1
|
Vriend J, Delwel R, Pastoors D. Mechanisms of enhancer-driven oncogene activation. Int J Cancer 2025. [PMID: 39853740 DOI: 10.1002/ijc.35330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 12/23/2024] [Accepted: 01/07/2025] [Indexed: 01/26/2025]
Abstract
An aggressive subtype of acute myeloid leukemia (AML) is caused by enhancer hijacking resulting in MECOM overexpression. Several chromosomal rearrangements can lead to this: the most common (inv(3)/t(3;3)) results in a hijacked GATA2 enhancer, and there are several atypical MECOM rearrangements involving enhancers from other hematopoietic genes. The set of enhancers which can be hijacked by MECOM can also be hijacked by BCL11B. Enhancer deregulation is also a driver of oncogenesis in a range of other malignancies. The mechanisms of enhancer deregulation observed in other cancer types, including TAD boundary disruptions and the creation of de novo (super-) enhancers, may explain overexpression of MECOM or other oncogenes in AML without enhancer hijacking upon translocation. Gaining mechanistic insight in both enhancer deregulation and super-enhancer activity is critical to pave the way for new treatments for AML and other cancers that are the result of enhancer deregulation.
Collapse
Affiliation(s)
- Joyce Vriend
- Department of Hematology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Ruud Delwel
- Department of Hematology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Dorien Pastoors
- Department of Hematology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| |
Collapse
|
2
|
Seigfried FA, Britsch S. The Role of Bcl11 Transcription Factors in Neurodevelopmental Disorders. BIOLOGY 2024; 13:126. [PMID: 38392344 PMCID: PMC10886639 DOI: 10.3390/biology13020126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/05/2024] [Accepted: 02/10/2024] [Indexed: 02/24/2024]
Abstract
Neurodevelopmental disorders (NDDs) comprise a diverse group of diseases, including developmental delay, autism spectrum disorder (ASD), intellectual disability (ID), and attention-deficit/hyperactivity disorder (ADHD). NDDs are caused by aberrant brain development due to genetic and environmental factors. To establish specific and curative therapeutic approaches, it is indispensable to gain precise mechanistic insight into the cellular and molecular pathogenesis of NDDs. Mutations of BCL11A and BCL11B, two closely related, ultra-conserved zinc-finger transcription factors, were recently reported to be associated with NDDs, including developmental delay, ASD, and ID, as well as morphogenic defects such as cerebellar hypoplasia. In mice, Bcl11 transcription factors are well known to orchestrate various cellular processes during brain development, for example, neural progenitor cell proliferation, neuronal migration, and the differentiation as well as integration of neurons into functional circuits. Developmental defects observed in both, mice and humans display striking similarities, suggesting Bcl11 knockout mice provide excellent models for analyzing human disease. This review offers a comprehensive overview of the cellular and molecular functions of Bcl11a and b and links experimental research to the corresponding NDDs observed in humans. Moreover, it outlines trajectories for future translational research that may help to better understand the molecular basis of Bcl11-dependent NDDs as well as to conceive disease-specific therapeutic approaches.
Collapse
Affiliation(s)
| | - Stefan Britsch
- Institute of Molecular and Cellular Anatomy, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany;
| |
Collapse
|
3
|
Huang Y, Zhang J, Li X, Wu Z, Xie G, Wang Y, Liu Z, Jiao M, Zhang H, Shi B, Wang Y, Zhang Y. Chromatin accessibility memory of donor cells disrupts bovine somatic cell nuclear transfer blastocysts development. FASEB J 2023; 37:e23111. [PMID: 37531300 DOI: 10.1096/fj.202300131rrr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 06/30/2023] [Accepted: 07/11/2023] [Indexed: 08/04/2023]
Abstract
The post-transfer developmental capacity of bovine somatic cell nuclear transfer (SCNT) blastocysts is reduced, implying that abnormalities in gene expression regulation are present at blastocyst stage. Chromatin accessibility, as an indicator for transcriptional regulatory elements mediating gene transcription activity, has heretofore been largely unexplored in SCNT embryos, especially at blastocyst stage. In the present study, single-cell sequencing assay for transposase-accessible chromatin (scATAC-seq) of in vivo and SCNT blastocysts were conducted to segregate lineages and demonstrate the aberrant chromatin accessibility of transcription factors (TFs) related to inner cell mass (ICM) development in SCNT blastocysts. Pseudotime analysis of lineage segregation further reflected dysregulated chromatin accessibility dynamics of TFs in the ICM of SCNT blastocysts compared to their in vivo counterparts. ATAC- and ChIP-seq results of SCNT donor cells revealed that the aberrant chromatin accessibility in the ICM of SCNT blastocysts was due to the persistence of chromatin accessibility memory at corresponding loci in the donor cells, with strong enrichment of trimethylation of histone H3 at lysine 4 (H3K4me3) at these loci. Correction of the aberrant chromatin accessibility through demethylation of H3K4me3 by KDM5B diminished the expression of related genes (e.g., BCL11B) and significantly improved the ICM proliferation in SCNT blastocysts. This effect was confirmed by knocking down BCL11B in SCNT embryos to down-regulate p21 and alleviate the inhibition of ICM proliferation. These findings expand our understanding of the chromatin accessibility abnormalities in SCNT blastocysts and BCL11B may be a potential target to improve SCNT efficiency.
Collapse
Affiliation(s)
- Yuemeng Huang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, China
- Engineering Center for Animal Embryo Technology, Yangling, China
| | - Jingcheng Zhang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, China
- Engineering Center for Animal Embryo Technology, Yangling, China
| | - Xinmei Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Zhipei Wu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Guoxiang Xie
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Yong Wang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, China
- Engineering Center for Animal Embryo Technology, Yangling, China
| | - Zhengqing Liu
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, China
- Engineering Center for Animal Embryo Technology, Yangling, China
| | - Mei Jiao
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, China
- Engineering Center for Animal Embryo Technology, Yangling, China
| | - Hexu Zhang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, China
- Engineering Center for Animal Embryo Technology, Yangling, China
| | - Binqiang Shi
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, China
- Engineering Center for Animal Embryo Technology, Yangling, China
| | - Yu Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Yong Zhang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, China
- Engineering Center for Animal Embryo Technology, Yangling, China
| |
Collapse
|
4
|
Toner K, Schore R, Cheng J. Mixed-phenotype acute leukemia with BCL11B copy gain: What is the best strategy? Pediatr Blood Cancer 2023:e30441. [PMID: 37243386 DOI: 10.1002/pbc.30441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023]
Affiliation(s)
- Keri Toner
- Center for Cancer and Blood Disorders, Children's National Hospital, Washington, District of Columbia, USA
- Department of Pediatrics, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA
| | - Reuven Schore
- Center for Cancer and Blood Disorders, Children's National Hospital, Washington, District of Columbia, USA
- Department of Pediatrics, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA
| | - Jinjun Cheng
- Center for Cancer and Blood Disorders, Children's National Hospital, Washington, District of Columbia, USA
- Division of Pathology and Laboratory Medicine, Children's National Hospital, Washington, District of Columbia, USA
- Departments of Pathology and Pediatrics, The George Washington, University School of Medicine and Health Sciences, Washington, District of Columbia, USA
| |
Collapse
|
5
|
Brown JS. Comparison of Oncogenes, Tumor Suppressors, and MicroRNAs Between Schizophrenia and Glioma: The Balance of Power. Neurosci Biobehav Rev 2023; 151:105206. [PMID: 37178944 DOI: 10.1016/j.neubiorev.2023.105206] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 04/25/2023] [Accepted: 04/30/2023] [Indexed: 05/15/2023]
Abstract
The risk of cancer in schizophrenia has been controversial. Confounders of the issue are cigarette smoking in schizophrenia, and antiproliferative effects of antipsychotic medications. The author has previously suggested comparison of a specific cancer like glioma to schizophrenia might help determine a more accurate relationship between cancer and schizophrenia. To accomplish this goal, the author performed three comparisons of data; the first a comparison of conventional tumor suppressors and oncogenes between schizophrenia and cancer including glioma. This comparison determined schizophrenia has both tumor-suppressive and tumor-promoting characteristics. A second, larger comparison between brain-expressed microRNAs in schizophrenia with their expression in glioma was then performed. This identified a core carcinogenic group of miRNAs in schizophrenia offset by a larger group of tumor-suppressive miRNAs. This proposed "balance of power" between oncogenes and tumor suppressors could cause neuroinflammation. This was assessed by a third comparison between schizophrenia, glioma and inflammation in asbestos-related lung cancer and mesothelioma (ALRCM). This revealed that schizophrenia shares more oncogenic similarity to ALRCM than glioma.
Collapse
|
6
|
Johansson P, Laguna T, Ossowski J, Pancaldi V, Brauser M, Dührsen U, Keuneke L, Queiros A, Richter J, Martín-Subero JI, Siebert R, Schlegelberger B, Küppers R, Dürig J, Murga Penas EM, Carillo-de Santa Pau E, Bergmann AK. Epigenome-wide analysis of T-cell large granular lymphocytic leukemia identifies BCL11B as a potential biomarker. Clin Epigenetics 2022; 14:148. [PMID: 36376973 PMCID: PMC9664638 DOI: 10.1186/s13148-022-01362-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 10/20/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND The molecular pathogenesis of T-cell large granular lymphocytic leukemia (T-LGLL), a mature T-cell leukemia arising commonly from T-cell receptor αβ-positive CD8+ memory cytotoxic T cells, is only partly understood. The role of deregulated methylation in T-LGLL is not well known. We analyzed the epigenetic profile of T-LGLL cells of 11 patients compared to their normal counterparts by array-based DNA methylation profiling. For identification of molecular events driving the pathogenesis of T-LGLL, we compared the differentially methylated loci between the T-LGLL cases and normal T cells with chromatin segmentation data of benign T cells from the BLUEPRINT project. Moreover, we analyzed gene expression data of T-LGLL and benign T cells and validated the results by pyrosequencing in an extended cohort of 17 patients, including five patients with sequential samples. RESULTS We identified dysregulation of DNA methylation associated with altered gene expression in T-LGLL. Since T-LGLL is a rare disease, the samples size is low. But as confirmed for each sample, hypermethylation of T-LGLL cells at various CpG sites located at enhancer regions is a hallmark of this disease. The interaction of BLC11B and C14orf64 as suggested by in silico data analysis could provide a novel pathogenetic mechanism that needs further experimental investigation. CONCLUSIONS DNA methylation is altered in T-LGLL cells compared to benign T cells. In particular, BCL11B is highly significant differentially methylated in T-LGLL cells. Although our results have to be validated in a larger patient cohort, BCL11B could be considered as a potential biomarker for this leukemia. In addition, altered gene expression and hypermethylation of enhancer regions could serve as potential mechanisms for treatment of this disease. Gene interactions of dysregulated genes, like BLC11B and C14orf64, may play an important role in pathogenic mechanisms and should be further analyzed.
Collapse
Affiliation(s)
- Patricia Johansson
- grid.5718.b0000 0001 2187 5445Faculty of Medicine, Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, Virchowstr. 177, 45122 Essen, Germany
| | - Teresa Laguna
- grid.482878.90000 0004 0500 5302Computational Biology Group, Precision Nutrition and Cancer Research Program, IMDEA Food Institute, 28049 Madrid, Spain
| | - Julio Ossowski
- grid.9764.c0000 0001 2153 9986Institute for Human Genetics, Christian-Albrechts-University Kiel and University Hospital Schleswig Holstein, Campus Kiel, Kiel, Germany ,grid.10423.340000 0000 9529 9877Institute of Human Genetics, Medical School Hannover (MHH), Hannover, Germany
| | - Vera Pancaldi
- grid.468186.5Centre de Recherches en Cancérologie de Toulouse (CRCT), Université de Toulouse, CNRS, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, INSERM U1037, 31037 Toulouse, France ,grid.10097.3f0000 0004 0387 1602Barcelona Supercomputing Center, 08034 Barcelona, Spain
| | - Martina Brauser
- grid.5718.b0000 0001 2187 5445Faculty of Medicine, Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, Virchowstr. 177, 45122 Essen, Germany
| | - Ulrich Dührsen
- grid.5718.b0000 0001 2187 5445Department of Hematology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Lara Keuneke
- grid.9764.c0000 0001 2153 9986Institute for Human Genetics, Christian-Albrechts-University Kiel and University Hospital Schleswig Holstein, Campus Kiel, Kiel, Germany
| | - Ana Queiros
- grid.5841.80000 0004 1937 0247Institut d’Investigacions Biomediques August Pi I Sunyer (IDIBAPS), University of Barcelona, 08036 Barcelona, Spain
| | - Julia Richter
- grid.9764.c0000 0001 2153 9986Institute for Pathology, Christian-Albrechts-University Kiel and University Hospital Schleswig Holstein, Campus Kiel, Kiel, Germany
| | - José I. Martín-Subero
- grid.5841.80000 0004 1937 0247Institut d’Investigacions Biomediques August Pi I Sunyer (IDIBAPS), University of Barcelona, 08036 Barcelona, Spain ,grid.425902.80000 0000 9601 989XInstitució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain
| | - Reiner Siebert
- grid.9764.c0000 0001 2153 9986Institute for Human Genetics, Christian-Albrechts-University Kiel and University Hospital Schleswig Holstein, Campus Kiel, Kiel, Germany ,grid.410712.10000 0004 0473 882XPresent Address: Institute of Human Genetics, University of Ulm and University Medical Center Ulm, Ulm, Germany
| | - Brigitte Schlegelberger
- grid.10423.340000 0000 9529 9877Institute of Human Genetics, Medical School Hannover (MHH), Hannover, Germany
| | - Ralf Küppers
- grid.5718.b0000 0001 2187 5445Faculty of Medicine, Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, Virchowstr. 177, 45122 Essen, Germany
| | - Jan Dürig
- grid.500068.bDepartment of Internal Medicine, University Hospital Essen, St. Josef-Krankenhaus, University Medicine Essen, Essen, Germany
| | - Eva M. Murga Penas
- grid.9764.c0000 0001 2153 9986Institute for Human Genetics, Christian-Albrechts-University Kiel and University Hospital Schleswig Holstein, Campus Kiel, Kiel, Germany
| | - Enrique Carillo-de Santa Pau
- grid.482878.90000 0004 0500 5302Computational Biology Group, Precision Nutrition and Cancer Research Program, IMDEA Food Institute, 28049 Madrid, Spain
| | - Anke K. Bergmann
- grid.10423.340000 0000 9529 9877Institute of Human Genetics, Medical School Hannover (MHH), Hannover, Germany
| |
Collapse
|
7
|
Duan Y, Li Q, Zhou J, Zhao H, Zhao Z, Wang L, Luo M, Du J, Dong Z. Studies on the molecular level changes and potential resistance mechanism of Coreius guichenoti under temperature stimulation. Front Genet 2022; 13:1015505. [PMID: 36263436 PMCID: PMC9574000 DOI: 10.3389/fgene.2022.1015505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 09/15/2022] [Indexed: 12/02/2022] Open
Abstract
In this study, we used transcriptome and proteome technology to analyze molecular level changes in tissues of Coreius guichenoti cultured at high temperature (HT) and low temperature (LT). We also screened for specific anti-stress genes and proteins and evaluated the relationships between them. We identified 201,803 unigenes and 10,623 proteins. Compared with the normal temperature (NT), 408 genes and 1,204 proteins were up- or down-regulated in brain tissues, respectively, at HT, and the numbers were 8 and 149 at LT. In gill tissues, the numbers were 101 and 1,745 at HT and 27 and 511 at LT. In gill tissues at both temperatures, the degree of down-regulation (average, HT 204.67-fold, LT 443.13-fold) was much greater than that of up-regulation (average, HT 28.69-fold, LT 17.68-fold). The protein expression in brain (average, up 52.67-fold, down 13.54-fold) and gill (average, up 73.02-fold, down 12.92-fold) tissues increased more at HT than at LT. The protein expression in brain (up 3.77-fold, down 4.79-fold) tissues decreased more at LT than at HT, whereas the protein expression in gill (up 8.64-fold, down 4.35-fold) tissues was up-regulated more at LT than at HT. At HT, brain tissues were mainly enriched in pathways related to metabolism and DNA repair; at LT, they were mainly enriched in cancer-related pathways. At both temperatures, gill tissues were mainly enriched in pathways related to cell proliferation, apoptosis, immunity, and inflammation. Additionally, Kyoto Encyclopedia of Genes and Genomes pathway analysis showed more differentially expressed proteins in gill tissues than in brain tissues at HT and LT, and temperature stimulation led to the strengthening of metabolic pathways in both tissues. Of the 96 genes we identified as potentially being highly related to temperature stress (59 from transcriptome and 38 from proteome data), we detected heat shock protein 70 in both the transcriptome and proteome. Our results improved our understanding of the differential relationship between gene expression and protein expression in C. guichenoti. Identifying important temperature stress genes will help lay a foundation for cultivating C. guichenoti, and even other fish species, that are resistant to HT or LT.
Collapse
Affiliation(s)
- Yuanliang Duan
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
- Freshwater Fisheries Research Center of Chinese Academy of Fishery Sciences, Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Wuxi, China
- Fisheries Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Qiang Li
- Fisheries Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Jian Zhou
- Fisheries Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Han Zhao
- Fisheries Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Zhongmeng Zhao
- Fisheries Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Lanmei Wang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
- Freshwater Fisheries Research Center of Chinese Academy of Fishery Sciences, Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Wuxi, China
| | - Mingkun Luo
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
- Freshwater Fisheries Research Center of Chinese Academy of Fishery Sciences, Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Wuxi, China
| | - Jun Du
- Fisheries Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Zaijie Dong
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
- Freshwater Fisheries Research Center of Chinese Academy of Fishery Sciences, Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Wuxi, China
- *Correspondence: Zaijie Dong,
| |
Collapse
|
8
|
Montefiori LE, Mullighan CG. Redefining the biological basis of lineage-ambiguous leukemia through genomics: BCL11B deregulation in acute leukemias of ambiguous lineage. Best Pract Res Clin Haematol 2021; 34:101329. [PMID: 34865701 DOI: 10.1016/j.beha.2021.101329] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Acute leukemias of ambiguous lineage (ALAL), including mixed phenotype acute leukemia (MPAL) and related entities such as early T-cell precursor acute leukemia (ETP-ALL), remain diagnostic and clinical challenges due to limited understanding of pathogenesis, reliance of immunophenotyping to classify disease, and the lack of a rational approach to guide selection of appropriate therapy. Recent studies utilizing genomic sequencing and complementary approaches have provided key insights that are changing the way in which such leukemias are classified, and potentially, treated. Several recurrent genomic alterations define leukemias that straddle immunophenotypic entities, such as ZNF384-rearranged childhood B-ALL and B/myeloid MPAL, and BCL11B-rearranged T/myeloid MPAL, ETP-ALL and AML. In contrast, some cases of MPAL represent canonical ALL/AML entities exhibiting lineage aberrancy. For many cases of ALAL, experimental approaches indicate lineage aberrancy arises from acquisition of a founding genetic alteration into a hematopoietic stem or progenitor cell. Determination of optimal therapeutic approach requires genomic characterization of uniformly treated ALAL patients in prospective studies, but several approaches, including kinase inhibitors and BH3 mimetics may be efficacious in subsets of ALAL.
Collapse
Affiliation(s)
- Lindsey E Montefiori
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Charles G Mullighan
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
9
|
Bendig S, Stengel A, Walter W, Meggendorfer M, Baer C, Müller ML, Haferlach T, Kern W, Haferlach C. Diagnostic challenge of identifying cases with recurrent t(8;14)(q24.21;q32.2) Involving BCL11B in acute leukemias of ambiguous lineage: an analysis of eight patients. Leuk Lymphoma 2021; 63:747-750. [PMID: 34738838 DOI: 10.1080/10428194.2021.1999436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
10
|
Montefiori LE, Bendig S, Gu Z, Chen X, Pölönen P, Ma X, Murison A, Zeng A, Garcia-Prat L, Dickerson K, Iacobucci I, Abdelhamed S, Hiltenbrand R, Mead PE, Mehr CM, Xu B, Cheng Z, Chang TC, Westover T, Ma J, Stengel A, Kimura S, Qu C, Valentine MB, Rashkovan M, Luger S, Litzow MR, Rowe JM, den Boer ML, Wang V, Yin J, Kornblau SM, Hunger SP, Loh ML, Pui CH, Yang W, Crews KR, Roberts KG, Yang JJ, Relling MV, Evans WE, Stock W, Paietta EM, Ferrando AA, Zhang J, Kern W, Haferlach T, Wu G, Dick JE, Klco JM, Haferlach C, Mullighan CG. Enhancer Hijacking Drives Oncogenic BCL11B Expression in Lineage-Ambiguous Stem Cell Leukemia. Cancer Discov 2021; 11:2846-2867. [PMID: 34103329 PMCID: PMC8563395 DOI: 10.1158/2159-8290.cd-21-0145] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/27/2021] [Accepted: 06/01/2021] [Indexed: 11/16/2022]
Abstract
Lineage-ambiguous leukemias are high-risk malignancies of poorly understood genetic basis. Here, we describe a distinct subgroup of acute leukemia with expression of myeloid, T lymphoid, and stem cell markers driven by aberrant allele-specific deregulation of BCL11B, a master transcription factor responsible for thymic T-lineage commitment and specification. Mechanistically, this deregulation was driven by chromosomal rearrangements that juxtapose BCL11B to superenhancers active in hematopoietic progenitors, or focal amplifications that generate a superenhancer from a noncoding element distal to BCL11B. Chromatin conformation analyses demonstrated long-range interactions of rearranged enhancers with the expressed BCL11B allele and association of BCL11B with activated hematopoietic progenitor cell cis-regulatory elements, suggesting BCL11B is aberrantly co-opted into a gene regulatory network that drives transformation by maintaining a progenitor state. These data support a role for ectopic BCL11B expression in primitive hematopoietic cells mediated by enhancer hijacking as an oncogenic driver of human lineage-ambiguous leukemia. SIGNIFICANCE: Lineage-ambiguous leukemias pose significant diagnostic and therapeutic challenges due to a poorly understood molecular and cellular basis. We identify oncogenic deregulation of BCL11B driven by diverse structural alterations, including de novo superenhancer generation, as the driving feature of a subset of lineage-ambiguous leukemias that transcend current diagnostic boundaries.This article is highlighted in the In This Issue feature, p. 2659.
Collapse
Affiliation(s)
- Lindsey E Montefiori
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | | | - Zhaohui Gu
- Department of Computational and Quantitative Medicine, City of Hope Comprehensive Cancer Center, Duarte, California
- Department of Systems Biology, City of Hope Comprehensive Cancer Center, Duarte, California
| | - Xiaolong Chen
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Petri Pölönen
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Xiaotu Ma
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Alex Murison
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Andy Zeng
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Laura Garcia-Prat
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Kirsten Dickerson
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Ilaria Iacobucci
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Sherif Abdelhamed
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Ryan Hiltenbrand
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Paul E Mead
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Cyrus M Mehr
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Beisi Xu
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Zhongshan Cheng
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Ti-Cheng Chang
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Tamara Westover
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Jing Ma
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | | | - Shunsuke Kimura
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Chunxu Qu
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Marcus B Valentine
- Cytogenetics Core Facility, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Marissa Rashkovan
- Institute for Cancer Genetics, Columbia University, New York, New York
| | - Selina Luger
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Mark R Litzow
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota
| | - Jacob M Rowe
- Department of Hematology, Shaare Zedek Medical Center, Jerusalem, Israel
| | | | - Victoria Wang
- Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Jun Yin
- Division of Clinical Trials and Biostatistics, Mayo Clinic, Rochester, Minnesota
| | - Steven M Kornblau
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Stephen P Hunger
- Department of Pediatrics, Children's Hospital of Philadelphia, and the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Mignon L Loh
- Department of Pediatrics, Benioff Children's Hospital and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California
| | - Ching-Hon Pui
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Wenjian Yang
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Kristine R Crews
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Kathryn G Roberts
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Jun J Yang
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Mary V Relling
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - William E Evans
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Wendy Stock
- University of Chicago Comprehensive Cancer Center, Chicago, Illinois
| | | | - Adolfo A Ferrando
- Institute for Cancer Genetics, Columbia University, New York, New York
- Department of Pediatrics, Columbia University, New York, New York
- Department of Pathology and Cell Biology, Columbia University, New York, New York
- Department of Systems Biology, Columbia University, New York, New York
| | - Jinghui Zhang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | | | | | - Gang Wu
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - John E Dick
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Jeffery M Klco
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee.
| | | | - Charles G Mullighan
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee.
| |
Collapse
|
11
|
Zhang L, Yu L, Liu Y, Wang S, Hou Z, Zhou J. miR-21-5p promotes cell proliferation by targeting BCL11B in Thp-1 cells. Oncol Lett 2020; 21:119. [PMID: 33376550 DOI: 10.3892/ol.2020.12380] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 11/03/2020] [Indexed: 11/06/2022] Open
Abstract
Acute myeloid leukemia (AML) is a highly heterogeneous disease that remains untreatable. MicroRNAs (miRNAs or miRs) play important roles in the pathogenesis of leukemia. miR-21 is highly expressed in multiple types of human cancer and displays oncogenic activities; however, the clinical significance of miR-21 in AML remains unclear. In the present study, it was demonstrated that miR-21 levels were high in patients with AML and in AML cell lines. Further experiments demonstrated that overexpression of miR-21 in Thp-1 human monocytes derived from acute mononuclear leukemia peripheral blood promoted cell proliferation, while downregulation of miR-21-5p, a mature sequence derived from the 5' end of the miR-21 stem-loop precursor (another mature sequence, miR-21-3p, is derived form 3' end of miR-21), inhibited cell proliferation. Specifically, it was observed that overexpression of miR-21 could promote the transition of Thp-1 cells into the S and G2/M phases of the cell cycle, as shown by flow cytometry. Furthermore, inhibition of miR-21-5p arrested cells in the S and G2/M phases. Finally, BCL11B was determined to be a functional target of miR-21-5p by luciferase assays. Our study revealed functional and mechanistic associations between miR-21 and BCL11B in Thp-1 cells, which could serve to guide clinical treatment of AML.
Collapse
Affiliation(s)
- Liang Zhang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Institute of Biomedical Sciences, College of Life Sciences, Shandong Normal University, Jinan, Shandong 250014, P.R. China
| | - Li Yu
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Institute of Biomedical Sciences, College of Life Sciences, Shandong Normal University, Jinan, Shandong 250014, P.R. China
| | - Yiran Liu
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Institute of Biomedical Sciences, College of Life Sciences, Shandong Normal University, Jinan, Shandong 250014, P.R. China
| | - Shasha Wang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Institute of Biomedical Sciences, College of Life Sciences, Shandong Normal University, Jinan, Shandong 250014, P.R. China
| | - Zhenfeng Hou
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Institute of Biomedical Sciences, College of Life Sciences, Shandong Normal University, Jinan, Shandong 250014, P.R. China
| | - Jun Zhou
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Institute of Biomedical Sciences, College of Life Sciences, Shandong Normal University, Jinan, Shandong 250014, P.R. China
| |
Collapse
|
12
|
Wang W, Beird H, Kroll CJ, Hu S, Bueso-Ramos CE, Fang H, Tang G, Tang Z, Wang F, Takahashi K, You MJ, Khoury JD, Medeiros LJ, Futreal PA. T(6;14)(q25;q32) involves BCL11B and is highly associated with mixed-phenotype acute leukemia, T/myeloid. Leukemia 2020; 34:2509-2512. [PMID: 32099038 DOI: 10.1038/s41375-020-0761-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 01/11/2020] [Accepted: 02/11/2020] [Indexed: 11/09/2022]
Affiliation(s)
- Wei Wang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Hannah Beird
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Caleb Jonathan Kroll
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shimin Hu
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Carlos E Bueso-Ramos
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hong Fang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Guilin Tang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Zhenya Tang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Feng Wang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Koichi Takahashi
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - M James You
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Joseph D Khoury
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - L Jeffrey Medeiros
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - P Andrew Futreal
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
13
|
Padella A, Simonetti G, Paciello G, Giotopoulos G, Baldazzi C, Righi S, Ghetti M, Stengel A, Guadagnuolo V, De Tommaso R, Papayannidis C, Robustelli V, Franchini E, Ghelli Luserna di Rorà A, Ferrari A, Fontana MC, Bruno S, Ottaviani E, Soverini S, Storlazzi CT, Haferlach C, Sabattini E, Testoni N, Iacobucci I, Huntly BJP, Ficarra E, Martinelli G. Novel and Rare Fusion Transcripts Involving Transcription Factors and Tumor Suppressor Genes in Acute Myeloid Leukemia. Cancers (Basel) 2019; 11:E1951. [PMID: 31817495 PMCID: PMC6966504 DOI: 10.3390/cancers11121951] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/15/2019] [Accepted: 12/02/2019] [Indexed: 02/07/2023] Open
Abstract
Approximately 18% of acute myeloid leukemia (AML) cases express a fusion transcript. However, few fusions are recurrent across AML and the identification of these rare chimeras is of interest to characterize AML patients. Here, we studied the transcriptome of 8 adult AML patients with poorly described chromosomal translocation(s), with the aim of identifying novel and rare fusion transcripts. We integrated RNA-sequencing data with multiple approaches including computational analysis, Sanger sequencing, fluorescence in situ hybridization and in vitro studies to assess the oncogenic potential of the ZEB2-BCL11B chimera. We detected 7 different fusions with partner genes involving transcription factors (OAZ-MAFK, ZEB2-BCL11B), tumor suppressors (SAV1-GYPB, PUF60-TYW1, CNOT2-WT1) and rearrangements associated with the loss of NF1 (CPD-PXT1, UTP6-CRLF3). Notably, ZEB2-BCL11B rearrangements co-occurred with FLT3 mutations and were associated with a poorly differentiated or mixed phenotype leukemia. Although the fusion alone did not transform murine c-Kit+ bone marrow cells, 45.4% of 14q32 non-rearranged AML cases were also BCL11B-positive, suggesting a more general and complex mechanism of leukemogenesis associated with BCL11B expression. Overall, by combining different approaches, we described rare fusion events contributing to the complexity of AML and we linked the expression of some chimeras to genomic alterations hitting known genes in AML.
Collapse
Affiliation(s)
- Antonella Padella
- Department of Experimental, Diagnostic and Speciality Medicine, University of Bologna, 40138 Bologna, Italy; (A.P.); (S.R.); (V.G.); (R.D.T.); (C.P.); (V.R.); (M.C.F.); (S.B.); (E.O.); (S.S.); (E.S.); (N.T.)
| | - Giorgia Simonetti
- Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola (FC), Italy; (G.S.); (M.G.); (E.F.); (A.G.L.d.R.); (A.F.)
| | - Giulia Paciello
- Department of Control and Computer Engineering DAUIN, Politecnico di Torino, 10129 Turin, Italy; (G.P.); (E.F.)
| | - George Giotopoulos
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 1TN, UK; (G.G.); (B.J.P.H.)
- Department of Haematology, Cambridge Institute for Medical Research and Addenbrooke’s Hospital, University of Cambridge, Cambridge CB2 0XY, UK
| | - Carmen Baldazzi
- Institute of Hematology “L. and A. Seràgnoli”, Sant’Orsola-Malpighi University Hospital, 40138 Bologna, Italy;
| | - Simona Righi
- Department of Experimental, Diagnostic and Speciality Medicine, University of Bologna, 40138 Bologna, Italy; (A.P.); (S.R.); (V.G.); (R.D.T.); (C.P.); (V.R.); (M.C.F.); (S.B.); (E.O.); (S.S.); (E.S.); (N.T.)
| | - Martina Ghetti
- Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola (FC), Italy; (G.S.); (M.G.); (E.F.); (A.G.L.d.R.); (A.F.)
| | - Anna Stengel
- MLL-Munich Leukemia Laboratory, 81377 Munich, Germany; (A.S.); (C.H.)
| | - Viviana Guadagnuolo
- Department of Experimental, Diagnostic and Speciality Medicine, University of Bologna, 40138 Bologna, Italy; (A.P.); (S.R.); (V.G.); (R.D.T.); (C.P.); (V.R.); (M.C.F.); (S.B.); (E.O.); (S.S.); (E.S.); (N.T.)
| | - Rossella De Tommaso
- Department of Experimental, Diagnostic and Speciality Medicine, University of Bologna, 40138 Bologna, Italy; (A.P.); (S.R.); (V.G.); (R.D.T.); (C.P.); (V.R.); (M.C.F.); (S.B.); (E.O.); (S.S.); (E.S.); (N.T.)
| | - Cristina Papayannidis
- Department of Experimental, Diagnostic and Speciality Medicine, University of Bologna, 40138 Bologna, Italy; (A.P.); (S.R.); (V.G.); (R.D.T.); (C.P.); (V.R.); (M.C.F.); (S.B.); (E.O.); (S.S.); (E.S.); (N.T.)
| | - Valentina Robustelli
- Department of Experimental, Diagnostic and Speciality Medicine, University of Bologna, 40138 Bologna, Italy; (A.P.); (S.R.); (V.G.); (R.D.T.); (C.P.); (V.R.); (M.C.F.); (S.B.); (E.O.); (S.S.); (E.S.); (N.T.)
| | - Eugenia Franchini
- Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola (FC), Italy; (G.S.); (M.G.); (E.F.); (A.G.L.d.R.); (A.F.)
| | - Andrea Ghelli Luserna di Rorà
- Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola (FC), Italy; (G.S.); (M.G.); (E.F.); (A.G.L.d.R.); (A.F.)
| | - Anna Ferrari
- Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola (FC), Italy; (G.S.); (M.G.); (E.F.); (A.G.L.d.R.); (A.F.)
| | - Maria Chiara Fontana
- Department of Experimental, Diagnostic and Speciality Medicine, University of Bologna, 40138 Bologna, Italy; (A.P.); (S.R.); (V.G.); (R.D.T.); (C.P.); (V.R.); (M.C.F.); (S.B.); (E.O.); (S.S.); (E.S.); (N.T.)
| | - Samantha Bruno
- Department of Experimental, Diagnostic and Speciality Medicine, University of Bologna, 40138 Bologna, Italy; (A.P.); (S.R.); (V.G.); (R.D.T.); (C.P.); (V.R.); (M.C.F.); (S.B.); (E.O.); (S.S.); (E.S.); (N.T.)
| | - Emanuela Ottaviani
- Department of Experimental, Diagnostic and Speciality Medicine, University of Bologna, 40138 Bologna, Italy; (A.P.); (S.R.); (V.G.); (R.D.T.); (C.P.); (V.R.); (M.C.F.); (S.B.); (E.O.); (S.S.); (E.S.); (N.T.)
| | - Simona Soverini
- Department of Experimental, Diagnostic and Speciality Medicine, University of Bologna, 40138 Bologna, Italy; (A.P.); (S.R.); (V.G.); (R.D.T.); (C.P.); (V.R.); (M.C.F.); (S.B.); (E.O.); (S.S.); (E.S.); (N.T.)
| | | | - Claudia Haferlach
- MLL-Munich Leukemia Laboratory, 81377 Munich, Germany; (A.S.); (C.H.)
| | - Elena Sabattini
- Department of Experimental, Diagnostic and Speciality Medicine, University of Bologna, 40138 Bologna, Italy; (A.P.); (S.R.); (V.G.); (R.D.T.); (C.P.); (V.R.); (M.C.F.); (S.B.); (E.O.); (S.S.); (E.S.); (N.T.)
| | - Nicoletta Testoni
- Department of Experimental, Diagnostic and Speciality Medicine, University of Bologna, 40138 Bologna, Italy; (A.P.); (S.R.); (V.G.); (R.D.T.); (C.P.); (V.R.); (M.C.F.); (S.B.); (E.O.); (S.S.); (E.S.); (N.T.)
| | - Ilaria Iacobucci
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA;
| | - Brian J. P. Huntly
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 1TN, UK; (G.G.); (B.J.P.H.)
- Department of Haematology, Cambridge Institute for Medical Research and Addenbrooke’s Hospital, University of Cambridge, Cambridge CB2 0XY, UK
| | - Elisa Ficarra
- Department of Control and Computer Engineering DAUIN, Politecnico di Torino, 10129 Turin, Italy; (G.P.); (E.F.)
| | - Giovanni Martinelli
- Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola (FC), Italy; (G.S.); (M.G.); (E.F.); (A.G.L.d.R.); (A.F.)
| |
Collapse
|
14
|
Gaffo E, Boldrin E, Dal Molin A, Bresolin S, Bonizzato A, Trentin L, Frasson C, Debatin KM, Meyer LH, Te Kronnie G, Bortoluzzi S. Circular RNA differential expression in blood cell populations and exploration of circRNA deregulation in pediatric acute lymphoblastic leukemia. Sci Rep 2019; 9:14670. [PMID: 31605010 PMCID: PMC6789028 DOI: 10.1038/s41598-019-50864-z] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 09/19/2019] [Indexed: 12/21/2022] Open
Abstract
Circular RNAs (circRNAs) are abundantly expressed in the haematopoietic compartment, but knowledge on their diversity among blood cell types is still limited. Nevertheless, emerging data indicate an array of circRNA functions exerted through interactions with other RNAs and proteins, by translation into peptides, and circRNA involvement as regulatory molecules in many biological processes and cancer mechanisms. Interestingly, the role of specific circRNAs in leukemogenesis has been disclosed by a few studies, mostly in acute myeloid leukemia. In this study, circRNA expression in B-cells, T-cells and monocytes of healthy subjects is described, including putative new circRNA genes. Expression comparison considered 6,228 circRNAs and highlighted cell population-specific expression and exon usage patterns. Differential expression has been confirmed by qRT-PCR for circRNAs specific of B-cells (circPAX5, circAFF3, circIL4R, and circSETBP1) or T-cells (circIKZF1, circTNIK, circTXK, and circFBXW7), and for circRNAs from intronic (circBCL2) and intergenic regions that were overexpressed in lymphocytes. Starting from this resource of circRNA expression in mature blood cell populations, targeted examination identified striking and generalized upregulated expression of circPAX5, circPVT1 and circHIPK3 in pediatric B-precursor acute lymphoblastic leukemia, and disclosed circRNAs with variable expression across cytogenetic subtypes.
Collapse
Affiliation(s)
- Enrico Gaffo
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Elena Boldrin
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| | - Anna Dal Molin
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Silvia Bresolin
- Department of Women's and Children's Health, University of Padova, Padova, Italy
| | - Annagiulia Bonizzato
- Department of Women's and Children's Health, University of Padova, Padova, Italy
| | - Luca Trentin
- Department of Women's and Children's Health, University of Padova, Padova, Italy
| | - Chiara Frasson
- Department of Women's and Children's Health, University of Padova, Padova, Italy
| | - Klaus-Michael Debatin
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| | - Lueder H Meyer
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| | - Geertruij Te Kronnie
- Department of Women's and Children's Health, University of Padova, Padova, Italy
| | | |
Collapse
|
15
|
Monaghan L, Massett ME, Bunschoten RP, Hoose A, Pirvan PA, Liskamp RMJ, Jørgensen HG, Huang X. The Emerging Role of H3K9me3 as a Potential Therapeutic Target in Acute Myeloid Leukemia. Front Oncol 2019; 9:705. [PMID: 31428579 PMCID: PMC6687838 DOI: 10.3389/fonc.2019.00705] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 07/16/2019] [Indexed: 12/23/2022] Open
Abstract
Growing evidence has demonstrated that epigenetic dysregulation is a common pathological feature in human cancer cells. Global alterations in the epigenetic landscape are prevalent in malignant cells across different solid tumors including, prostate cancer, non-small-cell lung cancer, renal cell carcinoma, and in haemopoietic malignancy. In particular, DNA hypomethylation and histone hypoacetylation have been observed in acute myeloid leukemia (AML) patient blasts, with histone methylation being an emerging area of study. Histone 3 lysine 9 trimethylation (H3K9me3) is a post-translational modification known to be involved in the regulation of a broad range of biological processes, including the formation of transcriptionally silent heterochromatin. Following the observation of its aberrant methylation status in hematological malignancy and several other cancer phenotypes, recent studies have associated H3K9me3 levels with patient outcome and highlighted key molecular mechanisms linking H3K9me3 profile with AML etiology in a number of large-scale meta-analysis. Consequently, the development and application of small molecule inhibitors which target the histone methyltransferases or demethylase enzymes known to participate in the oncogenic regulation of H3K9me3 in AML represents an advancing area of ongoing study. Here, we provide a comprehensive review on how this particular epigenetic mark is regulated within cells and its emerging role as a potential therapeutic target in AML, along with an update on the current research into advancing the generation of more potent and selective inhibitors against known H3K9 methyltransferases and demethylases.
Collapse
Affiliation(s)
- Laura Monaghan
- Haemato-Oncology/Systems Medicine Group, Paul O'Gorman Leukemia Research Center, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Matthew E. Massett
- Haemato-Oncology/Systems Medicine Group, Paul O'Gorman Leukemia Research Center, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | | | - Alex Hoose
- School of Chemistry, University of Glasgow, Glasgow, United Kingdom
| | | | | | - Heather G. Jørgensen
- Haemato-Oncology/Systems Medicine Group, Paul O'Gorman Leukemia Research Center, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Xu Huang
- Haemato-Oncology/Systems Medicine Group, Paul O'Gorman Leukemia Research Center, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
16
|
ZEB2 in T-cells and T-ALL. Adv Biol Regul 2019; 74:100639. [PMID: 31383581 DOI: 10.1016/j.jbior.2019.100639] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 07/21/2019] [Accepted: 07/23/2019] [Indexed: 12/14/2022]
Abstract
The identification of the rare but recurrent t(2; 14)(q22; q32) translocation involving the ZEB2 locus in T-cell acute lymphoblastic leukemia, suggested that ZEB2 is an oncogenic driver of this high-risk subtype of leukemia. ZEB2, a zinc finger E-box homeobox binding transcription factor, is a master regulator of cellular plasticity and its expression is correlated with poor overall survival of cancer patients. Recent loss- and gain-of-function in the mouse revealed important roles of ZEB2 during different stages of hematopoiesis, including the T-cell lineage. Here, we summarize the roles of ZEB2 in T-cells, their development, and malignant transformation to T-ALL.
Collapse
|
17
|
The global clonal complexity of the murine blood system declines throughout life and after serial transplantation. Blood 2019; 133:1927-1942. [PMID: 30782612 DOI: 10.1182/blood-2018-09-873059] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 02/18/2019] [Indexed: 01/02/2023] Open
Abstract
Although many recent studies describe the emergence and prevalence of "clonal hematopoiesis of indeterminate potential" in aged human populations, a systematic analysis of the numbers of clones supporting steady-state hematopoiesis throughout mammalian life is lacking. Previous efforts relied on transplantation of "barcoded" hematopoietic stem cells (HSCs) to track the contribution of HSC clones to reconstituted blood. However, ex vivo manipulation and transplantation alter HSC function and thus may not reflect the biology of steady-state hematopoiesis. Using a noninvasive in vivo color-labeling system, we report the first comprehensive analysis of the changing global clonal complexity of steady-state hematopoiesis during the natural murine lifespan. We observed that the number of clones (ie, clonal complexity) supporting the major blood and bone marrow hematopoietic compartments decline with age by ∼30% and ∼60%, respectively. Aging dramatically reduced HSC in vivo-repopulating activity and lymphoid potential while increasing functional heterogeneity. Continuous challenge of the hematopoietic system by serial transplantation provoked the clonal collapse of both young and aged hematopoietic systems. Whole-exome sequencing of serially transplanted aged and young hematopoietic clones confirmed oligoclonal hematopoiesis and revealed mutations in at least 27 genes, including nonsense, missense, and deletion mutations in Bcl11b, Hist1h2ac, Npy2r, Notch3, Ptprr, and Top2b.
Collapse
|
18
|
ZEB Proteins in Leukemia: Friends, Foes, or Friendly Foes? Hemasphere 2018; 2:e43. [PMID: 31723771 PMCID: PMC6745990 DOI: 10.1097/hs9.0000000000000043] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 04/09/2018] [Accepted: 04/11/2018] [Indexed: 01/06/2023] Open
Abstract
ZEB1 and ZEB2 play pivotal roles in solid cancer metastasis by allowing cancer cells to invade and disseminate through the transcriptional regulation of epithelial-to-mesenchymal transition. ZEB expression is also associated with the acquisition of cancer stem cell properties and therapy resistance. Consequently, expression levels of ZEB1/2 and of their direct target genes are widely seen as reliable prognostic markers for solid tumor aggressiveness and cancer patient outcome. Recent loss-of-function mouse models demonstrated that both ZEBs are also essential hematopoietic transcription factors governing blood lineage commitment and fidelity. Interestingly, both gain- and loss-of-function mutations have been reported in multiple hematological malignancies. Combined with emerging functional studies, these data suggest that ZEB1 and ZEB2 can act as tumor suppressors and/or oncogenes in blood borne malignancies, depending on the cellular context. Here, we review these novel insights and discuss how balanced expression of ZEB proteins may be essential to safeguard the functionality of the immune system and prevent leukemia.
Collapse
|
19
|
Zjablovskaja P, Danek P, Kardosova M, Alberich-Jorda M. Proliferation and Differentiation of Murine Myeloid Precursor 32D/G-CSF-R Cells. J Vis Exp 2018. [PMID: 29553501 DOI: 10.3791/57033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Understanding of the hematopoietic stem and progenitor cell biology has important implications for regenerative medicine and the treatment of hematological pathologies. Despite the most relevant data that can be acquired using in vivo models or primary cultures, the low abundance of hematopoietic stem and progenitor cells considerably restricts the pool of suitable techniques for their investigation. Therefore, the use of cell lines allows sufficient production of biological material for the performance of screenings or assays that require large cell numbers. Here we present a detailed description, readout, and interpretation of proliferation and differentiation assays which are used for the investigation of processes involved in myelopoiesis and neutrophilic differentiation. These experiments employ the 32D/G-CSF-R cytokine dependent murine myeloid cell line, which possesses the ability to proliferate in the presence of IL-3 and differentiate in G-CSF. We provide optimized protocols for handling 32D/G-CSF-R cells and discuss major pitfalls and drawbacks that might compromise the described assays and expected results. Additionally, this article contains protocols for lentiviral and retroviral production, titration, and transduction of 32D/G-CSF-R cells. We demonstrate that genetic manipulation of these cells can be employed to successfully perform functional and molecular studies, which can complement results obtained with primary hematopoietic stem and progenitor cells or in vivo models.
Collapse
Affiliation(s)
- Polina Zjablovskaja
- Department of Hemato-Oncology, Institute of Molecular Genetics of the ASCR; Childhood Leukaemia Investigation Prague, Department of Paediatric Haematology and Oncology, 2nd Faculty of Medicine, Charles University
| | - Petr Danek
- Department of Hemato-Oncology, Institute of Molecular Genetics of the ASCR
| | | | - Meritxell Alberich-Jorda
- Department of Hemato-Oncology, Institute of Molecular Genetics of the ASCR; Childhood Leukaemia Investigation Prague, Department of Paediatric Haematology and Oncology, 2nd Faculty of Medicine, Charles University;
| |
Collapse
|
20
|
Ajorloo F, Vaezi M, Saadat A, Safaee SR, Gharib B, Ghanei M, Siadat SD, Vaziri F, Fateh A, Pazhouhandeh M, Vaziri B, Moazemi R, Mahboudi F, Rahimi Jamnani F. A systems medicine approach for finding target proteins affecting treatment outcomes in patients with non-Hodgkin lymphoma. PLoS One 2017; 12:e0183969. [PMID: 28892521 PMCID: PMC5593188 DOI: 10.1371/journal.pone.0183969] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Accepted: 08/15/2017] [Indexed: 02/07/2023] Open
Abstract
Autoantibody profiling with a systems medicine approach can help identify critical dysregulated signaling pathways (SPs) in cancers. In this way, immunoglobulins G (IgG) purified from the serum samples of 92 healthy controls, 10 pre-treated (PR) non-Hodgkin lymphoma (NHL) patients, and 20 NHL patients who underwent chemotherapy (PS) were screened with a phage-displayed random peptide library. Protein-protein interaction networks of the PR and PS groups were analyzed and visualized by Gephi. The results indicated AXIN2, SENP2, TOP2A, FZD6, NLK, HDAC2, HDAC1, and EHMT2, in addition to CAMK2A, PLCG1, PLCG2, GRM5, GRIN2B, GRIN2D, CACNA2D3, and SPTAN1 as hubs in 11 and 7 modules of PR and PS networks, respectively. PR- and PS-specific hubs were evaluated in the Kyoto Encyclopedia of Genes and Genomes (KEGG) and Reactome databases. The PR-specific hubs were involved in Wnt SP, signaling by Notch1 in cancer, telomere maintenance, and transcriptional misregulation. In contrast, glutamate receptor SP, Fc receptor-related pathways, growth factors-related SPs, and Wnt SP were statistically significant enriched pathways, based on the pathway analysis of PS hubs. The results revealed that the most PR-specific proteins were associated with events involved in tumor development, while chemotherapy in the PS group was associated with side effects of drugs and/or cancer recurrence. As the findings demonstrated, PR- and PS-specific proteins in this study can be promising therapeutic targets in future studies.
Collapse
Affiliation(s)
- Faezeh Ajorloo
- Department of Biology, Faculty of Science, Islamic Azad University, East Tehran Branch, Tehran, Iran
- Human Antibody Lab, Innovation Center, Pasteur Institute of Iran, Tehran, Iran
| | - Mohammad Vaezi
- Hematology-Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Saadat
- Department of Hematology & Oncology, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Seyed Reza Safaee
- Hematology and Oncology Research Center, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Behrouz Gharib
- Department of Internal Medicine (Hematology and Oncology), Qom University of Medical Sciences, Qom, Iran
| | - Mostafa Ghanei
- Human Antibody Lab, Innovation Center, Pasteur Institute of Iran, Tehran, Iran
- Chemical Injuries Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Seyed Davar Siadat
- Human Antibody Lab, Innovation Center, Pasteur Institute of Iran, Tehran, Iran
- Microbiology Research Center, Department of Mycobacteriology and Pulmonary Research Pasteur Institute of Iran, Tehran, Iran
| | - Farzam Vaziri
- Human Antibody Lab, Innovation Center, Pasteur Institute of Iran, Tehran, Iran
- Microbiology Research Center, Department of Mycobacteriology and Pulmonary Research Pasteur Institute of Iran, Tehran, Iran
| | - Abolfazl Fateh
- Human Antibody Lab, Innovation Center, Pasteur Institute of Iran, Tehran, Iran
- Microbiology Research Center, Department of Mycobacteriology and Pulmonary Research Pasteur Institute of Iran, Tehran, Iran
| | | | - Behrouz Vaziri
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Reza Moazemi
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | | | - Fatemeh Rahimi Jamnani
- Human Antibody Lab, Innovation Center, Pasteur Institute of Iran, Tehran, Iran
- Microbiology Research Center, Department of Mycobacteriology and Pulmonary Research Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
21
|
Pallavajjala A, Kim D, Li T, Ghiaur G, Jones RJ, Burns KH, Salzberg SL, Ning Y. Genomic characterization of chromosome translocations in patients with T/myeloid mixed-phenotype acute leukemia. Leuk Lymphoma 2017; 59:1231-1238. [PMID: 28882084 DOI: 10.1080/10428194.2017.1372577] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Mixed-phenotype acute leukemia (MPAL) is a progenitor type of leukemia with ambiguous expression of lineage markers. The diagnosis of MPAL is based on flow cytometric analysis of immunophenotype, which commonly identifies myeloid lineage markers as well as B- or T- lymphoid lineage markers on leukemic blasts. Due to the rare occurrence of this disease, few studies have delineated the molecular bases of MPAL. Combining conventional karyotyping with whole genomic sequencing (WGS) and RNA sequencing (RNA-seq), we report here our identification and characterization of chromosome translocations, gene mutations and gene expression profile in four patients with T/Myeloid MPAL, including two t(6;14)(q25;q32) one t(8;14)(q24.2;q32) and one t(7;8)(p14;q24.2). Notably, seven of the eight translocation breakpoints reside in the non-coding regions and their locations appear to be shared by two or more patients. Gene expression analysis of matched diagnostic vs. remission samples provided evidence of transcriptomes alteration involving nucleosome organization and chromatin assembly.
Collapse
Affiliation(s)
- Aparna Pallavajjala
- a Department of Pathology , Johns Hopkins University School of Medicine , Baltimore , MD , USA
| | - Daehwan Kim
- b Center for Computational Biology , McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine , Baltimore , MD , USA
| | - Tongbin Li
- c AccuraScience LLC , Johnston , IA , USA
| | - Gabriel Ghiaur
- d Sidney Kimmel Cancer Center at Johns Hopkins, Johns Hopkins University School of Medicine , Baltimore , MD , USA
| | - Richard J Jones
- d Sidney Kimmel Cancer Center at Johns Hopkins, Johns Hopkins University School of Medicine , Baltimore , MD , USA
| | - Kathleen H Burns
- a Department of Pathology , Johns Hopkins University School of Medicine , Baltimore , MD , USA
| | - Steven L Salzberg
- b Center for Computational Biology , McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine , Baltimore , MD , USA.,e Departments of Biomedical Engineering, Computer Science, and Biostatistics , Johns Hopkins University , Baltimore , MD , USA
| | - Yi Ning
- a Department of Pathology , Johns Hopkins University School of Medicine , Baltimore , MD , USA
| |
Collapse
|
22
|
Lennon MJ, Jones SP, Lovelace MD, Guillemin GJ, Brew BJ. Bcl11b-A Critical Neurodevelopmental Transcription Factor-Roles in Health and Disease. Front Cell Neurosci 2017; 11:89. [PMID: 28424591 PMCID: PMC5372781 DOI: 10.3389/fncel.2017.00089] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 03/14/2017] [Indexed: 12/31/2022] Open
Abstract
B cell leukemia 11b (Bcl11b) is a zinc finger protein transcription factor with a multiplicity of functions. It works as both a genetic suppressor and activator, acting directly, attaching to promoter regions, as well as indirectly, attaching to promoter-bound transcription factors. Bcl11b is a fundamental transcription factor in fetal development, with important roles for the differentiation and development of various neuronal subtypes in the central nervous system (CNS). It has been used as a specific marker of layer V subcerebral projection neurons as well as striatal interneurons. Bcl11b also has critical developmental functions in the immune, integumentary and cardiac systems, to the extent that Bcl11b knockout mice are incompatible with extra-uterine life. Bcl11b has been implicated in a number of disease states including Huntington's disease, Alzheimer's disease, HIV and T-Cell malignancy, amongst others. Bcl11b is a fascinating protein whose critical roles in the CNS and other parts of the body are yet to be fully explicated. This review summarizes the current literature on Bcl11b and its functions in development, health, and disease as well as future directions for research.
Collapse
Affiliation(s)
- Matthew J Lennon
- Applied Neurosciences Program, Peter Duncan Neurosciences Research Unit, St. Vincent's Centre for Applied Medical ResearchSydney, NSW, Australia.,Faculty of Medicine, St. Vincent's Clinical School, University of New South WalesSydney, NSW, Australia
| | - Simon P Jones
- Applied Neurosciences Program, Peter Duncan Neurosciences Research Unit, St. Vincent's Centre for Applied Medical ResearchSydney, NSW, Australia.,Faculty of Medicine, St. Vincent's Clinical School, University of New South WalesSydney, NSW, Australia
| | - Michael D Lovelace
- Applied Neurosciences Program, Peter Duncan Neurosciences Research Unit, St. Vincent's Centre for Applied Medical ResearchSydney, NSW, Australia.,Faculty of Medicine, St. Vincent's Clinical School, University of New South WalesSydney, NSW, Australia
| | - Gilles J Guillemin
- Neuroinflammation Group, Faculty of Medicine and Health Sciences, Macquarie UniversitySydney, NSW, Australia
| | - Bruce J Brew
- Applied Neurosciences Program, Peter Duncan Neurosciences Research Unit, St. Vincent's Centre for Applied Medical ResearchSydney, NSW, Australia.,Faculty of Medicine, St. Vincent's Clinical School, University of New South WalesSydney, NSW, Australia.,Departments of Neurology and Immunology, St. Vincent's HospitalSydney, NSW, Australia
| |
Collapse
|
23
|
Abstract
Deregulated expression of the ecotropic virus integration site 1 (EVI1) gene is the molecular hallmark of therapy-resistant myeloid malignancies bearing chromosomal inv(3)(q21q26·2) or t(3;3)(q21;q26·2) [hereafter referred to as inv(3)/t(3;3)] abnormalities. EVI1 is a haematopoietic stemness and transcription factor with chromatin remodelling activity. Interestingly, the EVI1 gene also shows overexpression in 6-11% of adult acute myeloid leukaemia (AML) cases that do not carry any 3q aberrations. Deregulated expression of EVI1 is strongly associated with monosomy 7 and 11q23 abnormalities, which are known to be associated with poor response to treatment. However, EVI1 overexpression has been revealed as an important independent adverse prognostic marker in adult AML and defines distinct risk categories in 11q23-rearranged AML. Recently, important progress has been made in the delineation of the mechanism by which EVI1 becomes deregulated in inv(3)/t(3;3) as well as the cooperating mutations in this specific subset of AML with dismal prognosis.
Collapse
Affiliation(s)
- Adil A Hinai
- Department of Haematology, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Peter J M Valk
- Department of Haematology, Erasmus University Medical Centre, Rotterdam, The Netherlands
| |
Collapse
|
24
|
Bcl11b: A New Piece to the Complex Puzzle of Amyotrophic Lateral Sclerosis Neuropathogenesis? Neurotox Res 2015; 29:201-7. [DOI: 10.1007/s12640-015-9573-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 10/24/2015] [Accepted: 10/29/2015] [Indexed: 12/13/2022]
|
25
|
Novel ZEB2-BCL11B Fusion Gene Identified by RNA-Sequencing in Acute Myeloid Leukemia with t(2;14)(q22;q32). PLoS One 2015; 10:e0132736. [PMID: 26186352 PMCID: PMC4505893 DOI: 10.1371/journal.pone.0132736] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 06/17/2015] [Indexed: 01/31/2023] Open
Abstract
RNA-sequencing of a case of acute myeloid leukemia with the bone marrow karyotype 46,XY,t(2;14)(q22;q32)[5]/47,XY,idem,+?4,del(6)(q13q21)[cp6]/46,XY[4] showed that the t(2;14) generated a ZEB2-BCL11B chimera in which exon 2 of ZEB2 (nucleotide 595 in the sequence with accession number NM_014795.3) was fused to exon 2 of BCL11B (nucleotide 554 in the sequence with accession number NM_022898.2). RT-PCR together with Sanger sequencing verified the presence of the above-mentioned fusion transcript. All functional domains of BCL11B are retained in the chimeric protein. Abnormal expression of BCL11B coding regions subjected to control by the ZEB2 promoter seems to be the leukemogenic mechanism behind the translocation.
Collapse
|
26
|
Vogel WK, Gafken PR, Leid M, Filtz TM. Kinetic analysis of BCL11B multisite phosphorylation-dephosphorylation and coupled sumoylation in primary thymocytes by multiple reaction monitoring mass spectroscopy. J Proteome Res 2014; 13:5860-8. [PMID: 25423098 PMCID: PMC4261940 DOI: 10.1021/pr5007697] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Transcription factors with multiple post-translational modifications (PTMs) are not uncommon, but comprehensive information on site-specific dynamics and interdependence is comparatively rare. Assessing dynamic changes in the extent of PTMs has the potential to link multiple sites both to each other and to biological effects observable on the same time scale. The transcription factor and tumor suppressor BCL11B is critical to three checkpoints in T-cell development and is a target of a T-cell receptor-mediated MAP kinase signaling. Multiple reaction monitoring (MRM) mass spectroscopy was used to assess changes in relative phosphorylation on 18 of 23 serine and threonine residues and sumoylation on one of two lysine resides in BCL11B. We have resolved the composite phosphorylation-dephosphorylation and sumoylation changes of BCL11B in response to MAP kinase activation into a complex pattern of site-specific PTM changes in primary mouse thymocytes. The site-specific resolution afforded by MRM analyses revealed four kinetic patterns of phosphorylation and one of sumoylation, including both rapid simultaneous site-specific increases and decreases at putative MAP kinase proline-directed phosphorylation sites, following stimulation. These data additionally revealed a novel spatiotemporal bisphosphorylation motif consisting of two kinetically divergent proline-directed phosphorylation sites spaced five residues apart.
Collapse
Affiliation(s)
- Walter K Vogel
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University , Corvallis, Oregon 97331, United States
| | | | | | | |
Collapse
|
27
|
Biegel JA, Busse TM, Weissman BE. SWI/SNF chromatin remodeling complexes and cancer. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2014; 166C:350-66. [PMID: 25169151 DOI: 10.1002/ajmg.c.31410] [Citation(s) in RCA: 124] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The identification of mutations and deletions in the SMARCB1 locus in chromosome band 22q11.2 in pediatric rhabdoid tumors provided the first evidence for the involvement of the SWI/SNF chromatin remodeling complex in cancer. Over the last 15 years, alterations in more than 20 members of the complex have been reported in a variety of human tumors. These include germline mutations and copy number alterations in SMARCB1, SMARCA4, SMARCE1, and PBRM1 that predispose carriers to both benign and malignant neoplasms. Somatic mutations, structural abnormalities, or epigenetic modifications that lead to reduced or aberrant expression of complex members have now been reported in more than 20% of malignancies, including both solid tumors and hematologic disorders in both children and adults. In this review, we will highlight the role of SMARCB1 in cancer as a paradigm for other tumors with alterations in SWI/SNF complex members and demonstrate the broad spectrum of mutations observed in complex members in different tumor types.
Collapse
|
28
|
Bartram I, Gökbuget N, Schlee C, Heesch S, Fransecky L, Schwartz S, Stuhlmann R, Schäfer-Eckhart K, Starck M, Reichle A, Hoelzer D, Baldus CD, Neumann M. Low expression of T-cell transcription factor BCL11b predicts inferior survival in adult standard risk T-cell acute lymphoblastic leukemia patients. J Hematol Oncol 2014; 7:51. [PMID: 25023966 PMCID: PMC4223626 DOI: 10.1186/s13045-014-0051-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 07/01/2014] [Indexed: 12/17/2022] Open
Abstract
Background Risk stratification, detection of minimal residual disease (MRD), and implementation of novel therapeutic agents have improved outcome in acute lymphoblastic leukemia (ALL), but survival of adult patients with T-cell acute lymphoblastic leukemia (T-ALL) remains unsatisfactory. Thus, novel molecular insights and therapeutic approaches are urgently needed. Methods We studied the impact of B-cell CLL/lymphoma 11b (BCL11b), a key regulator in normal T-cell development, in T-ALL patients enrolled into the German Multicenter Acute Lymphoblastic Leukemia Study Group trials (GMALL; n = 169). The mutational status (exon 4) of BCL11b was analyzed by Sanger sequencing and mRNA expression levels were determined by quantitative real-time PCR. In addition gene expression profiles generated on the Human Genome U133 Plus 2.0 Array (affymetrix) were used to investigate BCL11b low and high expressing T-ALL patients. Results We demonstrate that BCL11b is aberrantly expressed in T-ALL and gene expression profiles reveal an association of low BCL11b expression with up-regulation of immature markers. T-ALL patients characterized by low BCL11b expression exhibit an adverse prognosis [5-year overall survival (OS): low 35% (n = 40) vs. high 53% (n = 129), P = 0.02]. Within the standard risk group of thymic T-ALL (n = 102), low BCL11b expression identified patients with an unexpected poor outcome compared to those with high expression (5-year OS: 20%, n = 18 versus 62%, n = 84, P < 0.01). In addition, sequencing of exon 4 revealed a high mutation rate (14%) of BCL11b. Conclusions In summary, our data of a large adult T-ALL patient cohort show that low BCL11b expression was associated with poor prognosis; particularly in the standard risk group of thymic T-ALL. These findings can be utilized for improved risk prediction in a significant proportion of adult T-ALL patients, which carry a high risk of standard therapy failure despite a favorable immunophenotype.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Martin Neumann
- Department of Hematology and Oncology, Charité, University Hospital Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, Berlin, 12203, Germany.
| |
Collapse
|