1
|
Benoit TM, Bachofner A, Wolfensberger N, Zaugg‐Berger Y, Manz MG, Schneidawind D. Inferior Overall Survival After Haploidentical Donor Lymphocyte Infusions in Relapsed Myeloid Neoplasms. Eur J Haematol 2025; 114:315-324. [PMID: 39501442 PMCID: PMC11707813 DOI: 10.1111/ejh.14340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 01/11/2025]
Abstract
OBJECTIVES Allogeneic hematopoietic stem cell transplantation (HSCT) effectively treats high-risk myeloid neoplasms, but relapses post-HSCT, particularly in acute myeloid leukemia (AML) and myelodysplastic neoplasms (MDS), pose significant challenges. Donor lymphocyte infusion (DLI) has been utilized, but its effectiveness, especially in haploidentical settings, remains insufficiently clarified, and graft-versus-host disease (GvHD) poses a substantial risk. METHODS In this retrospective cohort study, 57 patients with AML or MDS who received DLI after allogeneic HSCT at our center from 2002 to 2023 were analyzed. Herein, only preemptively or therapeutically applied DLI were included, and endpoints included overall survival (OS), progression-free survival (PFS), and GvHD incidence post-DLI. RESULTS Median OS after DLI was 517 days, with a 1-year OS of 62.5%. Factors associated with longer OS included patient age, HLA-identical donor, post-HSCT treatment naivety, and preemptive DLI indication. Haploidentical DLI was associated with inferior OS compared to HLA-identical DLI; however, PFS and GvHD incidence post-DLI did not differ significantly. CONCLUSIONS Our study findings indicate that OS rate is inferior in patients with relapsed AML or MDS treated with haploidentical DLI in comparison to those who received HLA-identical DLI. Given the limitations of haploidentical DLI, alternative strategies, such as higher cell doses or combination treatment approaches, warrant further investigation.
Collapse
Affiliation(s)
- Tobias Matthieu Benoit
- Department of Medical Oncology and HematologyUniversity Hospital ZurichZürichSwitzerland
| | - Adrian Bachofner
- Department of Medical Oncology and HematologyUniversity Hospital ZurichZürichSwitzerland
| | - Nathan Wolfensberger
- Department of Medical Oncology and HematologyUniversity Hospital ZurichZürichSwitzerland
| | - Yvonne Zaugg‐Berger
- Department of Medical Oncology and HematologyUniversity Hospital ZurichZürichSwitzerland
| | - Markus Gabriel Manz
- Department of Medical Oncology and HematologyUniversity Hospital ZurichZürichSwitzerland
- Comprehensive Cancer Center ZurichZürichSwitzerland
| | - Dominik Schneidawind
- Department of Medical Oncology and HematologyUniversity Hospital ZurichZürichSwitzerland
- Comprehensive Cancer Center ZurichZürichSwitzerland
- Department of Medicine IIUniversity Hospital Tübingen and University of TübingenTübingenGermany
| |
Collapse
|
2
|
Yang J, Chen M, Ye J, Ma H. Targeting PRAME for acute myeloid leukemia therapy. Front Immunol 2024; 15:1378277. [PMID: 38596687 PMCID: PMC11002138 DOI: 10.3389/fimmu.2024.1378277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 03/12/2024] [Indexed: 04/11/2024] Open
Abstract
Despite significant progress in targeted therapy for acute myeloid leukemia (AML), clinical outcomes are disappointing for elderly patients, patients with less fit disease characteristics, and patients with adverse disease risk characteristics. Over the past 10 years, adaptive T-cell immunotherapy has been recognized as a strategy for treating various malignant tumors. However, it has faced significant challenges in AML, primarily because myeloid blasts do not contain unique surface antigens. The preferentially expressed antigen in melanoma (PRAME), a cancer-testis antigen, is abnormally expressed in AML and does not exist in normal hematopoietic cells. Accumulating evidence has demonstrated that PRAME is a useful target for treating AML. This paper reviews the structure and function of PRAME, its effects on normal cells and AML blasts, its implications in prognosis and follow-up, and its use in antigen-specific immunotherapy for AML.
Collapse
Affiliation(s)
- Jinjun Yang
- Department of Hematology and Institute of Hematology, West China Hospital, Sichuan University, Chengdu, China
| | - Mengran Chen
- Department of Hematology and Institute of Hematology, West China Hospital, Sichuan University, Chengdu, China
| | - Jing Ye
- Department of Dermatology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Hongbing Ma
- Department of Hematology and Institute of Hematology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
3
|
Ogasawara M, Nozu R, Miki K, Sugimura S, Kojima K, Hidaka D, Ogasawara R, Okada K, Sugita J, Kobayashi N, Imamura M, Ota S. Donor Lymphocyte Infusion for Relapsed Acute Leukemia or Myelodysplastic Syndrome after Hematopoietic Stem Cell Transplantation: A Single-Institute Retrospective Analysis. Intern Med 2024; 63:197-205. [PMID: 37225485 PMCID: PMC10864080 DOI: 10.2169/internalmedicine.1714-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/09/2023] [Indexed: 05/26/2023] Open
Abstract
Objective The prognosis of the patients who relapsed after allogeneic hematopoietic stem cell transplantation (allo-HSCT) is poor, and therapeutic options are limited. In the present study, we investigated the efficacy and factors associated with the survival in patients with acute leukemia or myelodysplastic syndrome (MDS) who relapsed following allo-HSCT and were treated with donor lymphocyte infusion (DLI) in real-world practice. Patients Twenty-nine patients with acute myeloid leukemia21, acute lymphoid leukemia4 or MDS4 were enrolled. Eleven patients were diagnosed with hematological relapse, and 18 were diagnosed with molecular or cytogenetic relapse. Results The median injection number and median total number of infused CD3+ T cells were 2 and 5.0×107/kg, respectively. The cumulative incidence of acute graft-versus-host disease (aGVHD) of grade ≥II at 4 months after the initiation of DLI was 31.0%. Extensive chronic graft-versus-host disease (cGVHD) occurred in 3 (10.3%) patients. The overall response rate was 51.7%, including 3 cases of hematological complete remission (CR) and 12 cases of molecular/cytogenetic CR. Cumulative relapse rates at 24 and 60 months following DLI in patients who achieved CR were 21.4% and 30.0%, respectively. The overall survival rates at 1, 2 and 3 years after DLI were 41.4%, 37.9% and 30.3%, respectively. Molecular/cytogenetic relapse, a longer interval from HSCT to relapse, and concomitant chemotherapy with 5-azacytidine (Aza) were significantly associated with a relatively long survival following DLI. Conclusion These results indicated that DLI was beneficial for patients with acute leukemia or MDS who relapsed after allo-HSCT and suggested that DLI in combination with Aza for molecular or cytogenetic relapse might result in favorable outcomes.
Collapse
Affiliation(s)
| | - Rintaro Nozu
- Department of Hematology, Sapporo Hokuyu Hospital, Japan
| | - Kosuke Miki
- Department of Hematology, Sapporo Hokuyu Hospital, Japan
| | | | - Keisuke Kojima
- Department of Hematology, Sapporo Hokuyu Hospital, Japan
| | - Daisuke Hidaka
- Department of Hematology, Sapporo Hokuyu Hospital, Japan
| | | | - Kohei Okada
- Department of Hematology, Sapporo Hokuyu Hospital, Japan
| | - Junichi Sugita
- Department of Hematology, Sapporo Hokuyu Hospital, Japan
| | | | | | - Shuichi Ota
- Department of Hematology, Sapporo Hokuyu Hospital, Japan
| |
Collapse
|
4
|
Teich K, Stadler M, Gabdoulline R, Kandarp J, Wienecke C, Heida B, Klement P, Büttner K, Venturini L, Wichmann M, Puppe W, Schultze-Florey C, Koenecke C, Beutel G, Eder M, Ganser A, Heuser M, Thol F. MRD as Biomarker for Response to Donor Lymphocyte Infusion after Allogeneic Hematopoietic Cell Transplantation in Patients with AML. Cancers (Basel) 2023; 15:3911. [PMID: 37568726 PMCID: PMC10416875 DOI: 10.3390/cancers15153911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
Donor lymphocyte infusions (DLIs) can directly target leukemic cells through a graft-versus-leukemia effect and play a key role in the prevention and management of relapse after allogeneic hematopoietic cell transplantation (alloHCT). Predictors of response to DLIs are not well established. We evaluated measurable residual disease (MRD) before, 30 and 90 days after DLI treatment as biomarkers of response. MRD was assessed by next-generation sequencing in 76 DLI-treated acute myeloid leukemia patients. MRD status before DLI treatment was independently prognostic for event-free survival (EFS, p < 0.001) and overall survival (OS, p < 0.001). Within 90 days of DLI treatment, 73% of MRD+ patients converted to MRD- and 32% of patients without remission achieved remission. MRD status 90 days after DLI treatment was independently prognostic for the cumulative incidence of relapse (CIR, p = 0.011) and relapse-free survival (RFS, p = 0.001), but not for OS. To evaluate the role of DLI treatment in MRD- patients, 23 MRD- patients who received DLIs were compared with a control cohort of 68 MRD- patients not receiving DLIs. RFS (p = 0.23) and OS (p = 0.48) were similar between the two cohorts. In conclusion, MRD is prognostic before (EFS, OS) and after (CIR, RFS) DLI treatment and may help in the selection of patients who benefit most from DLIs.
Collapse
Affiliation(s)
- Katrin Teich
- Department of Hematology, Hemostasis, Oncology, and Stem Cell Transplantation, Hannover Medical School, 30625 Hannover, Germany (M.H.)
| | - Michael Stadler
- Department of Hematology, Hemostasis, Oncology, and Stem Cell Transplantation, Hannover Medical School, 30625 Hannover, Germany (M.H.)
| | - Razif Gabdoulline
- Department of Hematology, Hemostasis, Oncology, and Stem Cell Transplantation, Hannover Medical School, 30625 Hannover, Germany (M.H.)
| | - Jyoti Kandarp
- Department of Hematology, Hemostasis, Oncology, and Stem Cell Transplantation, Hannover Medical School, 30625 Hannover, Germany (M.H.)
| | - Clara Wienecke
- Department of Hematology, Hemostasis, Oncology, and Stem Cell Transplantation, Hannover Medical School, 30625 Hannover, Germany (M.H.)
| | - Bennet Heida
- Department of Hematology, Hemostasis, Oncology, and Stem Cell Transplantation, Hannover Medical School, 30625 Hannover, Germany (M.H.)
| | - Piroska Klement
- Department of Hematology, Hemostasis, Oncology, and Stem Cell Transplantation, Hannover Medical School, 30625 Hannover, Germany (M.H.)
| | - Konstantin Büttner
- Department of Hematology, Hemostasis, Oncology, and Stem Cell Transplantation, Hannover Medical School, 30625 Hannover, Germany (M.H.)
| | - Letizia Venturini
- Department of Hematology, Hemostasis, Oncology, and Stem Cell Transplantation, Hannover Medical School, 30625 Hannover, Germany (M.H.)
| | - Martin Wichmann
- Department of Hematology, Hemostasis, Oncology, and Stem Cell Transplantation, Hannover Medical School, 30625 Hannover, Germany (M.H.)
| | - Wolfram Puppe
- Department of Virology, Hannover Medical School, 30625 Hannover, Germany
| | - Christian Schultze-Florey
- Department of Hematology, Hemostasis, Oncology, and Stem Cell Transplantation, Hannover Medical School, 30625 Hannover, Germany (M.H.)
| | - Christian Koenecke
- Department of Hematology, Hemostasis, Oncology, and Stem Cell Transplantation, Hannover Medical School, 30625 Hannover, Germany (M.H.)
| | - Gernot Beutel
- Department of Hematology, Hemostasis, Oncology, and Stem Cell Transplantation, Hannover Medical School, 30625 Hannover, Germany (M.H.)
| | - Matthias Eder
- Department of Hematology, Hemostasis, Oncology, and Stem Cell Transplantation, Hannover Medical School, 30625 Hannover, Germany (M.H.)
| | - Arnold Ganser
- Department of Hematology, Hemostasis, Oncology, and Stem Cell Transplantation, Hannover Medical School, 30625 Hannover, Germany (M.H.)
| | - Michael Heuser
- Department of Hematology, Hemostasis, Oncology, and Stem Cell Transplantation, Hannover Medical School, 30625 Hannover, Germany (M.H.)
| | - Felicitas Thol
- Department of Hematology, Hemostasis, Oncology, and Stem Cell Transplantation, Hannover Medical School, 30625 Hannover, Germany (M.H.)
| |
Collapse
|
5
|
Koster EAS, von dem Borne PA, van Balen P, van Egmond EHM, Marijt EWA, Veld SAJ, Jedema I, Snijders TJF, van Lammeren D, Veelken H, Falkenburg JHF, de Wreede LC, Halkes CJM. Competitive Repopulation and Allo-Immunologic Pressure Determine Chimerism Kinetics after T Cell-Depleted Allogeneic Stem Cell Transplantation and Donor Lymphocyte Infusion. Transplant Cell Ther 2023; 29:268.e1-268.e10. [PMID: 36587743 DOI: 10.1016/j.jtct.2022.12.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/12/2022] [Accepted: 12/26/2022] [Indexed: 12/31/2022]
Abstract
After allogeneic stem cell transplantation (alloSCT), patient-derived stem cells that survived the pretransplantation conditioning compete with engrafting donor stem cells for bone marrow (BM) repopulation. In addition, donor-derived alloreactive T cells present in the stem cell product may favor establishment of complete donor-derived hematopoiesis by eliminating patient-derived lymphohematopoietic cells. T cell-depleted alloSCT with sequential transfer of potentially alloreactive T cells by donor lymphocyte infusion (DLI) provides a unique opportunity to selectively study how competitive repopulation and allo-immunologic pressure influence lymphohematopoietic recovery. This study aimed to determine the relative contribution of competitive repopulation and donor-derived anti-recipient alloimmunologic pressure on the establishment of lymphohematopoietic chimerism after alloSCT. In this retrospective cohort study of 281 acute leukemia patients treated according to a protocol combining alemtuzumab-based T cell-depleted alloSCT with prophylactic DLI, we investigated engraftment and quantitative donor chimerism in the BM and immune cell subsets. DLI-induced increase of chimerism and development of graft-versus-host disease (GVHD) were analyzed as complementary indicators for donor-derived anti-recipient alloimmunologic pressure. Profound suppression of patient immune cells by conditioning sufficed for sustained engraftment without necessity for myeloablative conditioning or development of clinically significant GVHD. Although 61% of the patients without any DLI or GVHD showed full donor chimerism (FDC) in the BM at 6 months after alloSCT, only 24% showed FDC in the CD4+ T cell compartment. In contrast, 75% of the patients who had received DLI and 83% of the patients with clinically significant GVHD had FDC in this compartment. In addition, 72% of the patients with mixed hematopoiesis receiving DLI converted to complete donor-derived hematopoiesis, of whom only 34% developed clinically significant GVHD. Our data show that competitive repopulation can be sufficient to reach complete donor-derived hematopoiesis, but that some alloimmunologic pressure is needed for the establishment of a completely donor-derived T cell compartment, either by the development of GVHD or by administration of DLI. We illustrate that it is possible to separate the graft-versus-leukemia effect from GVHD, as conversion to durable complete donor-derived hematopoiesis following DLI did not require induction of clinically significant GVHD.
Collapse
Affiliation(s)
- Eva A S Koster
- Department of Hematology, Leiden University Medical Center, Leiden, The Netherlands.
| | | | - Peter van Balen
- Department of Hematology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Erik W A Marijt
- Department of Hematology, Leiden University Medical Center, Leiden, The Netherlands
| | - Sabrina A J Veld
- Department of Hematology, Leiden University Medical Center, Leiden, The Netherlands
| | - Inge Jedema
- Department of Hematology, Leiden University Medical Center, Leiden, The Netherlands
| | - Tjeerd J F Snijders
- Department of Hematology, Medisch Spectrum Twente, Enschede, The Netherlands
| | | | - Hendrik Veelken
- Department of Hematology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Liesbeth C de Wreede
- Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands
| | | |
Collapse
|
6
|
van der Zouwen B, Koster EAS, von dem Borne PA, Oosten LEM, Roza-Scholten MWI, Snijders TJF, van Lammeren D, van Balen P, Marijt WAF, Veelken H, Falkenburg JHF, de Wreede LC, Halkes CJM. Feasibility, safety, and efficacy of early prophylactic donor lymphocyte infusion after T cell-depleted allogeneic stem cell transplantation in acute leukemia patients. Ann Hematol 2023; 102:1203-1213. [PMID: 36881136 PMCID: PMC10102042 DOI: 10.1007/s00277-023-05145-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 02/21/2023] [Indexed: 03/08/2023]
Abstract
Prophylactic donor lymphocyte infusion (DLI) starting at 6 months after T cell-depleted allogeneic stem cell transplantation (TCD-alloSCT) can introduce a graft-versus-leukemia (GvL) effects with low risk of severe graft-versus-host-disease (GvHD). We established a policy to apply low-dose early DLI at 3 months after alloSCT to prevent early relapse. This study analyzes this strategy retrospectively. Of 220 consecutive acute leukemia patients undergoing TCD-alloSCT, 83 were prospectively classified to have a high relapse risk and 43 were scheduled for early DLI. 95% of these patients received freshly harvested DLI within 2 weeks of the planned date. In patients transplanted with reduced intensity conditioning and an unrelated donor, we found an increased cumulative incidence of GvHD between 3 and 6 months after TCD-alloSCT for patients receiving DLI at 3 months compared to patients who did not receive this DLI (0.42 (95%Confidence Interval (95% CI): 0.14-0.70) vs 0). Treatment success was defined as being alive without relapse or need for systemic immunosuppressive GvHD treatment. The five-year treatment success in patients with acute lymphatic leukemia was comparable between high- and non-high-risk disease (0.55 (95% CI: 0.42-0.74) and 0.59 (95% CI: 0.42-0.84)). It remained lower in high-risk acute myeloid leukemia (AML) (0.29 (95% CI: 0.18-0.46)) than in non-high-risk AML (0.47 (95% CI: 0.42-0.84)) due to an increased relapse rate despite early DLI.
Collapse
Affiliation(s)
- Boris van der Zouwen
- Department of Hematology, Leiden University Medical Center, C2R, 2300 RC, Leiden, 9600, The Netherlands.
| | - E A S Koster
- Department of Hematology, Leiden University Medical Center, C2R, 2300 RC, Leiden, 9600, The Netherlands
| | - P A von dem Borne
- Department of Hematology, Leiden University Medical Center, C2R, 2300 RC, Leiden, 9600, The Netherlands
| | - L E M Oosten
- Department of Hematology, Leiden University Medical Center, C2R, 2300 RC, Leiden, 9600, The Netherlands
| | - M W I Roza-Scholten
- Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands
| | - T J F Snijders
- Department of Hematology, Medical Spectrum Twente, Enschede, The Netherlands
| | - D van Lammeren
- Department of Hematology, HagaZiekenhuis, The Hague, The Netherlands
| | - P van Balen
- Department of Hematology, Leiden University Medical Center, C2R, 2300 RC, Leiden, 9600, The Netherlands
| | - W A F Marijt
- Department of Hematology, Leiden University Medical Center, C2R, 2300 RC, Leiden, 9600, The Netherlands
| | - H Veelken
- Department of Hematology, Leiden University Medical Center, C2R, 2300 RC, Leiden, 9600, The Netherlands
| | - J H F Falkenburg
- Department of Hematology, Leiden University Medical Center, C2R, 2300 RC, Leiden, 9600, The Netherlands
| | - L C de Wreede
- Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands
| | - C J M Halkes
- Department of Hematology, Leiden University Medical Center, C2R, 2300 RC, Leiden, 9600, The Netherlands
| |
Collapse
|
7
|
Donor lymphocyte infusion after haploidentical hematopoietic stem cell transplantation for acute myeloid leukemia. Ann Hematol 2022; 101:643-653. [DOI: 10.1007/s00277-021-04731-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 11/17/2021] [Indexed: 11/26/2022]
|
8
|
Rettig AR, Ihorst G, Bertz H, Lübbert M, Marks R, Waterhouse M, Wäsch R, Zeiser R, Duyster J, Finke J. Donor lymphocyte infusions after first allogeneic hematopoietic stem-cell transplantation in adults with acute myeloid leukemia: a single-center landmark analysis. Ann Hematol 2021; 100:2339-2350. [PMID: 33796897 PMCID: PMC8357755 DOI: 10.1007/s00277-021-04494-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 03/08/2021] [Indexed: 12/14/2022]
Abstract
Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is potentially curative for acute myeloid leukemia (AML). The inherent graft-versus-leukemia activity (GvL) may be optimized by donor lymphocyte infusions (DLI). Here we present our single-center experience of DLI use patterns and effectiveness, based on 342 consecutive adult patients receiving a first allo-HSCT for AML between 2009 and 2017. The median age at transplantation was 57 years (range 19-79), and the pre-transplant status was active disease in 58% and complete remission (CR) in 42% of cases. In a combined landmark analysis, patients in CR on day +30 and alive on day +100 were included. In this cohort (n=292), 93 patients received cryopreserved aliquots of peripheral blood-derived grafts for DLI (32%) and median survival was 55.7 months (2-year/5-year probability: 62%/49%). Median survival for patients receiving a first dose of DLI "preemptively," in the absence of relapse and guided by risk marker monitoring (preDLI; n=42), or only after hematological relapse (relDLI; n=51) was 40.9 months (2-year/5-year: 64%/43%) vs 10.4 months (2-year/5-year: 26%/10%), respectively. Survival was inferior when preDLI was initiated at a time of genetic risk marker detection vs mixed chimerism or clinical risk only. Time to first-dose preDLI vs time to first-dose relDLI was similar, suggesting that early warning and intrinsically lower dynamics of AML recurrence may contribute to effectiveness of preDLI-modified GvL activity. Future refinements of the preemptive DLI concept will benefit from collaborative efforts to diagnose measurable residual disease more reliably across the heterogeneous genomic spectrum of AML.
Collapse
Affiliation(s)
- Andrés R Rettig
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | - Gabriele Ihorst
- Clinical Trials Unit, University Medical Center Freiburg, Freiburg, Germany
| | - Hartmut Bertz
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Michael Lübbert
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Reinhard Marks
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Miguel Waterhouse
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ralph Wäsch
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Robert Zeiser
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Justus Duyster
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jürgen Finke
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
9
|
Shi W, Jin W, Xia L, Hu Y. Novel agents targeting leukemia cells and immune microenvironment for prevention and treatment of relapse of acute myeloid leukemia after allogeneic hematopoietic stem cell transplantation. Acta Pharm Sin B 2020; 10:2125-2139. [PMID: 32837873 PMCID: PMC7326461 DOI: 10.1016/j.apsb.2020.06.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/27/2020] [Accepted: 06/05/2020] [Indexed: 12/20/2022] Open
Abstract
Relapse remains the worst life-threatening complications after allogeneic hematopoietic stem cell transplantation (allo-HSCT) in patients with acute myeloid leukemia (AML), whose prognosis has been historically dismal. Given the rapid development of genomics and immunotherapies, the interference strategies for AML recurrence have been changing these years. More and more novel targeting agents that have received the U.S. Food and Drug Administration (FDA) approval for de novo AML treatment have been administrated in the salvage or maintenance therapy of post-HSCT relapse. Targeted strategies that regulate the immune microenvironment of and optimize the graft versus leukemia (GVL) effect of immune cells are gradually improved. Such agents not only have been proven to achieve clinical benefits from a single drug, but if combined with classic therapies, can significantly improve the poor prognosis of AML patients who relapse after allo-HSCT. This review will focus on currently available and promising upcoming agents and also discuss the challenges and limitations of targeted therapies in the allogeneic hematopoietic stem cell transplantation community.
Collapse
Affiliation(s)
- Wei Shi
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109-1024, USA
| | - Weiwei Jin
- Department of Cardiovascular, Optical Valley School District, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan 430061, China
- Hubei Province Academy of Traditional Chinese Medicine, Wuhan 430074, China
| | - Linghui Xia
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yu Hu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
10
|
Loeff FC, van Egmond EH, Moes DJ, Wijnands C, Von Dem Borne PA, Veelken H, Falkenburg JF, Jedema I, Halkes CJ. Impact of alemtuzumab pharmacokinetics on T-cell dynamics, graft-versus-host disease and viral reactivation in patients receiving allogeneic stem cell transplantation with an alemtuzumab-based T-cell-depleted graft. Transpl Immunol 2019; 57:101209. [DOI: 10.1016/j.trim.2019.06.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 06/12/2019] [Accepted: 06/13/2019] [Indexed: 10/26/2022]
|
11
|
van Balen P, van Bergen CAM, van Luxemburg-Heijs SAP, de Klerk W, van Egmond EHM, Veld SAJ, Halkes CJM, Zwaginga JJ, Griffioen M, Jedema I, Falkenburg JHF. CD4 Donor Lymphocyte Infusion Can Cause Conversion of Chimerism Without GVHD by Inducing Immune Responses Targeting Minor Histocompatibility Antigens in HLA Class II. Front Immunol 2018; 9:3016. [PMID: 30619360 PMCID: PMC6305328 DOI: 10.3389/fimmu.2018.03016] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 12/06/2018] [Indexed: 01/03/2023] Open
Abstract
Under non-inflammatory conditions HLA class II is predominantly expressed on hematopoietic cells. Therefore, donor CD4 T-cells after allogeneic stem cell transplantation (alloSCT) may mediate graft-vs.-leukemia reactivity without graft-vs.-host disease (GVHD). We analyzed immune responses in four patients converting from mixed to full donor chimerism without developing GVHD upon purified CD4 donor lymphocyte infusion (DLI) from their HLA-identical sibling donor after T-cell depleted alloSCT. In vivo activated T-cells were clonally isolated after CD4 DLI. Of the alloreactive T-cell clones, 96% were CD4 positive, illustrating the dominant role of CD4 T-cells in the immune responses. We identified 9 minor histocompatibility antigens (MiHA) as targets for alloreactivity, of which 8 were novel HLA class II restricted MiHA. In all patients, MiHA specific CD4 T-cells were found that were capable to lyse hematopoietic cells and to recognize normal and malignant cells. No GVHD was induced in these patients. Skin fibroblasts forced to express HLA class II, were recognized by only two MiHA specific CD4 T-cell clones. Of the 7 clones that failed to recognize fibroblasts, two targeted MiHA were encoded by genes not expressed in fibroblasts, presentation of one MiHA was dependent on HLA-DO, which is absent in fibroblasts, and T-cells recognizing the remaining 4 MiHA had an avidity that was apparently too low to recognize fibroblasts, despite clear recognition of hematopoietic cells. In conclusion, purified CD4 DLI from HLA-identical sibling donors can induce conversion from mixed to full donor chimerism with graft-vs.-malignancy reactivity, but without GVHD, by targeting HLA class II restricted MiHA.
Collapse
Affiliation(s)
- Peter van Balen
- Department of Hematology, Leiden University Medical Center, Leiden, Netherlands
| | | | | | - Wendy de Klerk
- Department of Hematology, Leiden University Medical Center, Leiden, Netherlands
| | | | - Sabrina A J Veld
- Department of Hematology, Leiden University Medical Center, Leiden, Netherlands
| | | | - Jaap-Jan Zwaginga
- Center for Clinical Transfusion Research, Sanquin Research, Leiden, Netherlands.,Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, Netherlands
| | - Marieke Griffioen
- Department of Hematology, Leiden University Medical Center, Leiden, Netherlands
| | - Inge Jedema
- Department of Hematology, Leiden University Medical Center, Leiden, Netherlands
| | | |
Collapse
|
12
|
Tat T, Li H, Constantinescu CS, Onaciu A, Chira S, Osan C, Pasca S, Petrushev B, Moisoiu V, Micu WT, Berce C, Tranca S, Dima D, Berindan-Neagoe I, Shen J, Tomuleasa C, Qian L. Genetically enhanced T lymphocytes and the intensive care unit. Oncotarget 2018; 9:16557-16572. [PMID: 29662667 PMCID: PMC5893262 DOI: 10.18632/oncotarget.24637] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 02/26/2018] [Indexed: 12/30/2022] Open
Abstract
Chimeric antigen receptor-modified T cells (CAR-T cells) and donor lymphocyte infusion (DLI) are important protocols in lymphocyte engineering. CAR-T cells have emerged as a new modality for cancer immunotherapy due to their potential efficacy against hematological malignancies. These genetically modified receptors contain an antigen-binding moiety, a hinge region, a transmembrane domain, and an intracellular costimulatory domain resulting in lymphocyte T cell activation subsequent to antigen binding. In present-day medicine, four generations of CAR-T cells are described depending on the intracellular signaling domain number of T cell receptors. DLI represents a form of adoptive therapy used after hematopoietic stem cell transplant for its anti-tumor and anti-infectious properties. This article covers the current status of CAR-T cells and DLI research in the intensive care unit (ICU) patient, including the efficacy, toxicity, side effects and treatment.
Collapse
Affiliation(s)
- Tiberiu Tat
- Intensive Care Unit, Ion Chiricuta Clinical Cancer Research, Cluj Napoca, Romania
- Department of Anesthesiology-Intensive Care, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
| | - Huming Li
- Department of Pulmonary and Critical Care Medicine, Navy General Hospital of PLA, Beijing, China
| | - Catalin-Sorin Constantinescu
- Intensive Care Unit, Ion Chiricuta Clinical Cancer Research, Cluj Napoca, Romania
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
| | - Anca Onaciu
- Research Center for Functional Genomics and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
| | - Sergiu Chira
- Research Center for Functional Genomics and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
| | - Ciprian Osan
- Research Center for Functional Genomics and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
| | - Sergiu Pasca
- Research Center for Functional Genomics and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
| | - Bobe Petrushev
- Research Center for Functional Genomics and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
| | - Vlad Moisoiu
- Research Center for Functional Genomics and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
| | - Wilhelm-Thomas Micu
- Research Center for Functional Genomics and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
| | - Cristian Berce
- Department of Experimental Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
| | - Sebastian Tranca
- Department of Anesthesiology-Intensive Care, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
| | - Delia Dima
- Department of Hematology, Ion Chiricuta Clinical Cancer Research, Cluj Napoca, Romania
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
| | - Jianliang Shen
- Department of Hematology, Navy General Hospital of PLA, Beijing, China
| | - Ciprian Tomuleasa
- Department of Hematology, Ion Chiricuta Clinical Cancer Research, Cluj Napoca, Romania
- Research Center for Functional Genomics and Translational Medicine / Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
| | - Liren Qian
- Department of Hematology, Navy General Hospital of PLA, Beijing, China
| |
Collapse
|
13
|
Caldemeyer LE, Akard LP, Edwards JR, Tandra A, Wagenknecht DR, Dugan MJ. Donor Lymphocyte Infusions Used to Treat Mixed-Chimeric and High-Risk Patient Populations in the Relapsed and Nonrelapsed Settings after Allogeneic Transplantation for Hematologic Malignancies Are Associated with High Five-Year Survival if Persistent Full Donor Chimerism Is Obtained or Maintained. Biol Blood Marrow Transplant 2017; 23:1989-1997. [DOI: 10.1016/j.bbmt.2017.07.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 07/09/2017] [Indexed: 10/19/2022]
|
14
|
Prognostic Limitations of Donor T Cell Chimerism after Myeloablative Allogeneic Stem Cell Transplantation for Acute Myeloid Leukemia and Myelodysplastic Syndromes. Biol Blood Marrow Transplant 2017; 23:840-844. [DOI: 10.1016/j.bbmt.2017.01.086] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 01/31/2017] [Indexed: 01/26/2023]
|
15
|
van Bergen CAM, van Luxemburg-Heijs SAP, de Wreede LC, Eefting M, von dem Borne PA, van Balen P, Heemskerk MHM, Mulder A, Claas FHJ, Navarrete MA, Honders WM, Rutten CE, Veelken H, Jedema I, Halkes CJM, Griffioen M, Falkenburg JHF. Selective graft-versus-leukemia depends on magnitude and diversity of the alloreactive T cell response. J Clin Invest 2017; 127:517-529. [PMID: 28067665 DOI: 10.1172/jci86175] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 11/17/2016] [Indexed: 01/10/2023] Open
Abstract
Patients with leukemia who receive a T cell-depleted allogeneic stem cell graft followed by postponed donor lymphocyte infusion (DLI) can experience graft-versus-leukemia (GVL) reactivity, with a lower risk of graft-versus-host disease (GVHD). Here, we have investigated the magnitude, diversity, and specificity of alloreactive CD8 T cells in patients who developed GVL reactivity after DLI in the absence or presence of GVHD. We observed a lower magnitude and diversity of CD8 T cells for minor histocompatibility antigens (MiHAs) in patients with selective GVL reactivity without GVHD. Furthermore, we demonstrated that MiHA-specific T cell clones from patients with selective GVL reactivity showed lower reactivity against nonhematopoietic cells, even when pretreated with inflammatory cytokines. Expression analysis of MiHA-encoding genes showed that similar types of antigens were recognized in both patient groups, but in patients who developed GVHD, T cell reactivity was skewed to target broadly expressed MiHAs. As an inflammatory environment can render nonhematopoietic cells susceptible to T cell recognition, prevention of such circumstances favors induction of selective GVL reactivity without development of GVHD.
Collapse
|
16
|
Wong E, Ritchie DS, Davis JE. CIK immunotherapy in refractory hematologic malignancies. Leuk Res 2016; 49:60-1. [PMID: 27561991 DOI: 10.1016/j.leukres.2016.08.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 08/10/2016] [Indexed: 02/07/2023]
Affiliation(s)
- Eric Wong
- The ACRF Translational Research Laboratory, Melbourne Health, The Victorian Comprehensive Cancer Centre, Parkville, Melbourne, Australia; The Department of Medicine, The University of Melbourne, Parkville, Melbourne, Australia; Department of Clinical Haematology and Bone Marrow Transplant Service, The Royal Melbourne Hospital, Melbourne, Australia
| | - David S Ritchie
- The ACRF Translational Research Laboratory, Melbourne Health, The Victorian Comprehensive Cancer Centre, Parkville, Melbourne, Australia; The Department of Medicine, The University of Melbourne, Parkville, Melbourne, Australia; Department of Clinical Haematology and Bone Marrow Transplant Service, The Royal Melbourne Hospital, Melbourne, Australia; The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Melbourne, Australia
| | - Joanne E Davis
- The ACRF Translational Research Laboratory, Melbourne Health, The Victorian Comprehensive Cancer Centre, Parkville, Melbourne, Australia; The Department of Medicine, The University of Melbourne, Parkville, Melbourne, Australia; The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Melbourne, Australia.
| |
Collapse
|
17
|
Mohamed YS, Bashawri LA, Vatte C, Abu-Rish EY, Cyrus C, Khalaf WS, Browning MJ. The in vitro generation of multi-tumor antigen-specific cytotoxic T cell clones: Candidates for leukemia adoptive immunotherapy following allogeneic stem cell transplantation. Mol Immunol 2016; 77:79-88. [PMID: 27490939 DOI: 10.1016/j.molimm.2016.07.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 07/14/2016] [Accepted: 07/14/2016] [Indexed: 11/26/2022]
Abstract
Adoptive T-cell immunotherapy is a promising approach to manage and maintain relapse-free survival of leukemia patients, especially following allogeneic stem cell transplantation. Post-transplant adoptive immunotherapy using cytotoxic T lymphocytes (CTLs) of the donor origin provide graft-versus-tumor effects, with or without graft-versus-host disease. Myeloid leukemias express immunogenic leukemia associated antigens (LAAs); such as WT-1, PRAME, MAGE, h-TERT and others, most of them are able to induce specific T cell responses whenever associated with the proper co-stimulation. We investigated the ability of a LAA-expressing hybridoma cell line to induce CTL clones in PBMCs of HLA-matched healthy donors in vitro. The CTL clones were induced by repetitive co-culture with LAAs-expressing, HLA-A*0201(+) hybrid cell line, generated by fusion of leukemia blasts to human immortalized APC (EBV-sensitized B-lymphoblastoid cell line; HMy2). The induced cytotoxic T cell clones were phenotypically and functionally characterized by pentamer analysis, IFN-γ release ELISPOT and cellular cytotoxicity assays. All T cell lines showed robust peptide recognition and functional activity when sensitized with HLA-A*0201-restricted WT-1235-243, hTERT615-624 or PRAME100-108 peptides-pulsed T2 cells, in addition to partially HLA-matched leukemia blasts. This study demonstrates the feasibility of developing multi-tumor antigen-specific T cell lines in allogeneic PBMCs in vitro, using LAA-expressing tumor/HMy2 hybrid cell line model, for potential use in leukemia adoptive immunotherapy in partially matched donor-recipient setting.
Collapse
Affiliation(s)
- Yehia S Mohamed
- Department of Medical Microbiology, College of Medicine, University of Dammam, PO BOX 2114, Dammam 31451, Saudi Arabia.
| | - Layla A Bashawri
- Clinical Laboratory Department, King Fahad Hospital of the University, University of Dammam, Saudi Arabia
| | - Chittibabu Vatte
- Department of Genetic Research, Institute for Research and Medical Consultations, University of Dammam, PO BOX-1982, Dammam-31441, Saudi Arabia
| | - Eman Y Abu-Rish
- Department of Biopharmaceutics & Clinical Pharmacy, Faculty of Pharmacy, University of Jordan, Amman, Jordan
| | - Cyril Cyrus
- Department of Genetic Research, Institute for Research and Medical Consultations, University of Dammam, PO BOX-1982, Dammam-31441, Saudi Arabia
| | - Wafaa S Khalaf
- Department of Infection, Immunity and Inflammation, University of Leicester, Maurice Shock Medical Sciences Building, University Road, Leicester, LE1 9HN, UK; Department of Microbiology and Immunology, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Michael J Browning
- Department of Infection, Immunity and Inflammation, University of Leicester, Maurice Shock Medical Sciences Building, University Road, Leicester, LE1 9HN, UK
| |
Collapse
|
18
|
Castagna L, Sarina B, Bramanti S, Perseghin P, Mariotti J, Morabito L. Donor lymphocyte infusion after allogeneic stem cell transplantation. Transfus Apher Sci 2016; 54:345-55. [PMID: 27216544 DOI: 10.1016/j.transci.2016.05.011] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Allogeneic stem cell transplantation (allo-SCT) is considered the cornerstone in the treatment of several malignant and not malignant hematological diseases. However, relapse of hematological disease after allo-SCT is considered the most challenging point in the field. The risk can be reduced through optimal patients, donor and disease selection before allo-SCT, but harnessing donor immune system is an appealing way to treat or avoid disease relapse. Donor lymphocyte infusion (DLI) is a simple and effective therapy after allo-SCT. In this paper, the efficacy of DLI will be analyzed in different hematological diseases, focusing also on their therapeutic or pre-emptive use.
Collapse
Affiliation(s)
- Luca Castagna
- Programma Trapianto Humanitas Cancer Center, Istituto Clinico Humanitas, Rozzano, Italy.
| | - Barbara Sarina
- Programma Trapianto Humanitas Cancer Center, Istituto Clinico Humanitas, Rozzano, Italy
| | - Stefania Bramanti
- Programma Trapianto Humanitas Cancer Center, Istituto Clinico Humanitas, Rozzano, Italy
| | | | - Jacopo Mariotti
- Programma Trapianto Humanitas Cancer Center, Istituto Clinico Humanitas, Rozzano, Italy
| | - Lucio Morabito
- Programma Trapianto Humanitas Cancer Center, Istituto Clinico Humanitas, Rozzano, Italy
| |
Collapse
|
19
|
Lymphodepleting chemotherapy with donor lymphocyte infusion post-allogeneic HCT for hematological malignancies is associated with severe, but therapy-responsive aGvHD. Bone Marrow Transplant 2016; 51:1107-12. [PMID: 27064686 PMCID: PMC4972636 DOI: 10.1038/bmt.2016.63] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 02/04/2016] [Accepted: 02/06/2016] [Indexed: 01/02/2023]
Abstract
Donor lymphocyte infusion (DLI) is an option for relapsed hematologic malignancies or incomplete chimerism of non-malignant diseases following allogeneic hematopoietic cell transplantation (HCT). We analyzed the incidence of acute graft versus host disease (aGVHD) in patients treated with DLI. From 1995-2013, 171 DLIs were given to 120 patients. The cumulative incidence of post-DLI grade II-IV aGVHD was 31.6% (CI 25-42%, n=40; 12 grade II); grade III-IV 23.3% (CI 16-32%, n=28). GVHD after DLI (n=46) involved the skin in 70% (n=32), lower gastrointestinal (GI) 65% (n=30), upper GI 43% (n=20), and liver 35% (n=16). Patients receiving chemotherapy accompanying the DLI (chemo-DLI)(n=37) had more frequent aGVHD and particularly lower GI GVHD. Risk factors for grade II-IV aGVHD included: age > 40, chemo-DLI, malignant disease, and time from HCT to DLI < 200 days. aGVHD response to treatment at 8 weeks was complete in 40% and complete/partial (CR/PR) in 52%. We observed frequent, yet therapy-responsive aGVHD following DLI. Gastrointestinal GVHD in particular is a significant risk when giving chemotherapy prior to DLI. Improvements in DLI efficacy and GVHD management are still needed.
Collapse
|
20
|
Pont MJ, van der Lee DI, van der Meijden ED, van Bergen CAM, Kester MGD, Honders MW, Vermaat M, Eefting M, Marijt EWA, Kielbasa SM, Hoen PAC', Falkenburg JHF, Griffioen M. Integrated Whole Genome and Transcriptome Analysis Identified a Therapeutic Minor Histocompatibility Antigen in a Splice Variant of ITGB2. Clin Cancer Res 2016; 22:4185-96. [PMID: 26964570 DOI: 10.1158/1078-0432.ccr-15-2307] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 02/29/2016] [Indexed: 11/16/2022]
Abstract
PURPOSE In HLA-matched allogeneic hematopoietic stem cell transplantation (alloSCT), donor T cells recognizing minor histocompatibility antigens (MiHAs) can mediate desired antitumor immunity as well as undesired side effects. MiHAs with hematopoiesis-restricted expression are relevant targets to augment antitumor immunity after alloSCT without side effects. To identify therapeutic MiHAs, we analyzed the in vivo immune response in a patient with strong antitumor immunity after alloSCT. EXPERIMENTAL DESIGN T-cell clones recognizing patient, but not donor, hematopoietic cells were selected for MiHA discovery by whole genome association scanning. RNA-sequence data from the GEUVADIS project were analyzed to investigate alternative transcripts, and expression patterns were determined by microarray analysis and qPCR. T-cell reactivity was measured by cytokine release and cytotoxicity. RESULTS T-cell clones were isolated for two HLA-B*15:01-restricted MiHA. LB-GLE1-1V is encoded by a nonsynonymous SNP in exon 6 of GLE1 For the other MiHAs, an associating SNP in intron 3 of ITGB2 was found, but no SNP disparity was present in the normal gene transcript between patient and donor. RNA-sequence analysis identified an alternative ITGB2 transcript containing part of intron 3. qPCR demonstrated that this transcript is restricted to hematopoietic cells and SNP-positive individuals. In silico translation revealed LB-ITGB2-1 as HLA-B*15:01-binding peptide, which was validated as hematopoietic MiHA by T-cell experiments. CONCLUSIONS Whole genome and transcriptome analysis identified LB-ITGB2-1 as MiHAs encoded by an alternative transcript. Our data support the therapeutic relevance of LB-ITGB2-1 and illustrate the value of RNA-sequence analysis for discovery of immune targets encoded by alternative transcripts. Clin Cancer Res; 22(16); 4185-96. ©2016 AACR.
Collapse
Affiliation(s)
- Margot J Pont
- Department of Hematology, Leiden University Medical Center, Leiden, the Netherlands
| | | | | | | | - Michel G D Kester
- Department of Hematology, Leiden University Medical Center, Leiden, the Netherlands
| | - Maria W Honders
- Department of Hematology, Leiden University Medical Center, Leiden, the Netherlands
| | - Martijn Vermaat
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Matthias Eefting
- Department of Hematology, Leiden University Medical Center, Leiden, the Netherlands
| | - Erik W A Marijt
- Department of Hematology, Leiden University Medical Center, Leiden, the Netherlands
| | - Szymon M Kielbasa
- Department of Medical Statistics and Bioinformatics, Leiden University Medical Center, Leiden, the Netherlands
| | - Peter A C 't Hoen
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | | | - Marieke Griffioen
- Department of Hematology, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
21
|
Falkenburg JHF, Jedema I. Allo-reactive T cells for the treatment of hematological malignancies. Mol Oncol 2015; 9:1894-903. [PMID: 26578450 DOI: 10.1016/j.molonc.2015.10.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 10/15/2015] [Accepted: 10/16/2015] [Indexed: 12/11/2022] Open
Abstract
Several mechanisms can be responsible for control of hematological tumors by allo-reactive T cells. Following allogeneic stem cell transplantation (alloSCT) donor T cells recognizing genetic disparities presented on recipient cells and not on donor cells are main effectors of tumor control, but also of the detrimental graft versus host disease (GVHD). Since after transplantation normal hematopoiesis is of donor origin, any T cell response directed against polymorphic antigens expressed on hematopoietic recipient cells but not on donor cells will result in an anti-tumor response not affecting normal hematopoiesis. After fully HLA-matched alloSCT, T cells recognizing polymorphic peptides derived from proteins encoded by genes selectively expressed in hematopoietic lineages may result in anti-tumor responses without GVHD. Due to the high susceptibility of hematopoietic cells for T cell recognition, a low amplitude of the overall T cell response may also be in favor of the anti-tumor reactivity in hematological malignancies. A mismatch between donor and patient for specific HLA-alleles can also be exploited to induce a selective T cell response against patient (malignant) hematopoietic cells. If restricting HLA class II molecules are selectively expressed on hematopoietic cells under non-inflammatory circumstances, allo HLA class-II responses may control the tumor with limited risk of GVHD. Alternatively, T cells recognizing hematopoiesis-restricted antigens presented in the context of mismatched HLA alleles may be used to treat patients with hematological cancers. This review discusses various ways to manipulate the allo-immune response aiming to exploit the powerful ability of allo-reactive T-cells to control the malignancies without causing severe damage to non-hematopoietic tissues.
Collapse
Affiliation(s)
- J H F Falkenburg
- Department of Hematology, Leiden University Medical Center, Netherlands
| | - I Jedema
- Department of Hematology, Leiden University Medical Center, Netherlands.
| |
Collapse
|