1
|
Jeddi F, Faghfuri E, Mehranfar S, Soozangar N. The common bisulfite-conversion-based techniques to analyze DNA methylation in human cancers. Cancer Cell Int 2024; 24:240. [PMID: 38982390 PMCID: PMC11234524 DOI: 10.1186/s12935-024-03405-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 06/11/2024] [Indexed: 07/11/2024] Open
Abstract
DNA methylation is an important molecular modification that plays a key role in the expression of cancer genes. Evaluation of epigenetic changes, hypomethylation and hypermethylation, in specific genes are applied for cancer diagnosis. Numerous studies have concentrated on describing DNA methylation patterns as biomarkers for cancer diagnosis monitoring and predicting response to cancer therapy. Various techniques for detecting DNA methylation status in cancers are based on sodium bisulfite treatment. According to the application of these methods in research and clinical studies, they have a number of advantages and disadvantages. The current review highlights sodium bisulfite treatment-based techniques, as well as, the advantages, drawbacks, and applications of these methods in the evaluation of human cancers.
Collapse
Affiliation(s)
- Farhad Jeddi
- Zoonoses Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
- Department of Genetics and Pathology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Elnaz Faghfuri
- Digestive Diseases Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Sahar Mehranfar
- Department of Genetics and Immunology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Narges Soozangar
- Zoonoses Research Center, Ardabil University of Medical Sciences, Ardabil, Iran.
- Digestive Diseases Research Center, Ardabil University of Medical Sciences, Ardabil, Iran.
| |
Collapse
|
2
|
Grønningsæter IS, Reikvam H, Aasebø E, Bartaula-Brevik S, Hernandez-Valladares M, Selheim F, Berven FS, Tvedt TH, Bruserud Ø, Hatfield KJ. Effects of the Autophagy-Inhibiting Agent Chloroquine on Acute Myeloid Leukemia Cells; Characterization of Patient Heterogeneity. J Pers Med 2021; 11:jpm11080779. [PMID: 34442423 PMCID: PMC8399694 DOI: 10.3390/jpm11080779] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/06/2021] [Accepted: 08/07/2021] [Indexed: 12/12/2022] Open
Abstract
Autophagy is a highly conserved cellular degradation process that prevents cell damage and promotes cell survival, and clinical efforts have exploited autophagy inhibition as a therapeutic strategy in cancer. Chloroquine is a well-known antimalarial agent that inhibits late-stage autophagy. We evaluated the effects of chloroquine on cell viability and proliferation of acute myeloid leukemia acute myeloid leukemia (AML) cells derived from 81 AML patients. Our results show that chloroquine decreased AML cell viability and proliferation for the majority of patients. Furthermore, a subgroup of AML patients showed a greater susceptibility to chloroquine, and using hierarchical cluster analysis, we identified 99 genes upregulated in this patient subgroup, including several genes related to leukemogenesis. The combination of chloroquine with low-dose cytarabine had an additive inhibitory effect on AML cell proliferation. Finally, a minority of patients showed increased extracellular constitutive mediator release in the presence of chloroquine, which was associated with strong antiproliferative effects of chloroquine as well as cytarabine. We conclude that chloroquine has antileukemic activity and should be further explored as a therapeutic drug against AML in combination with other cytotoxic or metabolic drugs; however, due to the patient heterogeneity, chloroquine therapy will probably be effective only for selected patients.
Collapse
Affiliation(s)
- Ida Sofie Grønningsæter
- Department of Clinical Science, University of Bergen, N-5021 Bergen, Norway; (I.S.G.); (H.R.); (E.A.); (S.B.-B.)
- Department of Medicine, Akershus University Hospital, N-1478 Lørenskog, Norway
| | - Håkon Reikvam
- Department of Clinical Science, University of Bergen, N-5021 Bergen, Norway; (I.S.G.); (H.R.); (E.A.); (S.B.-B.)
- Department of Medicine, Haukeland University Hospital, N-5021 Bergen, Norway;
| | - Elise Aasebø
- Department of Clinical Science, University of Bergen, N-5021 Bergen, Norway; (I.S.G.); (H.R.); (E.A.); (S.B.-B.)
- The Proteomics Facility of the University of Bergen (PROBE), Department of Biomedicine, University of Bergen, N-5009 Bergen, Norway; (M.H.-V.); (F.S.); (F.S.B.)
| | - Sushma Bartaula-Brevik
- Department of Clinical Science, University of Bergen, N-5021 Bergen, Norway; (I.S.G.); (H.R.); (E.A.); (S.B.-B.)
| | - Maria Hernandez-Valladares
- The Proteomics Facility of the University of Bergen (PROBE), Department of Biomedicine, University of Bergen, N-5009 Bergen, Norway; (M.H.-V.); (F.S.); (F.S.B.)
- The Department of Biomedicine, University of Bergen, N-5009 Bergen, Norway
| | - Frode Selheim
- The Proteomics Facility of the University of Bergen (PROBE), Department of Biomedicine, University of Bergen, N-5009 Bergen, Norway; (M.H.-V.); (F.S.); (F.S.B.)
- The Department of Biomedicine, University of Bergen, N-5009 Bergen, Norway
| | - Frode S. Berven
- The Proteomics Facility of the University of Bergen (PROBE), Department of Biomedicine, University of Bergen, N-5009 Bergen, Norway; (M.H.-V.); (F.S.); (F.S.B.)
- The Department of Biomedicine, University of Bergen, N-5009 Bergen, Norway
| | - Tor Henrik Tvedt
- Department of Medicine, Haukeland University Hospital, N-5021 Bergen, Norway;
- Department of Hematology, Oslo University Hospital—The National Hospital, N-0372 Oslo, Norway
| | - Øystein Bruserud
- Department of Clinical Science, University of Bergen, N-5021 Bergen, Norway; (I.S.G.); (H.R.); (E.A.); (S.B.-B.)
- Department of Medicine, Haukeland University Hospital, N-5021 Bergen, Norway;
- Correspondence: (Ø.B.); (K.J.H.)
| | - Kimberley Joanne Hatfield
- Department of Clinical Science, University of Bergen, N-5021 Bergen, Norway; (I.S.G.); (H.R.); (E.A.); (S.B.-B.)
- Department of Immunology and Transfusion Medicine, Haukeland University Hospital, N-5009 Bergen, Norway
- Correspondence: (Ø.B.); (K.J.H.)
| |
Collapse
|
3
|
Proteomic Studies of Primary Acute Myeloid Leukemia Cells Derived from Patients Before and during Disease-Stabilizing Treatment Based on All-Trans Retinoic Acid and Valproic Acid. Cancers (Basel) 2021; 13:cancers13092143. [PMID: 33946813 PMCID: PMC8125016 DOI: 10.3390/cancers13092143] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/16/2021] [Accepted: 04/20/2021] [Indexed: 12/18/2022] Open
Abstract
All-trans retinoic acid (ATRA) and valproic acid (VP) have been tried in the treatment of non-promyelocytic variants of acute myeloid leukemia (AML). Non-randomized studies suggest that the two drugs can stabilize AML and improve normal peripheral blood cell counts. In this context, we used a proteomic/phosphoproteomic strategy to investigate the in vivo effects of ATRA/VP on human AML cells. Before starting the combined treatment, AML responders showed increased levels of several proteins, especially those involved in neutrophil degranulation/differentiation, M phase regulation and the interconversion of nucleotide di- and triphosphates (i.e., DNA synthesis and binding). Several among the differentially regulated phosphorylation sites reflected differences in the regulation of RNA metabolism and apoptotic events at the same time point. These effects were mainly caused by increased cyclin dependent kinase 1 and 2 (CDK1/2), LIM domain kinase 1 and 2 (LIMK1/2), mitogen-activated protein kinase 7 (MAPK7) and protein kinase C delta (PRKCD) activity in responder cells. An extensive effect of in vivo treatment with ATRA/VP was the altered level and phosphorylation of proteins involved in the regulation of transcription/translation/RNA metabolism, especially in non-responders, but the regulation of cell metabolism, immune system and cytoskeletal functions were also affected. Our analysis of serial samples during the first week of treatment suggest that proteomic and phosphoproteomic profiling can be used for the early identification of responders to ATRA/VP-based treatment.
Collapse
|
4
|
Aasebø E, Brenner AK, Birkeland E, Tvedt THA, Selheim F, Berven FS, Bruserud Ø. The Constitutive Extracellular Protein Release by Acute Myeloid Leukemia Cells-A Proteomic Study of Patient Heterogeneity and Its Modulation by Mesenchymal Stromal Cells. Cancers (Basel) 2021; 13:cancers13071509. [PMID: 33806032 PMCID: PMC8037744 DOI: 10.3390/cancers13071509] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 12/20/2022] Open
Abstract
Simple Summary The formation of normal blood cells in the bone marrow is supported by a network of non-hematopoietic cells including connective tissue cells, blood vessel cells and bone-forming cells. These cell types support and regulate the growth of acute myeloid leukemia (AML) cells and communicate with leukemic cells through the release of proteins to their common extracellular microenvironment. One of the AML-supporting normal cell types is a subset of connective tissue cells called mesenchymal stem cells. In the present study, we observed that AML cells release a wide range of diverse proteins into their microenvironment, but patients differ both with regard to the number and amount of released proteins. Inhibition of this bidirectional communication through protein release between AML cells and leukemia-supporting normal cells may become a new strategy for cancer treatment. Abstract Extracellular protein release is important both for the formation of extracellular matrix and for communication between cells. We investigated the extracellular protein release by in vitro cultured normal mesenchymal stem cells (MSCs) and by primary human acute myeloid leukemia (AML) cells derived from 40 consecutive patients. We observed quantifiable levels of 3082 proteins in our study; for the MSCs, we detected 1446 proteins, whereas the number of released proteins for the AML cells showed wide variation between patients (average number 1699, range 557–2380). The proteins were derived from various cellular compartments (e.g., cell membrane, nucleus, and cytoplasms), several organelles (e.g., cytoskeleton, endoplasmatic reticulum, Golgi apparatus, and mitochondria) and had various functions (e.g., extracellular matrix and exosomal proteins, cytokines, soluble adhesion molecules, protein synthesis, post-transcriptional modulation, RNA binding, and ribonuclear proteins). Thus, AML patients were very heterogeneous both regarding the number of proteins and the nature of their extracellularly released proteins. The protein release profiles of MSCs and primary AML cells show a considerable overlap, but a minority of the proteins are released only or mainly by the MSC, including several extracellular matrix molecules. Taken together, our observations suggest that the protein profile of the extracellular bone marrow microenvironment differs between AML patients, these differences are mainly caused by the protein release by the leukemic cells but this leukemia-associated heterogeneity of the overall extracellular protein profile is modulated by the constitutive protein release by normal MSCs.
Collapse
Affiliation(s)
- Elise Aasebø
- Department of Clinical Science, University of Bergen, 5021 Bergen, Norway; (E.A.); (A.K.B.)
- The Proteomics Facility of the University of Bergen (PROBE), University of Bergen, 5009 Bergen, Norway; (E.B.); (F.S.); (F.S.B.)
| | - Annette K. Brenner
- Department of Clinical Science, University of Bergen, 5021 Bergen, Norway; (E.A.); (A.K.B.)
| | - Even Birkeland
- The Proteomics Facility of the University of Bergen (PROBE), University of Bergen, 5009 Bergen, Norway; (E.B.); (F.S.); (F.S.B.)
| | | | - Frode Selheim
- The Proteomics Facility of the University of Bergen (PROBE), University of Bergen, 5009 Bergen, Norway; (E.B.); (F.S.); (F.S.B.)
| | - Frode S. Berven
- The Proteomics Facility of the University of Bergen (PROBE), University of Bergen, 5009 Bergen, Norway; (E.B.); (F.S.); (F.S.B.)
| | - Øystein Bruserud
- The Proteomics Facility of the University of Bergen (PROBE), University of Bergen, 5009 Bergen, Norway; (E.B.); (F.S.); (F.S.B.)
- Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway;
- Correspondence: or
| |
Collapse
|
5
|
Chatterjee A, Saha D, Niemann H, Gryshkov O, Glasmacher B, Hofmann N. Effects of cryopreservation on the epigenetic profile of cells. Cryobiology 2017; 74:1-7. [DOI: 10.1016/j.cryobiol.2016.12.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 11/08/2016] [Accepted: 12/08/2016] [Indexed: 12/11/2022]
|
6
|
Abou Zahr A, Bernabe Ramirez C, Wozney J, Prebet T, Zeidan AM. New Insights into the Pathogenesis of MDS and the rational therapeutic opportunities. Expert Rev Hematol 2016; 9:377-88. [DOI: 10.1586/17474086.2016.1135047] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
7
|
Eriksson A, Lennartsson A, Lehmann S. Epigenetic aberrations in acute myeloid leukemia: Early key events during leukemogenesis. Exp Hematol 2015; 43:609-24. [PMID: 26118500 DOI: 10.1016/j.exphem.2015.05.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 05/23/2015] [Indexed: 12/17/2022]
Abstract
As a result of the introduction of new sequencing technologies, the molecular landscape of acute myeloid leukemia (AML) is rapidly evolving. From karyotyping, which detects only large genomic aberrations of metaphase chromosomes, we have moved into an era when sequencing of each base pair allows us to define the AML genome at highest resolution. This has revealed a new complex landscape of genetic aberrations where addition of mutations in epigenetic regulators has been one of the most important contributions to the understanding of the pathogenesis of AML. These findings, together with new insights into epigenetic mechanisms, have placed dysregulated epigenetic mechanisms at the forefront of AML development. Not only have several new mutations in genes directly involved in epigenetic regulatory mechanisms been discovered, but also previously well-known gene fusions have been found to exert aberrant effects through epigenetic mechanisms. In addition, mutations in epigenetic regulators such as DNMT3A, TET2, and ASXL1 have recently been found to be the earliest known events during AML evolution and to be present as preleukemic lesions before the onset of AML. In this article, we review epigenetic changes in AML also in relation to what is known about their mechanism of action and their prognostic role.
Collapse
Affiliation(s)
- Anna Eriksson
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Andreas Lennartsson
- Department of Biosciences and Nutrition, NOVUM, Karolinska Institutet, Stockholm, Sweden
| | - Sören Lehmann
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden; Centre of Hematology, HERM, Department of Medicine, Karolinska Institute, Huddinge, Stockholm, Sweden.
| |
Collapse
|
8
|
Abstract
DNA methylation and histone modification are epigenetic mechanisms that result in altered gene expression and cellular phenotype. The exact role of methylation in myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML) remains unclear. However, aberrations (e.g. loss-/gain-of-function or up-/down-regulation) in components of epigenetic transcriptional regulation in general, and of the methylation machinery in particular, have been implicated in the pathogenesis of these diseases. In addition, many of these components have been identified as therapeutic targets for patients with MDS/AML, and are also being assessed as potential biomarkers of response or resistance to hypomethylating agents (HMAs). The HMAs 5-azacitidine (AZA) and 2'-deoxy-5-azacitidine (decitabine, DAC) inhibit DNA methylation and have shown significant clinical benefits in patients with myeloid malignancies. Despite being viewed as mechanistically similar drugs, AZA and DAC have differing mechanisms of action. DAC is incorporated 100% into DNA, whereas AZA is incorporated into RNA (80-90%) as well as DNA (10-20%). As such, both drugs inhibit DNA methyltransferases (DNMTs; dependently or independently of DNA replication) resulting in the re-expression of tumor-suppressor genes; however, AZA also has an impact on mRNA and protein metabolism via its inhibition of ribonucleotide reductase, resulting in apoptosis. Herein, we first give an overview of transcriptional regulation, including DNA methylation, post-translational histone-tail modifications, the role of micro-RNA and long-range epigenetic gene silencing. We place special emphasis on epigenetic transcriptional regulation and discuss the implication of various components in the pathogenesis of MDS/AML, their potential as therapeutic targets, and their therapeutic modulation by HMAs and other substances (if known). The main focus of this review is laid on dissecting the rapidly evolving knowledge of AZA and DAC with a special focus on their differing mechanisms of action, and the effect of HMAs on transcriptional regulation.
Collapse
Affiliation(s)
- Lisa Pleyer
- 3rd Medical Department with Hematology and Medical Oncology, Hemostaseology, Rheumatology and Infectious Diseases, Laboratory for Immunological and Molecular Cancer Research, Oncologic Center, Paracelsus Medical University Hospital Salzburg, Center for Clinical Cancer and Immunology Trials at Salzburg Cancer Research Institute , Salzburg , Austria
| | | |
Collapse
|
9
|
Mazzarella L, Riva L, Luzi L, Ronchini C, Pelicci PG. The Genomic and Epigenomic Landscapes of AML. Semin Hematol 2014; 51:259-72. [DOI: 10.1053/j.seminhematol.2014.08.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
10
|
Calvo X, Nomdedeu M, Navarro A, Tejero R, Costa D, Muñoz C, Pereira A, Peña O, Risueño RM, Monzó M, Esteve J, Nomdedeu B. High levels of global DNA methylation are an independent adverse prognostic factor in a series of 90 patients with de novo myelodysplastic syndrome. Leuk Res 2014; 38:874-81. [PMID: 24880536 DOI: 10.1016/j.leukres.2014.04.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 04/23/2014] [Accepted: 04/27/2014] [Indexed: 12/31/2022]
Abstract
The prognostic impact of global DNA methylation and hydroxymethylation was assessed in 90 patients with de novo myelodysplastic syndrome (MDS). DNA was isolated from bone marrow samples obtained at diagnosis and global methylation and hydroxymethylation were determined by ELISA. Patients with a percentage of methylated DNA above 2.73% had a shorter overall survival than those with lower levels (P=0.018) and presented a negative trend in terms of leukemia-free survival (P=0.084), that was statistically significant after censoring 9 patients that received disease-modifying treatments both in univariate and multivariate analyses. Similarly, the low-risk MDS patients defined by the IPSS, WPSS and IPSS-R with 5-mC percentage in total DNA above 2.73% had a shorter overall survival (P=0.032; P=0.023; P=0.031). No cut-off value for the 5-hydroxymethylcytosine percentage with statistical significance for overall or leukemia-free survival was obtained. This study suggests that global DNA methylation predicts overall survival in myelodysplastic syndromes.
Collapse
Affiliation(s)
- Xavier Calvo
- Hematopathology Unit, Department of Pathology, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain.
| | - Meritxell Nomdedeu
- Hematology Department, Hospital Clínic, IDIBAPS, University of Barcelona, Barcelona, Spain; Josep Carreras Leukaemia Research Institute, Barcelona, Spain
| | - Alfons Navarro
- Molecular Oncology and Embryology Laboratory, Human Anatomy Unit, School of Medicine, University of Barcelona, IDIBAPS, Barcelona, Spain
| | - Rut Tejero
- Molecular Oncology and Embryology Laboratory, Human Anatomy Unit, School of Medicine, University of Barcelona, IDIBAPS, Barcelona, Spain
| | - Dolors Costa
- Hematopathology Unit, Department of Pathology, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Concha Muñoz
- Hematopathology Unit, Department of Pathology, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Arturo Pereira
- Department of Hemotherapy and Hemostasis, Hospital Clínic, IDIBAPS, University of Barcelona, Barcelona, Spain
| | - Oscar Peña
- Hematology Department, Hospital Clínic, IDIBAPS, University of Barcelona, Barcelona, Spain
| | - Ruth M Risueño
- Josep Carreras Leukaemia Research Institute, Barcelona, Spain
| | - Mariano Monzó
- Molecular Oncology and Embryology Laboratory, Human Anatomy Unit, School of Medicine, University of Barcelona, IDIBAPS, Barcelona, Spain
| | - Jordi Esteve
- Hematology Department, Hospital Clínic, IDIBAPS, University of Barcelona, Barcelona, Spain; Josep Carreras Leukaemia Research Institute, Barcelona, Spain
| | - Benet Nomdedeu
- Hematology Department, Hospital Clínic, IDIBAPS, University of Barcelona, Barcelona, Spain.
| |
Collapse
|
11
|
White BS, DiPersio JF. Genomic tools in acute myeloid leukemia: From the bench to the bedside. Cancer 2014; 120:1134-44. [PMID: 24474533 DOI: 10.1002/cncr.28552] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 11/14/2013] [Indexed: 12/28/2022]
Abstract
Since its use in the initial characterization of an acute myeloid leukemia (AML) genome, next-generation sequencing (NGS) has continued to molecularly refine the disease. Here, the authors review the spectrum of NGS applications that have subsequently delineated the prognostic significance and biologic consequences of these mutations. Furthermore, the role of this technology in providing a high-resolution glimpse of AML clonal heterogeneity, which may inform future choice of targeted therapy, is discussed. Although obstacles remain in applying these techniques clinically, they have already had an impact on patient care.
Collapse
Affiliation(s)
- Brian S White
- Department of Internal Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, Missouri; The Genome Institute, Washington University, St. Louis, Missouri
| | | |
Collapse
|
12
|
Nybakken GE, Bagg A. The genetic basis and expanding role of molecular analysis in the diagnosis, prognosis, and therapeutic design for myelodysplastic syndromes. J Mol Diagn 2014; 16:145-58. [PMID: 24457119 DOI: 10.1016/j.jmoldx.2013.11.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2013] [Revised: 11/09/2013] [Accepted: 11/21/2013] [Indexed: 12/31/2022] Open
Abstract
The myelodysplastic syndromes (MDS) are clonal hematopoietic stem cell disorders of ineffective hematopoiesis that characteristically demonstrate peripheral blood cytopenia, bone marrow hypercellularity, and morphologically defined dysplasia of one or more hematopoietic lineages. Classical metaphase cytogenetics and judicious use of fluorescence in situ hybridization play central roles in the contemporary diagnosis and classification of MDS. An abundance of recent molecular studies are beginning to delineate additional genetic and epigenetic aberrations associated with these disorders. These alterations affect diagnosis, prognosis, and therapy, and with this understanding classification systems are evolving from a primarily hematological and morphological basis toward a multifactorial appreciation that includes histomorphology, metaphase cytogenetics, and directed molecular studies. In the present health-care environment, it is critical to develop a cost-effective, efficient testing strategy that maximizes the diagnostic potential of even limited specimens. Here, we briefly review the classical genetic approach to MDS, outline exciting new advances in the molecular understanding of this heterogeneous group of hematological neoplasms, and discuss how these advances are driving the evolution of classification and prognostic systems. Rapidly growing understanding of the genetic basis of MDS holds much promise for testing, and here we provide a frame of reference for discussion of current testing protocols and for addressing testing modalities likely to enter clinical practice in the near future.
Collapse
Affiliation(s)
- Grant E Nybakken
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Adam Bagg
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
13
|
Kristensen LS, Treppendahl MB, Grønbæk K. Analysis of epigenetic modifications of DNA in human cells. ACTA ACUST UNITED AC 2013; Chapter 20:Unit20.2. [PMID: 23595599 DOI: 10.1002/0471142905.hg2002s77] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Epigenetics, the study of somatically heritable changes in gene expression not related to changes in the DNA sequence, is a rapidly expanding research field that plays important roles in healthy as well as in diseased cells. DNA methylation and hydroxymethylation are epigenetic modifications found in human cells, which are deeply implicated in normal cellular processes as well as in several major human diseases. Here, a range of different methods for the analyses of DNA methylation and hydroxymethylation at locus-specific and genome-wide scales is described.
Collapse
|
14
|
Zheng Q, Zeng TT, Chen J, Liu H, Zhang H, Su J. Association between DNA methyltransferases 3B gene polymorphisms and the susceptibility to acute myeloid leukemia in Chinese Han population. PLoS One 2013; 8:e74626. [PMID: 24069326 PMCID: PMC3775800 DOI: 10.1371/journal.pone.0074626] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Accepted: 08/06/2013] [Indexed: 02/05/2023] Open
Abstract
DNMT3B plays a crucial role in the generation of aberrant methylation during carcinogenesis. Polymorphisms in the DNMT3B gene may influence the DNA methylation enzymatic activity of DNMT3B, thereby modulating the susceptibility to AML. Thus, we investigated the association between SNPs in the DNMT3Bgene and their haplotypes with the risk of AML in the Chinese Han population. The DNMT3B genotype was determined by HRM in 317 de novo AML patients and 406 healthy control subjects matched for age and gender. Among the 5 SNPs investigated in this study, rs2424913 demonstrated no polymorphisms in the Chinese Han populations, rs1569686 and rs2424908 were significantly associated with AML risk. The GG genotype of rs1569686 was associated with increased AML risk (OR: 5.76; 95%CI: 2.60-12.73; P<0.01) compared with the TT genotype, and individuals with a G allele had a significantly increased risk (OR: 1.89; 95%CI: 1.41-2.52; P<0.01) for AML compared with those harboring a C allele, this polymorphism can predict the risk of AML in a minority of patients. While the CC genotype of rs2424908 appeared to reduce the AML risk (OR: 0.57; 95%CI: 0.36-0.91; P=0.01) compared with the TT genotype, individuals with a C allele were associated with a lower risk (OR: 0.79, 95%CI: 0.64-0.97, P=0.03) for developing AML compared with those harboring a T allele. The other 2 SNPs, rs6087990 and rs6119954, had no significant association with AML risk in the study population. The CGGT, CTAT, TGAT, and CGAT haplotypes of rs6087990, rs1569686, rs6119954, and rs2424908 appeared to significantly increase the AML risk, and the TTGC haplotype appeared to significantly reduce the risk. These results suggest that DNMT3B polymorphisms may contribute to the genetic susceptibility to AML; in particular, the G allele of rs1569686 serves as a risk factor for AML, whereas the C allele of rs2424908 represents a potential protective factor.
Collapse
Affiliation(s)
- Qin Zheng
- Department of Laboratory Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Ting-ting Zeng
- Department of Laboratory Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Jiao Chen
- Department of Laboratory Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Hua Liu
- Department of Laboratory Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - He Zhang
- Department of Laboratory Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Jun Su
- Department of Laboratory Medicine, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
15
|
Cadet J, Wagner JR. TET enzymatic oxidation of 5-methylcytosine, 5-hydroxymethylcytosine and 5-formylcytosine. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2013; 764-765:18-35. [PMID: 24045206 DOI: 10.1016/j.mrgentox.2013.09.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2013] [Accepted: 09/04/2013] [Indexed: 12/14/2022]
Abstract
5-Methylcytosine and methylated histones have been considered for a long time as stable epigenetic marks of chromatin involved in gene regulation. This concept has been recently revisited with the detection of large amounts of 5-hydroxymethylcytosine, now considered as the sixth DNA base, in mouse embryonic stem cells, Purkinje neurons and brain tissues. The dioxygenases that belong to the ten eleven translocation (TET) oxygenase family have been shown to initiate the formation of this methyl oxidation product of 5-methylcytosine that is also generated although far less efficiently by radical reactions involving hydroxyl radical and one-electron oxidants. It was found as additional striking data that iterative TET-mediated oxidation of 5-hydroxymethylcytosine gives rise to 5-formylcytosine and 5-carboxylcytosine. This survey focuses on chemical and biochemical aspects of the enzymatic oxidation reactions of 5-methylcytosine that are likely to be involved in active demethylation pathways through the implication of enzymatic deamination of 5-methylcytosine oxidation products and/or several base excision repair enzymes. The high biological relevance of the latter modified bases explains why major efforts have been devoted to the design of a broad range of assays aimed at measuring globally or at the single base resolution, 5-hydroxymethylcytosine and the two other oxidation products in the DNA of cells and tissues. Another critical issue that is addressed in this review article deals with the assessment of the possible role of 5-methylcytosine oxidation products, when present in elevated amounts in cellular DNA, in terms of mutagenesis and interference with key cellular enzymes including DNA and RNA polymerases.
Collapse
Affiliation(s)
- Jean Cadet
- Direction des Sciences de la Matière, Institut Nanosciences et Cryogénie, CEA/Grenoble, 38054 Grenoble, France; Département de médecine nucléaire et radiobiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Québec JIH 5N4, Canada.
| | - J Richard Wagner
- Département de médecine nucléaire et radiobiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Québec JIH 5N4, Canada.
| |
Collapse
|
16
|
Abstract
The efficacy of therapeutic modalities in chronic myeloid leukemia (CML) depends on both genetic and epigenetic mechanisms. This review focuses on epigenetic mechanisms involved in the pathogenesis of CML and in resistance of tumor cells to tyrosine kinase inhibitors leading to the leukemic clone escape and propagation. Regulatory events at the levels of gene regulation by transcription factors and microRNAs are discussed in the context of CML pathogenesis and therapeutic modalities.
Collapse
MESH Headings
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- DNA Methylation
- Drug Resistance, Neoplasm
- Epigenomics
- Fusion Proteins, bcr-abl/antagonists & inhibitors
- Fusion Proteins, bcr-abl/genetics
- Fusion Proteins, bcr-abl/therapeutic use
- Gene Expression Regulation, Leukemic/drug effects
- Humans
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- MicroRNAs/physiology
- Protein Kinase Inhibitors/pharmacology
- Protein Kinase Inhibitors/therapeutic use
Collapse
Affiliation(s)
| | - Jitka Koblihova
- Institute of Hematology and Blood Transfusion, U Nemocnice 1, Prague 2, 128 20 Czech Republic
| | - Tomas Stopka
- Institute of Pathophysiology, First Faculty of Medicine, Charles University in Prague, U Nemocnice 5, Prague 2, 128 53 Czech Republic
| |
Collapse
|
17
|
Brown G, Hughes PJ, Ceredig R. The versatile landscape of haematopoiesis: are leukaemia stem cells as versatile? Crit Rev Clin Lab Sci 2012; 49:232-40. [PMID: 23153117 DOI: 10.3109/10408363.2012.742487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Since the early 1980s, developing haematopoietic cells have been categorised into three well-defined compartments: multi-potent haematopoietic stem cells (HSC), which are able to self-renew, followed by haematopoietic progenitor cells (HPC), which undergo decision-making and age as they divide rather than self-renew, and the final compartment of functional blood and immune cells. The classic model of haematopoiesis divides cells into two families, myeloid and lymphoid, and dictates a route to a particular cell fate. New discoveries question these long-held principles, including: (i) the identification of lineage-biased cells that self-renew; (ii) a strict myeloid/lymphoid dichotomy is refuted by the existence of progenitors with lymphoid potential and an incomplete set of myeloid potentials; (iii) there are multiple routes to some end cell types; and (iv) thymocyte progenitor cells that have progressed some way along this pathway retain clandestine myeloid options. In essence, the progeny of HSC are more versatile and the process of haematopoiesis is more flexible than previously thought. Here we examine this new way of viewing haematopoiesis and the impact of rewriting an account of haematopoiesis on our understanding of what goes awry in leukaemia.
Collapse
Affiliation(s)
- Geoffrey Brown
- School of Immunity and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK.
| | | | | |
Collapse
|