1
|
Pai P, Sukumar S. HOX genes and the NF-κB pathway: A convergence of developmental biology, inflammation and cancer biology. Biochim Biophys Acta Rev Cancer 2020; 1874:188450. [PMID: 33049277 DOI: 10.1016/j.bbcan.2020.188450] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 09/11/2020] [Accepted: 10/07/2020] [Indexed: 02/06/2023]
Abstract
The roles of HOX transcription factors as oncogenes and tumor suppressor genes, and the NF-KB pathway in chronic inflammation, both leading to cancer are well-established. HOX transcription factors are members of an evolutionarily conserved family of proteins required for anteroposterior body axis patterning during embryonic development, and are often dysregulated in cancer. The NF-KB pathway aids inflammation and immunity but it is also important during embryonic development. It is frequently activated in both solid and hematological malignancies. NF-KB and HOX proteins can influence each other through mutual transcriptional regulation, protein-protein interactions, and regulation of upstream and downstream interactors. These interactions have important implications both in homeostasis and in disease. In this review, we summarize the role of HOX proteins in regulating inflammation in homeostasis and disease- with a particular emphasis on cancer. We also describe the relationship between HOX genes and the NF-KB pathway, and discuss potential therapeutic strategies.
Collapse
Affiliation(s)
- Priya Pai
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Saraswati Sukumar
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America.
| |
Collapse
|
2
|
HOXC4 up-regulates NF-κB signaling and promotes the cell proliferation to drive development of human hematopoiesis, especially CD43+ cells. BLOOD SCIENCE 2020; 2:117-128. [PMID: 35400027 PMCID: PMC8974941 DOI: 10.1097/bs9.0000000000000054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 07/19/2020] [Indexed: 01/05/2023] Open
Abstract
The hematopoietic function of HOXC4 has not been extensively investigated. Our research indicated that induction of HOXC4 in co-culture system from D10 significantly promoted productions of most hematopoietic progenitor cells. CD34−CD43+ cells could be clearly classified into CD34−CD43low and CD34−CD43high sub-populations at D14. The former cells had greater myelogenic potential, and their production was not significantly influenced by induction of HOXC4. By contrast, the latter cells had greater potential to differentiate into megakaryocytes and erythroid cells, and thus had properties of erythroid–megakaryocyte common progenitors, which abundance was increased by ∼2-fold when HOXC4 was induced from D10. For CD34−CD43low, CD34+CD43+, and CD34−CD43high sub-populations, CD43 level served as a natural index for the tendency to undergo hematopoiesis. Induction of HOXC4 from D10 caused more CD43+ cells sustain in S-phase with up-regulation of NF-κB signaling, which could be counteracted by inhibition of NF-κB signaling. These observations suggested that promotion of hematopoiesis by HOXC4 is closely related to NF-κB signaling and a change in cell-cycle status, which containing potential of clinical applications.
Collapse
|
3
|
Brotto DB, Siena ÁDD, de Barros II, Carvalho SDCES, Muys BR, Goedert L, Cardoso C, Plaça JR, Ramão A, Squire JA, Araujo LF, Silva WAD. Contributions of HOX genes to cancer hallmarks: Enrichment pathway analysis and review. Tumour Biol 2020; 42:1010428320918050. [PMID: 32456563 DOI: 10.1177/1010428320918050] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Homeobox genes function as master regulatory transcription factors during development, and their expression is often altered in cancer. The HOX gene family was initially studied intensively to understand how the expression of each gene was involved in forming axial patterns and shaping the body plan during embryogenesis. More recent investigations have discovered that HOX genes can also play an important role in cancer. The literature has shown that the expression of HOX genes may be increased or decreased in different tumors and that these alterations may differ depending on the specific HOX gene involved and the type of cancer being investigated. New studies are also emerging, showing the critical role of some members of the HOX gene family in tumor progression and variation in clinical response. However, there has been limited systematic evaluation of the various contributions of each member of the HOX gene family in the pathways that drive the common phenotypic changes (or "hallmarks") and that underlie the transformation of normal cells to cancer cells. In this review, we investigate the context of the engagement of HOX gene targets and their downstream pathways in the acquisition of competence of tumor cells to undergo malignant transformation and tumor progression. We also summarize published findings on the involvement of HOX genes in carcinogenesis and use bioinformatics methods to examine how their downstream targets and pathways are involved in each hallmark of the cancer phenotype.
Collapse
Affiliation(s)
- Danielle Barbosa Brotto
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,National Institute of Science and Technology in Stem Cell and Cell Therapy (INCT/CNPq) and Center for Cell-Based Therapy, CEPID/FAPESP, Ribeirão Preto, Brazil
| | - Ádamo Davi Diógenes Siena
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,National Institute of Science and Technology in Stem Cell and Cell Therapy (INCT/CNPq) and Center for Cell-Based Therapy, CEPID/FAPESP, Ribeirão Preto, Brazil
| | - Isabela Ichihara de Barros
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,National Institute of Science and Technology in Stem Cell and Cell Therapy (INCT/CNPq) and Center for Cell-Based Therapy, CEPID/FAPESP, Ribeirão Preto, Brazil
| | - Simone da Costa E Silva Carvalho
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,National Institute of Science and Technology in Stem Cell and Cell Therapy (INCT/CNPq) and Center for Cell-Based Therapy, CEPID/FAPESP, Ribeirão Preto, Brazil
| | - Bruna Rodrigues Muys
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,National Institute of Science and Technology in Stem Cell and Cell Therapy (INCT/CNPq) and Center for Cell-Based Therapy, CEPID/FAPESP, Ribeirão Preto, Brazil
| | - Lucas Goedert
- National Institute of Science and Technology in Stem Cell and Cell Therapy (INCT/CNPq) and Center for Cell-Based Therapy, CEPID/FAPESP, Ribeirão Preto, Brazil.,Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Cibele Cardoso
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,National Institute of Science and Technology in Stem Cell and Cell Therapy (INCT/CNPq) and Center for Cell-Based Therapy, CEPID/FAPESP, Ribeirão Preto, Brazil
| | - Jessica Rodrigues Plaça
- National Institute of Science and Technology in Stem Cell and Cell Therapy (INCT/CNPq) and Center for Cell-Based Therapy, CEPID/FAPESP, Ribeirão Preto, Brazil
| | - Anelisa Ramão
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,National Institute of Science and Technology in Stem Cell and Cell Therapy (INCT/CNPq) and Center for Cell-Based Therapy, CEPID/FAPESP, Ribeirão Preto, Brazil
| | - Jeremy Andrew Squire
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON, Canada
| | - Luiza Ferreira Araujo
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,National Institute of Science and Technology in Stem Cell and Cell Therapy (INCT/CNPq) and Center for Cell-Based Therapy, CEPID/FAPESP, Ribeirão Preto, Brazil
| | - Wilson Araújo da Silva
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,National Institute of Science and Technology in Stem Cell and Cell Therapy (INCT/CNPq) and Center for Cell-Based Therapy, CEPID/FAPESP, Ribeirão Preto, Brazil.,Center for Integrative System Biology (CISBi), NAP/USP, University of São Paulo, Ribeirão Preto, Brazil.,Center for Medical Genomics, Clinics Hospital, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
4
|
Kamkar F, Xaymardan M, Asli NS. Hox-Mediated Spatial and Temporal Coding of Stem Cells in Homeostasis and Neoplasia. Stem Cells Dev 2017; 25:1282-9. [PMID: 27462829 DOI: 10.1089/scd.2015.0352] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Hox genes are fundamental components of embryonic patterning and morphogenesis with expression persisting into adulthood. They are also implicated in the development of diseases, particularly neoplastic transformations. The tight spatio-temporal regulation of Hox genes in concordance with embryonic patterning is an outstanding feature of these genes. In this review we have systematically analyzed Hox functions within the stem/progenitor cell compartments and asked whether their temporo-spatial topography is retained within the stem cell domain throughout development and adulthood. In brief, evidence support involvement of Hox genes at several levels along the stem cell hierarchy, including positional identity, stem cell self-renewal, and differentiation. There is also strong evidence to suggest a role for Hox genes during neoplasia. Although fundamental questions are yet to be addressed through more targeted and high- throughput approaches, existing evidence suggests a central role for Hox genes within a continuum along the developmental axes persisting into adult homeostasis and disease.
Collapse
Affiliation(s)
- Fatemeh Kamkar
- 1 Department of Cell and Molecular Medicine, Faculty of Medicine, University of Ottawa , Ontario, Canada
| | - Munira Xaymardan
- 2 Discipline of Life Sciences, Faculty of Dentistry, University of Sydney , Westmead Hospital, Westmead, Australia
| | - Naisana S Asli
- 2 Discipline of Life Sciences, Faculty of Dentistry, University of Sydney , Westmead Hospital, Westmead, Australia
| |
Collapse
|
5
|
Shen S, Wang G, Shi Q, Zhang R, Zhao Y, Wei Y, Chen F, Christiani DC. Seven-CpG-based prognostic signature coupled with gene expression predicts survival of oral squamous cell carcinoma. Clin Epigenetics 2017; 9:88. [PMID: 28852427 PMCID: PMC5571486 DOI: 10.1186/s13148-017-0392-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 08/16/2017] [Indexed: 12/18/2022] Open
Abstract
Background DNA methylation has started a recent revolution in genomics biology by identifying key biomarkers for multiple cancers, including oral squamous cell carcinoma (OSCC), the most common head and neck squamous cell carcinoma. Methods A multi-stage screening strategy was used to identify DNA-methylation-based signatures for OSCC prognosis. We used The Cancer Genome Atlas (TCGA) data as training set which were validated in two independent datasets from Gene Expression Omnibus (GEO). The correlation between DNA methylation and corresponding gene expression and the prognostic value of the gene expression were explored as well. Results The seven DNA methylation CpG sites were identified which were significantly associated with OSCC overall survival. Prognostic signature, a weighted linear combination of the seven CpG sites, successfully distinguished the overall survival of OSCC patients and had a moderate predictive ability for survival [training set: hazard ratio (HR) = 3.23, P = 5.52 × 10−10, area under the curve (AUC) = 0.76; validation set 1: HR = 2.79, P = 0.010, AUC = 0.67; validation set 2: HR = 3.69, P = 0.011, AUC = 0.66]. Stratification analysis by human papillomavirus status, clinical stage, age, gender, smoking status, and grade retained statistical significance. Expression of genes corresponding to candidate CpG sites (AJAP1, SHANK2, FOXA2, MT1A, ZNF570, HOXC4, and HOXB4) was also significantly associated with patient’s survival. Signature integrating of DNA methylation, gene expression, and clinical information showed a superior ability for prognostic prediction (AUC = 0.78). Conclusion Prognostic signature integrated of DNA methylation, gene expression, and clinical information provides a better prognostic prediction value for OSCC patients than that with clinical information only. Electronic supplementary material The online version of this article (doi:10.1186/s13148-017-0392-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sipeng Shen
- Department of Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China.,China International Cooperation Center of Environment and Human Health, Nanjing Medical University, Nanjing, China.,Department of Environmental Health, Harvard School of Public Health, Boston, MA USA
| | - Guanrong Wang
- National Health and Family Planning Commission Contraceptives Adverse Reaction Surveillance Center, Jiangsu Institute of Planned Parenthood Research, Nanjing, China
| | - Qianwen Shi
- Department of Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Ruyang Zhang
- Department of Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China.,China International Cooperation Center of Environment and Human Health, Nanjing Medical University, Nanjing, China
| | - Yang Zhao
- Department of Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China.,China International Cooperation Center of Environment and Human Health, Nanjing Medical University, Nanjing, China
| | - Yongyue Wei
- Department of Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China.,China International Cooperation Center of Environment and Human Health, Nanjing Medical University, Nanjing, China
| | - Feng Chen
- Department of Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China.,China International Cooperation Center of Environment and Human Health, Nanjing Medical University, Nanjing, China.,Ministry of Education Key Laboratory for Modern Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China.,101 Longmian Avenue, Nanjing, Jiangsu 211136 China
| | - David C Christiani
- China International Cooperation Center of Environment and Human Health, Nanjing Medical University, Nanjing, China.,Department of Environmental Health, Harvard School of Public Health, Boston, MA USA
| |
Collapse
|
6
|
FOXtrotting with PUMILIOs. Blood 2017; 129:2459-2460. [DOI: 10.1182/blood-2017-03-771469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
7
|
PUMILIO/FOXP1 signaling drives expansion of hematopoietic stem/progenitor and leukemia cells. Blood 2017; 129:2493-2506. [PMID: 28232582 DOI: 10.1182/blood-2016-10-747436] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 02/20/2017] [Indexed: 12/13/2022] Open
Abstract
RNA-binding proteins (RBPs) have emerged as important regulators of invertebrate adult stem cells, but their activities remain poorly appreciated in mammals. Using a short hairpin RNA strategy, we demonstrate here that the 2 mammalian RBPs, PUMILIO (PUM)1 and PUM2, members of the PUF family of posttranscriptional regulators, are essential for hematopoietic stem/progenitor cell (HSPC) proliferation and survival in vitro and in vivo upon reconstitution assays. Moreover, we found that PUM1/2 sustain myeloid leukemic cell growth. Through a proteomic approach, we identified the FOXP1 transcription factor as a new target of PUM1/2. Contrary to its canonical repressive activity, PUM1/2 rather promote FOXP1 expression by a direct binding to 2 canonical PUM responsive elements present in the FOXP1-3' untranslated region (UTR). Expression of FOXP1 strongly correlates with PUM1 and PUM2 levels in primary HSPCs and myeloid leukemia cells. We demonstrate that FOXP1 by itself supports HSPC and leukemic cell growth, thus mimicking PUM activities. Mechanistically, FOXP1 represses the expression of the p21-CIP1 and p27-KIP1 cell cycle inhibitors. Enforced FOXP1 expression reverses shPUM antiproliferative and proapoptotic activities. Altogether, our results reveal a novel regulatory pathway, underscoring a previously unknown and interconnected key role of PUM1/2 and FOXP1 in regulating normal HSPC and leukemic cell growth.
Collapse
|
8
|
Xin C, Zhao C, Yin X, Wu S, Su Z. Bioinformatics analysis of molecular mechanism of the expansion of hematopoietic stem cell transduced by HOXB4/HOXC4. Hematology 2016; 21:462-469. [PMID: 26923762 DOI: 10.1080/10245332.2015.1101978] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
OBJECTIVES We aimed to identify the potential HOXB4/HOXC4 downstream effectors and elucidate their regulatory mechanism in the expansion of hematopoietic stem cell (HSC). METHODS The microarray data GSE24379 were downloaded from Gene Expression Omnibus database, including 12 human CD34(+) hematopoietic cells with irradiated EGFP-, HOXB4-, or HOXC4-transduced MS-5 cells, respectively. Then common differentially expressed genes (DEGs) in HOXB4- and HOXC4-treated hematopoietic cells (HOXB4&HOXC4.DEGs) were screened out. Protein-protein interaction (PPI) network was constructed and functional modules analysis was performed. Pathway enrichment analysis was performed using the Database for Annotation Visualization and Integrated Discovery. Besides, transcription regulatory network (TRN) was constructed to screen transcription factors (TFs) corresponding to HOXB4&HOXC4.DEGs. RESULTS A total of 408 HOXB4&HOXC4.DEGs (373 up- and 35 down-regulated) in hematopoietic cells were identified. Tumor protein p53 (TP53) had the highest degrees in PPI network. Cyclin B1 (CCNB1) was a hub node in Cluster 1. V-myc avian myelocytomatosis viral oncogene homolog (MYC) and MYC-associated factor X (MAX) were important TFs with higher degrees. Meanwhile, MYC, TP53, and CCNB1 were significantly enriched in cell cycle. CONCLUSION MYC, MAX, TP53, and CCNB1 may be crucial HOXB4/HOXC4 downstream molecules potentially involved in HSCs expansion, and HOXB4 and HOXC4 homeoprotein could display positive effects on expansion of human HSCs via regulating these genes.
Collapse
Affiliation(s)
- Chunlei Xin
- a Department of Hematology , The Affiliated Hospital of Qingdao University , No. 16, Jiangsu Road, Qingdao City , Shandong Province , 266003 , P.R. China
- b Department of Hematology , Jining No. 1 People's Hospital , No. 6, Jiankang Road, Jining City , Shandong Province , 272011 , P.R. China
| | - Chunting Zhao
- a Department of Hematology , The Affiliated Hospital of Qingdao University , No. 16, Jiangsu Road, Qingdao City , Shandong Province , 266003 , P.R. China
| | - Xiangcong Yin
- a Department of Hematology , The Affiliated Hospital of Qingdao University , No. 16, Jiangsu Road, Qingdao City , Shandong Province , 266003 , P.R. China
| | - Shaoling Wu
- a Department of Hematology , The Affiliated Hospital of Qingdao University , No. 16, Jiangsu Road, Qingdao City , Shandong Province , 266003 , P.R. China
| | - Zhan Su
- a Department of Hematology , The Affiliated Hospital of Qingdao University , No. 16, Jiangsu Road, Qingdao City , Shandong Province , 266003 , P.R. China
| |
Collapse
|
9
|
Epigenetic reprogramming of fallopian tube fimbriae in BRCA mutation carriers defines early ovarian cancer evolution. Nat Commun 2016; 7:11620. [PMID: 27216078 PMCID: PMC4890182 DOI: 10.1038/ncomms11620] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 04/14/2016] [Indexed: 02/06/2023] Open
Abstract
The exact timing and contribution of epigenetic reprogramming to carcinogenesis are unclear. Women harbouring BRCA1/2 mutations demonstrate a 30–40-fold increased risk of high-grade serous extra-uterine Müllerian cancers (HGSEMC), otherwise referred to as ‘ovarian carcinomas', which frequently develop from fimbrial cells but not from the proximal portion of the fallopian tube. Here we compare the DNA methylome of the fimbrial and proximal ends of the fallopian tube in BRCA1/2 mutation carriers and non-carriers. We show that the number of CpGs displaying significant differences in methylation levels between fimbrial and proximal fallopian tube segments are threefold higher in BRCA mutation carriers than in controls, correlating with overexpression of activation-induced deaminase in their fimbrial epithelium. The differentially methylated CpGs accurately discriminate HGSEMCs from non-serous subtypes. Epigenetic reprogramming is an early pre-malignant event integral to BRCA1/2 mutation-driven carcinogenesis. Our findings may provide a basis for cancer-preventative strategies. Women with germline variants in BRCA genes are predisposed to ovarian cancer. In this study, the authors demonstrate that fimbrial tissue from the ovary, the site of ovarian cancer, in BRCA mutant carriers contains marked DNA methylation changes compared with the proximal region of the ovary.
Collapse
|
10
|
Bhatia S, Reister S, Mahotka C, Meisel R, Borkhardt A, Grinstein E. Control of AC133/CD133 and impact on human hematopoietic progenitor cells through nucleolin. Leukemia 2015; 29:2208-2220. [PMID: 26183533 DOI: 10.1038/leu.2015.146] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 05/19/2015] [Accepted: 05/29/2015] [Indexed: 01/01/2023]
Abstract
AC133 is a prominent surface marker of CD34+ and CD34- hematopoietic stem/progenitor cell (HSPC) subsets. AC133+ HSPCs contain high progenitor cell activity and are capable of hematopoietic reconstitution. Furthermore, AC133 is used for prospective isolation of tumor-initiating cells in several hematological malignancies. Nucleolin is a multifunctional factor of growing and cancer cells, which is aberrantly active in certain hematological neoplasms, and serves as a candidate molecular target for cancer therapy. Nucleolin is involved in gene transcription and RNA metabolism and is prevalently expressed in HSPCs, as opposed to differentiated hematopoietic tissue. The present study dissects nucleolin-mediated activation of surface AC133 and its cognate gene CD133, via specific interaction of nucleolin with the tissue-dependent CD133 promoter P1, as a mechanism that crucially contributes to AC133 expression in CD34+ HSPCs. In mobilized peripheral blood (MPB)-derived HSPCs, nucleolin elevates colony-forming unit (CFU) frequencies and enriches granulocyte-macrophage CFUs. Furthermore, nucleolin amplifies long-term culture-initiating cells and also promotes long-term, cytokine-dependent maintenance of hematopoietic progenitor cells. Active β-catenin, active Akt and Bcl-2 levels in MPB-derived HSPCs are nucleolin-dependent, and effects of nucleolin on these cells partially rely on β-catenin activity. The study provides new insights into molecular network relevant to stem/progenitor cells in normal and malignant hematopoiesis.
Collapse
Affiliation(s)
- S Bhatia
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Heinrich Heine University, Düsseldorf, Germany
| | - S Reister
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Heinrich Heine University, Düsseldorf, Germany
| | - C Mahotka
- Institute of Pathology, Heinrich Heine University, Düsseldorf, Germany
| | - R Meisel
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Heinrich Heine University, Düsseldorf, Germany
| | - A Borkhardt
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Heinrich Heine University, Düsseldorf, Germany
| | - E Grinstein
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|
11
|
Fournier M, Lebert-Ghali CÉ, Bijl JJ. HOXA4 provides stronger engraftment potential to short-term repopulating cells than HOXB4. Stem Cells Dev 2015; 24:2413-22. [PMID: 26166023 DOI: 10.1089/scd.2015.0063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Genes of the HOX4 paralog group have been shown to expand hematopoietic stem cells (HSCs). Endogenous expression of HOXA4 is 10-fold higher than HOXB4 in embryonic primitive hematopoietic cells undergoing self-renewal suggesting a more potent capacity of HOXA4 to expand HSC. In this study, we provide evidence by direct competitive bone marrow cultures that HOXA4 and HOXB4 induce self-renewal of primitive hematopoietic cells with identical kinetics. Transplantation assays show that short-term repopulation by HOXA4-overexpressing multilineage progenitors was significantly greater than HOXB4-overexpressing progenitors in vivo, indicating differences in the sensitivity of the cells to external signals. Small array gene expression analysis showed an increase in multiple Notch and Wnt signaling -associated genes, including receptors and ligands, as well as pluripotency genes, for both HOXA4- and HOXB4-overexpressing cells, which was more pronounced for HOXA4, suggesting that both HOX proteins may assert their affects through intrinsic and extrinsic pathways to induce self-renewal of primitive hematopoietic cells. Thus, HOXA4 increases short-term repopulation to higher levels than HOXB4, which may involve Notch signaling.
Collapse
Affiliation(s)
- Marilaine Fournier
- 1 Centre de Recherche de l'Hôpital Maisonneuve-Rosemont , Montréal, Québec, Canada .,2 Départment de Microbiologie et Immunologie et, Université de Montréal , Montréal, Québec, Canada
| | - Charles-Étienne Lebert-Ghali
- 1 Centre de Recherche de l'Hôpital Maisonneuve-Rosemont , Montréal, Québec, Canada .,2 Départment de Microbiologie et Immunologie et, Université de Montréal , Montréal, Québec, Canada
| | - Janetta J Bijl
- 1 Centre de Recherche de l'Hôpital Maisonneuve-Rosemont , Montréal, Québec, Canada .,3 Départment de Médecine, Université de Montréal , Montréal, Québec, Canada
| |
Collapse
|
12
|
Abstract
Signaling classically involves the secretion of diverse molecules that bind specific cell-surface receptors and engage intracellular transduction cascades. Some exceptions-namely, lipophilic agents-can cross plasma membranes to bind intracellular receptors and be carried to the nucleus to regulate transcription. Homeoprotein transcription factors are among the few proteins with such a capacity. Here, we review the signaling activities of homeoproteins in the developing and adult nervous system, with particular emphasis on axon/cell migration and postnatal critical periods of cerebral cortex plasticity. We also describe homeoprotein non-cell-autonomous mechanisms and explore how this "novel" signaling pathway impacts emerging research in brain development and physiology. In this context, we explore hypotheses on the evolution of signaling, the role of homeoproteins as early morphogens, and their therapeutic potential for neurological and psychiatric diseases.
Collapse
|
13
|
Benyoucef A, Calvo J, Renou L, Arcangeli ML, van den Heuvel A, Amsellem S, Mehrpour M, Larghero J, Soler E, Naguibneva I, Pflumio F. The SCL/TAL1 Transcription Factor Represses the Stress Protein DDiT4/REDD1 in Human Hematopoietic Stem/Progenitor Cells. Stem Cells 2015; 33:2268-79. [PMID: 25858676 DOI: 10.1002/stem.2028] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Accepted: 03/11/2015] [Indexed: 01/09/2023]
Abstract
Hematopoietic stem/progenitor cells (HSPCs) are regulated through numerous molecular mechanisms that have not been interconnected. The transcription factor stem cell leukemia/T-cell acute leukemia 1 (TAL1) controls human HSPC but its mechanism of action is not clarified. In this study, we show that knockdown (KD) or short-term conditional over-expression (OE) of TAL1 in human HSPC ex vivo, respectively, blocks and maintains hematopoietic potentials, affecting proliferation of human HSPC. Comparative gene expression analyses of TAL1/KD and TAL1/OE human HSPC revealed modifications of cell cycle regulators as well as previously described TAL1 target genes. Interestingly an inverse correlation between TAL1 and DNA damage-induced transcript 4 (DDiT4/REDD1), an inhibitor of the mammalian target of rapamycin (mTOR) pathway, is uncovered. Low phosphorylation levels of mTOR target proteins in TAL1/KD HSPC confirmed an interplay between mTOR pathway and TAL1 in correlation with TAL1-mediated effects of HSPC proliferation. Finally chromatin immunoprecipitation experiments performed in human HSPC showed that DDiT4 is a direct TAL1 target gene. Functional analyses showed that TAL1 represses DDiT4 expression in HSPCs. These results pinpoint DDiT4/REDD1 as a novel target gene regulated by TAL1 in human HSPC and establish for the first time a link between TAL1 and the mTOR pathway in human early hematopoietic cells. Stem Cells 2015;33:2268-2279.
Collapse
Affiliation(s)
- Aissa Benyoucef
- CEA, DSV-IRCM-SCSR-LSHL, UMR 967, équipe labellisée Ligue Nationale contre le Cancer, Fontenay-aux-Roses, Paris, France.,INSERM, U967, Fontenay-aux-Roses, Paris, France.,Université Paris Diderot, UMR 967, Fontenay-aux-Roses, Paris, France.,Université Paris-Sud, UMR 967, Fontenay-aux-Roses, Paris, France
| | - Julien Calvo
- CEA, DSV-IRCM-SCSR-LSHL, UMR 967, équipe labellisée Ligue Nationale contre le Cancer, Fontenay-aux-Roses, Paris, France.,INSERM, U967, Fontenay-aux-Roses, Paris, France.,Université Paris Diderot, UMR 967, Fontenay-aux-Roses, Paris, France.,Université Paris-Sud, UMR 967, Fontenay-aux-Roses, Paris, France
| | - Laurent Renou
- CEA, DSV-IRCM-SCSR-LSHL, UMR 967, équipe labellisée Ligue Nationale contre le Cancer, Fontenay-aux-Roses, Paris, France.,INSERM, U967, Fontenay-aux-Roses, Paris, France.,Université Paris Diderot, UMR 967, Fontenay-aux-Roses, Paris, France.,Université Paris-Sud, UMR 967, Fontenay-aux-Roses, Paris, France
| | - Marie-Laure Arcangeli
- CEA, DSV-IRCM-SCSR-LSHL, UMR 967, équipe labellisée Ligue Nationale contre le Cancer, Fontenay-aux-Roses, Paris, France.,INSERM, U967, Fontenay-aux-Roses, Paris, France.,Université Paris Diderot, UMR 967, Fontenay-aux-Roses, Paris, France.,Université Paris-Sud, UMR 967, Fontenay-aux-Roses, Paris, France
| | | | - Sophie Amsellem
- Centre d'Investigation Clinique-BioThérapie, Institut Gustave Roussy, Villejuif, Paris, France
| | - Maryam Mehrpour
- INSERM U1151-CNRS UMR 8253 Institut Necker Enfants-Malades (INEM), Université Paris Descartes, Paris, France
| | - Jerome Larghero
- Cell Therapy Unit and Clinical Investigation Center in Biotherapies, AP-HP, Saint-Louis Hospital, Paris, France
| | - Eric Soler
- INSERM, U967, Fontenay-aux-Roses, Paris, France.,Department of Cell Biology, Erasmus MC, Rotterdam, The Netherlands.,CEA, DSV-IRCM-SCSR-LHM, UMR967, Fontenay-aux-Roses, Paris, France
| | - Irina Naguibneva
- CEA, DSV-IRCM-SCSR-LSHL, UMR 967, équipe labellisée Ligue Nationale contre le Cancer, Fontenay-aux-Roses, Paris, France.,INSERM, U967, Fontenay-aux-Roses, Paris, France.,Université Paris Diderot, UMR 967, Fontenay-aux-Roses, Paris, France.,Université Paris-Sud, UMR 967, Fontenay-aux-Roses, Paris, France
| | - Francoise Pflumio
- CEA, DSV-IRCM-SCSR-LSHL, UMR 967, équipe labellisée Ligue Nationale contre le Cancer, Fontenay-aux-Roses, Paris, France.,INSERM, U967, Fontenay-aux-Roses, Paris, France.,Université Paris Diderot, UMR 967, Fontenay-aux-Roses, Paris, France.,Université Paris-Sud, UMR 967, Fontenay-aux-Roses, Paris, France
| |
Collapse
|
14
|
Xenograft models for normal and malignant stem cells. Blood 2015; 125:2630-40. [DOI: 10.1182/blood-2014-11-570218] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 03/04/2015] [Indexed: 12/18/2022] Open
Abstract
Abstract
The model systems available for studying human hematopoiesis, malignant hematopoiesis, and hematopoietic stem cell (HSC) function in vivo have improved dramatically over the last decade, primarily due to improvements in xenograft mouse strains. Several recent reviews have focused on the historic development of immunodeficient mice over the last 2 decades, as well as their use in understanding human HSC and leukemia stem cell (LSC) biology and function in the context of a humanized mouse. However, in the intervening time since these reviews, a number of new mouse models, technical approaches, and scientific advances have been made. In this review, we update the reader on the newest and best models and approaches available for studying human malignant and normal HSCs in immunodeficient mice, including newly developed mice for use in chemotherapy testing and improved techniques for humanizing mice without laborious purification of HSC. We also review some relevant scientific findings from xenograft studies and highlight the continued limitations that confront researchers working with human HSC and LSC in vivo.
Collapse
|
15
|
Catelain C, Michelet F, Hattabi A, Poirault-Chassac S, Kortulewski T, Tronik-Le Roux D, Vainchenker W, Lauret E. The Notch Delta-4 ligand helps to maintain the quiescence and the short-term reconstitutive potential of haematopoietic progenitor cells through activation of a key gene network. Stem Cell Res 2014; 13:431-41. [PMID: 25460604 DOI: 10.1016/j.scr.2014.10.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 09/17/2014] [Accepted: 10/01/2014] [Indexed: 12/14/2022] Open
Abstract
Understanding the role of Notch and its ligands within the different bone marrow niches could shed light on the mechanisms regulating haematopoietic progenitor cells (HPCs) maintenance and self-renewal. Here, we report that murine bone marrow HPCs activation by the vascular Notch Delta-4 ligand maintains a significant proportion of cells specifically in the G0 state. Furthermore, Delta-4/Notch pathway limits significantly the loss of the in vivo short-term reconstitutive potential upon transplantation of Delta-4 activated HPCs into lethally irradiated recipient mice. Both effects are directly correlated with the decrease of cell cycle genes transcription such as CYCLIN-D1, -D2, and -D3, and the upregulation of stemness related genes transcription such as BMI1, GATA2, HOXB4 and C-MYC. In addition, the transcriptional screening also highlights new downstream post-transcriptional factors, named PUMILIO1 and -2, as part of the stem signature associated with the Delta-4/Notch signalling pathway.
Collapse
Affiliation(s)
- Cyril Catelain
- Inserm U974, CNRS (UMR 7215), UM 76, Institut de Myologie, Paris F-75013, France; Inserm, U1009, 114 rue E. Vaillant, Villejuif, F-94805, France; Institut Gustave Roussy, Villejuif, F-94805, France; Université Paris-Sud 11, Orsay, F-91405, France.
| | - Fabio Michelet
- Institut Cochin, Université Paris Descartes, CNRS (UMR 8104), Paris, France; Inserm, U1016, Paris, France
| | - Aurore Hattabi
- Institut Cochin, Université Paris Descartes, CNRS (UMR 8104), Paris, France; Inserm, U1016, Paris, France
| | - Sonia Poirault-Chassac
- Inserm, U1009, 114 rue E. Vaillant, Villejuif, F-94805, France; Institut Gustave Roussy, Villejuif, F-94805, France; Université Paris-Sud 11, Orsay, F-91405, France
| | | | | | - William Vainchenker
- Inserm, U1009, 114 rue E. Vaillant, Villejuif, F-94805, France; Institut Gustave Roussy, Villejuif, F-94805, France; Université Paris-Sud 11, Orsay, F-91405, France
| | - Evelyne Lauret
- Institut Cochin, Université Paris Descartes, CNRS (UMR 8104), Paris, France; Inserm, U1016, Paris, France
| |
Collapse
|
16
|
Polycomb repressive complex 2 regulates normal hematopoietic stem cell function in a developmental-stage-specific manner. Cell Stem Cell 2013; 14:68-80. [PMID: 24239285 DOI: 10.1016/j.stem.2013.10.001] [Citation(s) in RCA: 258] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Revised: 07/02/2013] [Accepted: 10/01/2013] [Indexed: 12/12/2022]
Abstract
Recent studies point to a pivotal role of Polycomb repressive complex 2 (PRC2) in stem cell function and cancer. Loss-of-function approaches targeting individual PRC2 subunits have, however, generated findings that are difficult to reconcile. Here, we prevent assembly of both Ezh1- and Ezh2-containing PRC2 complexes by conditional deletion of Eed, a core subunit, and assess hematopoiesis. We find that deletion of Eed exhausts adult bone marrow hematopoietic stem cells (HSCs), although fetal liver HSCs are produced in normal numbers. Eed-null neonatal HSCs express HSC signature genes but are defective in maintenance and differentiation. Comparative gene expression profiling revealed that neonatal and adult HSCs lacking Eed upregulated gene sets of conflicting pathways. Deletion of Cdkn2a, a PRC2 target gene, in Eed-null mice enhances hematopoietic stem/progenitor cell (HSPC) survival but fails to restore HSC functions. Taken together, our findings define developmental-stage-specific requirements for canonical PRC2 complexes in normal HSC function.
Collapse
|
17
|
Transcriptional regulation of haematopoietic stem cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 786:187-212. [PMID: 23696358 DOI: 10.1007/978-94-007-6621-1_11] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Haematopoietic stem cells (HSCs) are a rare cell population found in the bone marrow of adult mammals and are responsible for maintaining the entire haematopoietic system. Definitive HSCs are produced from mesoderm during embryonic development, from embryonic day 10 in the mouse. HSCs seed the foetal liver before migrating to the bone marrow around the time of birth. In the adult, HSCs are largely quiescent but have the ability to divide to self-renew and expand, or to proliferate and differentiate into any mature haematopoietic cell type. Both the specification of HSCs during development and their cellular choices once formed are tightly controlled at the level of transcription. Numerous transcriptional regulators of HSC specification, expansion, homeostasis and differentiation have been identified, primarily from analysis of mouse gene knockout experiments and transplantation assays. These include transcription factors, epigenetic modifiers and signalling pathway effectors. This chapter reviews the current knowledge of these HSC transcriptional regulators, predominantly focusing on the transcriptional regulation of mouse HSCs, although transcriptional regulation of human HSCs is also mentioned where relevant. Due to the breadth and maturity of this field, we have prioritised recently identified examples of HSC transcriptional regulators. We go on to highlight additional layers of control that regulate expression and activity of HSC transcriptional regulators and discuss how chromosomal translocations that result in fusion proteins of these HSC transcriptional regulators commonly drive leukaemias through transcriptional dysregulation.
Collapse
|
18
|
Yao CL, Hsu SC, Hwang SM, Lee WC, Chiou TJ. A stromal-free, serum-free system to expand ex vivo hematopoietic stem cells from mobilized peripheral blood of patients with hematologic malignancies and healthy donors. Cytotherapy 2013; 15:1126-35. [PMID: 23768928 DOI: 10.1016/j.jcyt.2013.04.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 03/26/2013] [Accepted: 04/04/2013] [Indexed: 11/26/2022]
Abstract
BACKGROUND AIMS The number of hematopoietic stem cells (HSCs) is critical for transplantation. The ex vivo expansion of mobilized peripheral blood (MPB) HSCs is of clinical value for reconstitution to meet clinical need. METHODS This study proposed a simple, defined, stromal-free and serum-free culture system (SF-HSC medium) for clinical use, which is composed of Iscove's modified Dulbecco's medium, cytokine cocktails and serum substitutes. This study also characterized the cellular properties of expanded MPB CD133(+) HSCs from patients with hematologic malignancies and healthy donors by surface antigen, colony-forming cell, long-term culture-initiating cell, gene expression and in vivo engraftment assays. RESULTS The expanded fold values of CD45(+) white blood cells and CD34(+), CD133(+), CD34(+)CD38(-), CD133(+)CD38(-), CD34(+)CD133(+), colony-forming and long-term culture-initiating cells at the end of 7-day culture from CD133(+) MPB of hematologic malignancies were 9.4-fold, 5.9-fold, 4.0-fold, 35.8-fold, 21.9-fold, 3.8-fold, 11.8-fold and 6.7-fold, and values from healthy donor CD133(+) MPB were 20.7-fold, 14.5-fold, 8.5-fold, 83.8-fold, 37.3-fold, 6.2-fold, 19.1-fold and 14.6-fold. The high enrichment of CD38(-) cells, which were either CD34(+) or CD133(+), sustained the proliferation of early uncommitted HSCs. The expanded cells showed high levels of messenger RNA expression of HOBX4, ABCG2 and HTERT and had the in vivo ability to re-populate NOD/SCID mice. CONCLUSIONS Our results demonstrated that an initial, limited number of MPB CD133(+) HSCs could be expanded functionally in SF-HSC medium. We believe that this serum-free expansion technique can be employed in both basic research and clinical transplantation.
Collapse
Affiliation(s)
- Chao-Ling Yao
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-Li, Taiwan.
| | | | | | | | | |
Collapse
|
19
|
Digiusto DL, Kiem HP. Current translational and clinical practices in hematopoietic cell and gene therapy. Cytotherapy 2013; 14:775-90. [PMID: 22799276 DOI: 10.3109/14653249.2012.694420] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Clinical trials over the last 15 years have demonstrated that cell and gene therapies for cancer, monogenic and infectious disease are feasible and can lead to long-term benefit for patients. However, these trials have been limited to proof-of-principle and were conducted on modest numbers of patients or over long periods of time. In order for these studies to move towards standard practice and commercialization, scalable technologies for the isolation, ex vivo manipulation and delivery of these cells to patients must be developed. Additionally, regulatory strategies and clinical protocols for the collection, creation and delivery of cell products must be generated. In this article we review recent progress in hematopoietic cell and gene therapy, describe some of the current issues facing the field and discuss clinical, technical and regulatory approaches used to navigate the road to product development.
Collapse
Affiliation(s)
- David L Digiusto
- Department of Virology and Laboratory for Cellular Medicine, Beckman Research Institute of the City of Hope, Duarte, California 91010, USA.
| | | |
Collapse
|
20
|
Improved ex vivo expansion of adult hematopoietic stem cells by overcoming CUL4-mediated degradation of HOXB4. Blood 2013; 121:4082-9. [PMID: 23520338 DOI: 10.1182/blood-2012-09-455204] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Direct transduction of the homeobox (HOX) protein HOXB4 promotes the proliferation of hematopoietic stem cells (HSCs) without induction of leukemogenesis, but requires frequent administration to overcome its short protein half-life (∼1 hour). We demonstrate here that HOXB4 protein levels are post-translationally regulated by the CUL4 ubiquitin ligase, and define the degradation signal sequence (degron) of HOXB4 required for CUL4-mediated destruction. Additional HOX paralogs share the conserved degron in the homeodomain and are also subject to CUL4-mediated degradation, indicating that CUL4 likely controls the stability of all HOX proteins. Moreover, we engineered a degradation-resistant HOXB4 that conferred a growth advantage over wild-type HOXB4 in myeloid progenitor cells. Direct transduction of recombinant degradation-resistant HOXB4 protein to human adult HSCs significantly enhanced their maintenance in a more primitive state both in vitro and in transplanted NOD/SCID/IL2R-γ(null) mice compared with transduction with wild-type HOXB4 protein. Our studies demonstrate the feasibility of engineering a stable HOXB4 variant to overcome a major technical hurdle in the ex vivo expansion of adult HSCs and early progenitors for human therapeutic use.
Collapse
|
21
|
Increasing hematopoietic stem cell yield to develop mice with human immune systems. BIOMED RESEARCH INTERNATIONAL 2013; 2013:740892. [PMID: 23509770 PMCID: PMC3586441 DOI: 10.1155/2013/740892] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 12/17/2012] [Accepted: 12/27/2012] [Indexed: 01/14/2023]
Abstract
Hematopoietic stem cells (HSCs) are unique in their capacity to give rise to all mature cells of the immune system. For years, HSC transplantation has been used for treatment of genetic and neoplastic diseases of the hematopoietic and immune systems. The sourcing of HSCs from human umbilical cord blood has salient advantages over isolation from mobilized peripheral blood. However, poor sample yield has prompted development of methodologies to expand HSCs ex vivo. Cytokines, trophic factors, and small molecules have been variously used to promote survival and proliferation of HSCs in culture, whilst strategies to lower the concentration of inhibitors in the culture media have recently been applied to promote HSC expansion. In this paper, we outline strategies to expand HSCs in vitro, and to improve engraftment and reconstitution of human immune systems in immunocompromised mice. To the extent that these “humanized” mice are representative of the endogenous human immune system, they will be invaluable tools for both basic science and translational medicine.
Collapse
|
22
|
Larbi A, Gombert JM, Auvray C, l’Homme B, Magniez A, Féraud O, Coulombel L, Chapel A, Mitjavila-Garcia MT, Turhan AG, Haddad R, Bennaceur-Griscelli A. The HOXB4 homeoprotein promotes the ex vivo enrichment of functional human embryonic stem cell-derived NK cells. PLoS One 2012; 7:e39514. [PMID: 22761810 PMCID: PMC3384663 DOI: 10.1371/journal.pone.0039514] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 05/22/2012] [Indexed: 12/15/2022] Open
Abstract
Human embryonic stem cells (hESCs) can be induced to differentiate into blood cells using either co-culture with stromal cells or following human embryoid bodies (hEBs) formation. It is now well established that the HOXB4 homeoprotein promotes the expansion of human adult hematopoietic stem cells (HSCs) but also myeloid and lymphoid progenitors. However, the role of HOXB4 in the development of hematopoietic cells from hESCs and particularly in the generation of hESC-derived NK-progenitor cells remains elusive. Based on the ability of HOXB4 to passively enter hematopoietic cells in a system that comprises a co-culture with the MS-5/SP-HOXB4 stromal cells, we provide evidence that HOXB4 delivery promotes the enrichment of hEB-derived precursors that could differentiate into fully mature and functional NK. These hEB-derived NK cells enriched by HOXB4 were characterized according to their CMH class I receptor expression, their cytotoxic arsenal, their expression of IFNγ and CD107a after stimulation and their lytic activity. Furthermore our study provides new insights into the gene expression profile of hEB-derived cells exposed to HOXB4 and shows the emergence of CD34+CD45RA+ precursors from hEBs indicating the lymphoid specification of hESC-derived hematopoietic precursors. Altogether, our results outline the effects of HOXB4 in combination with stromal cells in the development of NK cells from hESCs and suggest the potential use of HOXB4 protein for NK-cell enrichment from pluripotent stem cells.
Collapse
Affiliation(s)
- Aniya Larbi
- Inserm UMR 935, « ESTeam Paris Sud », Stem Cell Core Facility Institut André Lwoff, University Paris Sud 11, Paul Brousse Hospital, Villejuif, France
| | - Jean-Marc Gombert
- Inserm UMR 935, University of Poitiers, CHU Poitiers, Poitiers, France
| | - Céline Auvray
- Inserm U1016, Institut Cochin, Paris, France
- Cnrs UMR 8104, Paris, France
- University Paris Descartes, Sorbonne Paris Cité, France
| | - Bruno l’Homme
- IRSN, PRP-HOM, SRBE, Laboratory of Radiopathology and experimental therapies, Fontenay aux Roses, France
| | - Aurélie Magniez
- Inserm UMR 935, « ESTeam Paris Sud », Stem Cell Core Facility Institut André Lwoff, University Paris Sud 11, Paul Brousse Hospital, Villejuif, France
| | - Olivier Féraud
- Inserm UMR 935, « ESTeam Paris Sud », Stem Cell Core Facility Institut André Lwoff, University Paris Sud 11, Paul Brousse Hospital, Villejuif, France
| | - Laure Coulombel
- Inserm UMR 935, « ESTeam Paris Sud », Stem Cell Core Facility Institut André Lwoff, University Paris Sud 11, Paul Brousse Hospital, Villejuif, France
| | - Alain Chapel
- IRSN, PRP-HOM, SRBE, Laboratory of Radiopathology and experimental therapies, Fontenay aux Roses, France
| | - Maria Teresa Mitjavila-Garcia
- Inserm UMR 935, « ESTeam Paris Sud », Stem Cell Core Facility Institut André Lwoff, University Paris Sud 11, Paul Brousse Hospital, Villejuif, France
| | - Ali G. Turhan
- Inserm UMR 935, « ESTeam Paris Sud », Stem Cell Core Facility Institut André Lwoff, University Paris Sud 11, Paul Brousse Hospital, Villejuif, France
- Inserm UMR 935, University of Poitiers, CHU Poitiers, Poitiers, France
| | - Rima Haddad
- Inserm UMR 935, « ESTeam Paris Sud », Stem Cell Core Facility Institut André Lwoff, University Paris Sud 11, Paul Brousse Hospital, Villejuif, France
- University Paris Sud 11, Faculty of Medicine, Kremlin-Bicêtre, France
- * E-mail:
| | - Annelise Bennaceur-Griscelli
- Inserm UMR 935, « ESTeam Paris Sud », Stem Cell Core Facility Institut André Lwoff, University Paris Sud 11, Paul Brousse Hospital, Villejuif, France
- University Paris Sud 11, Faculty of Medicine, Kremlin-Bicêtre, France
- AP-HP, Laboratory of Hematology, University Hospitals Paris Sud, Paul Brousse Hospital, Villejuif, France
| |
Collapse
|