- Fraunhofer Institute for Cell Therapy and Immunology, Perlickstraße 1, Leipzig, 04103, Germany
| | - Marius Bill
- Division of Hematology and Oncology, Leipzig University Hospital, Johannisallee 32a, Leipzig, 04103, Germany
| | - Sebastian Schwind
- Division of Hematology and Oncology, Leipzig University Hospital, Johannisallee 32a, Leipzig, 04103, Germany
| | - Daniel G Tenen
- Cancer Science Institute, National University of Singapore, 14 Medical Drive, Singapore, 117599, Singapore.,Harvard Stem Cell Institute, Harvard Medical School, 3 Blackfan Circle, Boston, MA, 02115, USA
| | - Dietger Niederwieser
- Division of Hematology and Oncology, Leipzig University Hospital, Johannisallee 32a, Leipzig, 04103, Germany
| | - Meritxell Alberich-Jorda
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Videnska 1083, Prague 4, 142 20, Czech Republic
| | - Gerhard Behre
- Division of Hematology and Oncology, Leipzig University Hospital, Johannisallee 32a, Leipzig, 04103, Germany.
| |
Collapse
|
8
|
El Baroudi M, Cinti C, Capobianco E. Immunomediated Pan-cancer Regulation Networks are Dominant Fingerprints After Treatment of Cell Lines with Demethylation. Cancer Inform 2016; 15:45-64. [PMID: 27147816 PMCID: PMC4849425 DOI: 10.4137/cin.s31809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 02/09/2016] [Accepted: 02/17/2016] [Indexed: 11/11/2022] Open
Abstract
Pan-cancer studies are particularly relevant not only for addressing the complexity of the inherently observed heterogeneity but also for identifying clinically relevant features that may be common to the cancer types. Immune system regulations usually reveal synergistic modulation with other cancer mechanisms and in combination provide insights on possible advances in cancer immunotherapies. Network inference is a powerful approach to decipher pan-cancer systems dynamics. The methodology proposed in this study elucidates the impacts of epigenetic treatment on the drivers of complex pan-cancer regulation circuits involving cell lines of five cancer types. These patterns were observed from differential gene expression measurements following demethylation with 5-azacytidine. Networks were built to establish associations of phenotypes at molecular level with cancer hallmarks through both transcriptional and post-transcriptional regulation mechanisms. The most prominent feature that emerges from our integrative network maps, linking pathway landscapes to disease and drug-target associations, refers primarily to a mosaic of immune-system crosslinked influences. Therefore, characteristics initially evidenced in single cancer maps become motifs well summarized by network cores and fingerprints.
Collapse
Affiliation(s)
- Mariama El Baroudi
- Laboratory of Integrative Systems Medicine (LISM), Institute of Clinical Physiology, National Research Council of Italy (CNR), Pisa, Italy
- Medical Oncology Department, MIRO, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, Brussels, Belgium
| | - Caterina Cinti
- Cancer Therapy UOS, Institute of Clinical Phsyiology, National Research Council of Italy (CNR), Siena, Italy
| | - Enrico Capobianco
- Laboratory of Integrative Systems Medicine (LISM), Institute of Clinical Physiology, National Research Council of Italy (CNR), Pisa, Italy
- Center for Computational Science, Miller School of Medicine, University of Miami, Miami, FL, USA
| |
Collapse
|
9
|
Wang L, Xiao H, Zhang X, Liao W, Fu S, Huang H. Restoration of CCAAT enhancer binding protein α P42 induces myeloid differentiation and overcomes all-trans retinoic acid resistance in human acute promyelocytic leukemia NB4-R1 cells. Int J Oncol 2015; 47:1685-95. [PMID: 26397153 PMCID: PMC4599186 DOI: 10.3892/ijo.2015.3163] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 08/12/2015] [Indexed: 11/13/2022] Open
Abstract
All-trans retinoic acid (ATRA) is one of the first line agents in differentiation therapy for acute promyelocytic leukemia (APL). However, drug resistance is a major problem influencing the efficacy of ATRA. Identification of mechanisms of ATRA resistance are urgenly needed. In the present study, we found that expression of C/EBPα, an important transcription factor for myeloid differentiation, was significantly suppressed in ATRA resistant APL cell line NB4-R1 compared with ATRA sensitive NB4 cells. Moreover, two forms of C/EBPα were unequally suppressed in NB4-R1 cells. Suppression of the full-length form P42 was more pronounced than the truncated form P30. Inhibition of PI3K/Akt/mTOR pathway was also observed in NB4-R1 cells. Moreover, C/EBPα expression was reduced by PI3K inhibitor LY294002 and mTOR inhibitor RAD001 in NB4 cells, suggesting that inactivation of the PI3K/Akt/mTOR pathway was responsible for C/EBPα suppression in APL cells. We restored C/EBPα P42 and P30 by lentivirus vectors in NB4-R1 cells, respectively, and found C/EBPα P42, but not P30, could increase CD11b, CD14, G-CSFR and GM-CSFR expression, which indicated the occurrence of myeloid differentiation. Further upregulating of CD11b expression and differential morphological changes were found in NB4-R1 cells with restored C/EBPα P42 after ATRA treatment. However, CD11b expression and differential morphological changes could not be induced by ATRA in NB4-R1 cells infected with P30 expressing or control vector. Thus, we inferred that ATRA sensitivity of NB4-R1 cells was enhanced by restoration of C/EBPα P42. In addition, we used histone deacetylase inhibitor trichostatin (TSA) to restore C/EBPα expression in NB4-R1 cells. Similar enhancement of myeloid differentiation and cell growth arrest were detected. Together, the present study demonstrated that suppression of C/EBPα P42 induced by PI3K/Akt/mTOR inhibition impaired the differentiation and ATRA sensitivity of APL cells. Restoring C/EBPα P42 is an attractive approach for differentiation therapy in ATRA resistant APL.
Collapse
Affiliation(s)
- Limengmeng Wang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - Haowen Xiao
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - Xing Zhang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - Weichao Liao
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - Shan Fu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - He Huang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| |
Collapse
|
10
|
Gaillard C, Tokuyasu TA, Rosen G, Sotzen J, Vitaliano-Prunier A, Roy R, Passegué E, de Thé H, Figueroa ME, Kogan SC. Transcription and methylation analyses of preleukemic promyelocytes indicate a dual role for PML/RARA in leukemia initiation. Haematologica 2015; 100:1064-75. [PMID: 26088929 DOI: 10.3324/haematol.2014.123018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 05/06/2015] [Indexed: 12/15/2022] Open
Abstract
Acute promyelocytic leukemia is an aggressive malignancy characterized by the accumulation of promyelocytes in the bone marrow. PML/RARA is the primary abnormality implicated in this pathology, but the mechanisms by which this chimeric fusion protein initiates disease are incompletely understood. Identifying PML/RARA targets in vivo is critical for comprehending the road to pathogenesis. Utilizing a novel sorting strategy, we isolated highly purified promyelocyte populations from normal and young preleukemic animals, carried out microarray and methylation profiling analyses, and compared the results from the two groups of animals. Surprisingly, in the absence of secondary lesions, PML/RARA had an overall limited impact on both the transcriptome and methylome. Of interest, we did identify down-regulation of secondary and tertiary granule genes as the first step engaging the myeloid maturation block. Although initially not sufficient to arrest terminal granulopoiesis in vivo, such alterations set the stage for the later, complete differentiation block seen in leukemia. Further, gene set enrichment analysis revealed that PML/RARA promyelocytes exhibit a subtle increase in expression of cell cycle genes, and we show that this leads to both increased proliferation of these cells and expansion of the promyelocyte compartment. Importantly, this proliferation signature was absent from the poorly leukemogenic p50/RARA fusion model, implying a critical role for PML in the altered cell-cycle kinetics and ability to initiate leukemia. Thus, our findings challenge the predominant model in the field and we propose that PML/RARA initiates leukemia by subtly shifting cell fate decisions within the promyelocyte compartment.
Collapse
Affiliation(s)
- Coline Gaillard
- Department of Laboratory Medicine, University of California, San Francisco, CA, USA Institut Universitaire d'Hématologie, Université Paris-Diderot UMR 944/7212, France
| | - Taku A Tokuyasu
- Computational Biology Core, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Galit Rosen
- Center for Cancer and Blood Disorders, Phoenix Children's Hospital, AZ, USA
| | - Jason Sotzen
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | | | - Ritu Roy
- Computational Biology Core, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Emmanuelle Passegué
- Department of Medicine, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA, USA
| | - Hugues de Thé
- Institut Universitaire d'Hématologie, Université Paris-Diderot UMR 944/7212, France
| | - Maria E Figueroa
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Scott C Kogan
- Department of Laboratory Medicine, University of California, San Francisco, CA, USA
| |
Collapse
|
11
|
CEBPA methylation and mutation in myelodysplastic syndrome. Med Oncol 2015; 32:192. [DOI: 10.1007/s12032-015-0605-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 03/26/2015] [Indexed: 12/30/2022]
|
12
|
Musialik E, Bujko M, Kober P, Grygorowicz MA, Libura M, Przestrzelska M, Juszczyński P, Borg K, Florek I, Jakóbczyk M, Baranowska A, Siedlecki JA. Comparison of promoter DNA methylation and expression levels of genes encoding CCAAT/enhancer binding proteins in AML patients. Leuk Res 2014; 38:850-6. [DOI: 10.1016/j.leukres.2014.04.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 04/22/2014] [Accepted: 04/27/2014] [Indexed: 11/28/2022]
|
13
|
Li ZG, Jiao Y, Li WJ, Deng GR, Cui L, Gao C, Zhao XX, Wu MY, Jia HT. Hypermethylation of two CpG sites upstream of CASP8AP2 promoter influences gene expression and treatment outcome in childhood acute lymphoblastic leukemia. Leuk Res 2013; 37:1287-93. [PMID: 23953914 DOI: 10.1016/j.leukres.2013.07.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 07/18/2013] [Indexed: 10/26/2022]
Abstract
DNA hypermethylation of Caspase 8 associated protein 2 (CASP8AP2) and its role in childhood acute lymphoblastic leukemia (ALL) is unclear. We analyzed methylation status of CpG sites upstream of CASP8AP2 gene in 86 children with ALL by bisulfite sequencing and quantitative PCR. Methylation percentage of two CpG sites at positions of -1189 and -1176 was inversely correlated with mRNA expression (Spearman correlation: -0.333, P=0.002). High methylation was associated with the existence of minimal residual disease (MRD) at day 78 (P=0.035), The patients in high methylation group had a poor treatment outcome. The combination of methylation level and MRD at day 33 might improve current risk stratification.
Collapse
Affiliation(s)
- Zhi-Gang Li
- Key Laboratory of Major Diseases in Children (Capital Medical University), Ministry of Education; Hematology Center, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | | | | | | | | | | | | | | | | |
Collapse
|