1
|
An Z, Wang J, Li C, Tang C. Signal integrator function of CXXC5 in Cancer. Cell Commun Signal 2025; 23:25. [PMID: 39806388 PMCID: PMC11730785 DOI: 10.1186/s12964-024-02005-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 12/20/2024] [Indexed: 01/16/2025] Open
Abstract
CXXC type zinc finger protein 5 (CXXC5) is a member of the ZF-CXXC family and plays a pivotal role in signal integration and information transfer within cell signaling network. CXXC5 acts as a regulator in various physiological processes, and abnormalities in its protein structure or function have been linked to multiple pathological processes. In this article, we correspondingly describe the composition of the ZF-CXXC family, emphatically introducing the features of the CXXC5 gene and protein, review the role of CXXC5 in cellular signaling networks, the physiological and pathological processes associated with CXXC5 dysregulation, and particularly focus on the correlation between CXXC5 and cancers. Finally, we summarize the current therapies targeting CXXC5 and their potential applications, and discuss the intriguing findings from current studies, and the opportunities and challenges in future.
Collapse
Affiliation(s)
- Zihao An
- National Clinical Research Center for Child Health of Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China
| | - Jiepu Wang
- National Clinical Research Center for Child Health of Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China
| | - Chengzuo Li
- National Clinical Research Center for Child Health of Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China
| | - Chao Tang
- National Clinical Research Center for Child Health of Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China.
| |
Collapse
|
2
|
Geng T, Sun Q, He J, Chen Y, Cheng W, Shen J, Liu B, Zhang M, Wang S, Asan K, Song M, Gao Q, Song Y, Liu R, Liu X, Ding Y, Jing A, Ye X, Ren H, Zeng K, Zhou Y, Zhang B, Ma S, Liu W, Liu S, Ji J. CXXC5 drove inflammation and ovarian cancer proliferation via transcriptional activation of ZNF143 and EGR1. Cell Signal 2024; 119:111180. [PMID: 38642782 DOI: 10.1016/j.cellsig.2024.111180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 03/28/2024] [Accepted: 04/14/2024] [Indexed: 04/22/2024]
Abstract
CXXC5, a zinc-finger protein, is known for its role in epigenetic regulation via binding to unmethylated CpG islands in gene promoters. As a transcription factor and epigenetic regulator, CXXC5 modulates various signaling processes and acts as a key coordinator. Altered expression or activity of CXXC5 has been linked to various pathological conditions, including tumorigenesis. Despite its known role in cancer, CXXC5's function and mechanism in ovarian cancer are unclear. We analyzed multiple public databases and found that CXXC5 is highly expressed in ovarian cancer, with high expression correlating with poor patient prognosis. We show that CXXC5 expression is regulated by oxygen concentration and is a direct target of HIF1A. CXXC5 is critical for maintaining the proliferative potential of ovarian cancer cells, with knockdown decreasing and overexpression increasing cell proliferation. Loss of CXXC5 led to inactivation of multiple inflammatory signaling pathways, while overexpression activated these pathways. Through in vitro and in vivo experiments, we confirmed ZNF143 and EGR1 as downstream transcription factors of CXXC5, mediating its proliferative potential in ovarian cancer. Our findings suggest that the CXXC5-ZNF143/EGR1 axis forms a network driving ovarian cell proliferation and tumorigenesis, and highlight CXXC5 as a potential therapeutic target for ovarian cancer treatment.
Collapse
Affiliation(s)
- Ting Geng
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Qigang Sun
- Department of Hepatobiliary and Pancreatic Surgery, Hainan General Hospital, Affiliated Hainan Hospital of Hainan Medical College, Haikou 570311, China
| | - Jingliang He
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Yulu Chen
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Wenhao Cheng
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Jing Shen
- Department of Obstetrics and Gynecology, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, Hubei, China
| | - Bin Liu
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Meiqi Zhang
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Sen Wang
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Kadirya Asan
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Mengwei Song
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Qi Gao
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Yizhuo Song
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Ruotong Liu
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Xing Liu
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Yuanyuan Ding
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Aixin Jing
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Xiaoqing Ye
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Hongyu Ren
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Kaile Zeng
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Ying Zhou
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Boyu Zhang
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Shaojie Ma
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China.
| | - Wei Liu
- Cancer Center and Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| | - Shunfang Liu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Jing Ji
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China.
| |
Collapse
|
3
|
Luo A, Qiao N, Hu K, Xu H, Xie M, Jiang Y, Hu J. BZW1 is a prognostic and immunological biomarker in pancreatic adenocarcinoma. Medicine (Baltimore) 2024; 103:e37092. [PMID: 38306570 PMCID: PMC10843520 DOI: 10.1097/md.0000000000037092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 01/05/2024] [Indexed: 02/04/2024] Open
Abstract
Pancreatic adenocarcinoma is the most common malignant tumor of the digestive system and is called the "king of cancer" because it has been labeled with high malignancy, rapid progression, poor survival, and poor prognosis. Previously, it was reported that the basic leucine zipper and W2 domains 1 (BZW1) is involved in the progression of many tumors. However, its research in digestive system tumors such as pancreatic cancer is rarely studied. To explore potential biomarkers related to survival and prognosis of pancreatic cancer and provide a new targeted therapy for it. We first analyzed the mRNA and protein expression of BZW1 in pancreatic cancer. We then explored the correlation of BZW1 with survival prognosis and immune infiltration in pancreatic cancer patients. Finally, we explored BZW1-related gene enrichment analysis, including protein-protein interaction networks, gene ontology functional enrichment analysis, and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis. The mRNA and protein expression of the BZW1 gene in pancreatic cancer tissues were higher than those in adjacent normal tissues, and pancreatic cancer patients with high BZW1 expression had a poor prognosis. In addition, the expression of BZW1 was positively or negatively correlated with different immune cells of pancreatic cancer, such as CD4 + T lymphocytes, CD8 + T lymphocytes, B cells, macrophages, neutrophils, etc. Correlation enrichment analysis showed that we obtained 50 available experimentally determined BZW1-binding proteins and 100 targeted genes related to BZW1, and the intersection genes were eukaryotic translation termination factor 1 and Guanine nucleotide binding protein, alpha inhibiting activity polypeptide 3. Moreover, there was a positive correlation between BZW1 and eukaryotic translation termination factor 1 and Guanine nucleotide binding protein, alpha inhibiting activity polypeptide 3 genes in pancreatic cancer. Gene ontology enrichment analysis showed BZW1 was mainly related to biological processes such as "mRNA processing," "RNA splicing," "regulation of translational initiation," and "activation of innate immune response." The results of Kyoto Encyclopedia of Genes and Genomes pathway analysis further indicated that BZW1 may be involved in pancreatic carcinogenesis through the "spliceosome" and "ribosome." The BZW1 gene may be a potential immunotherapy target and a promising prognostic marker for pancreatic cancer.
Collapse
Affiliation(s)
- An Luo
- Department of Gastroenterology, Longyan Hospital of Chinese Medicine, Longyan, Fujian, China
| | - Nan Qiao
- Department of Student Affairs, Jiangxi Institute of Economic Administrators, Nanchang, Jiangxi, China
| | - Ke Hu
- Department of Gastroenterology, Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Henglang Xu
- Department of Gastroenterology, Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Mingjun Xie
- Department of Gastroenterology, Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Yiping Jiang
- Department of Gastroenterology, Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Jia Hu
- Department of Gastroenterology, Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| |
Collapse
|
4
|
Myeloid-Derived Suppressor Cells: New Insights into the Pathogenesis and Therapy of MDS. J Clin Med 2022; 11:jcm11164908. [PMID: 36013147 PMCID: PMC9410159 DOI: 10.3390/jcm11164908] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/15/2022] [Accepted: 08/19/2022] [Indexed: 11/17/2022] Open
Abstract
Myelodysplastic syndromes (MDS) are hematopoietic malignancies characterized by the clonal expansion of hematopoietic stem cells, bone marrow failure manifested by cytopenias, and increased risk for evolving to acute myeloid leukemia. Despite the fact that the acquisition of somatic mutations is considered key for the initiation of the disease, the bone marrow microenvironment also plays significant roles in MDS by providing the right niche and even shaping the malignant clone. Aberrant immune responses are frequent in MDS and are implicated in many aspects of MDS pathogenesis. Recently, myeloid-derived suppressor cells (MDSCs) have gained attention for their possible implication in the immune dysregulation associated with MDS. Here, we summarize the key findings regarding the expansion of MDSCs in MDS, their role in MDS pathogenesis and immune dysregulation, as well their potential as a new therapeutic target for MDS.
Collapse
|
5
|
TIFAB Regulates USP15-Mediated p53 Signaling during Stressed and Malignant Hematopoiesis. Cell Rep 2021; 30:2776-2790.e6. [PMID: 32101751 PMCID: PMC7384867 DOI: 10.1016/j.celrep.2020.01.093] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 11/15/2019] [Accepted: 01/24/2020] [Indexed: 12/16/2022] Open
Abstract
TRAF-interacting protein with a forkhead-associated domain B (TIFAB) is implicated in myeloid malignancies with deletion of chromosome 5q. Employing a combination of proteomic and genetic approaches, we find that TIFAB regulates ubiquitin-specific peptidase 15 (USP15) ubiquitin hydrolase activity. Expression of TIFAB in hematopoietic stem/progenitor cells (HSPCs) permits USP15 signaling to substrates, including MDM2 and KEAP1, and mitigates p53 expression. Consequently, TIFAB-deficient HSPCs exhibit compromised USP15 signaling and are sensitized to hematopoietic stress by derepression of p53. In MLL-AF9 leukemia, deletion of TIFAB increases p53 signaling and correspondingly decreases leukemic cell function and development of leukemia. Restoring USP15 expression partially rescues the function of TIFAB-deficient MLL-AF9 cells. Conversely, elevated TIFAB represses p53, increases leukemic progenitor function, and correlates with MLL gene expression programs in leukemia patients. Our studies uncover a function of TIFAB as an effector of USP15 activity and rheostat of p53 signaling in stressed and malignant HSPCs. Niederkorn et al. identify TIFAB as a critical node in hematopoietic cells under stressed and oncogenic cell states. Their studies indicate that deregulation of the TIFAB-USP15 complex, as observed in del(5q) myelodysplasia or MLL-rearranged leukemia, modulates p53 activity and has critical functional consequences for stressed and malignant hematopoietic cells.
Collapse
|
6
|
Astori A, Matherat G, Munoz I, Gautier EF, Surdez D, Zermati Y, Verdier F, Zaidi S, Feuillet V, Kadi A, Lauret E, Delattre O, Lefèvre C, Fontenay M, Ségal-Bendirdjian E, Dusanter-Fourt I, Bouscary D, Hermine O, Mayeux P, Pendino F. The epigenetic regulator RINF (CXXC5) maintains <i>SMAD7</i> expression in human immature erythroid cells and sustains red blood cells expansion. Haematologica 2020; 107:268-283. [PMID: 33241676 PMCID: PMC8719099 DOI: 10.3324/haematol.2020.263558] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Indexed: 11/16/2022] Open
Abstract
The gene CXXC5, encoding a retinoid-inducible nuclear factor (RINF), is located within a region at 5q31.2 commonly deleted in myelodysplastic syndrome and adult acute myeloid leukemia. RINF may act as an epigenetic regulator and has been proposed as a tumor suppressor in hematopoietic malignancies. However, functional studies in normal hematopoiesis are lacking, and its mechanism of action is unknown. Here, we evaluated the consequences of RINF silencing on cytokine-induced erythroid differentiation of human primary CD34+ progenitors. We found that RINF is expressed in immature erythroid cells and that RINF-knockdown accelerated erythropoietin-driven maturation, leading to a significant reduction (~45%) in the number of red blood cells, without affecting cell viability. The phenotype induced by RINF-silencing was dependent on tumor growth factor b (TGFb) and mediated by SMAD7, a TGFb-signaling inhibitor. RINF upregulates SMAD7 expression by direct binding to its promoter and we found a close correlation between RINF and SMAD7 mRNA levels both in CD34+ cells isolated from bone marrow of healthy donors and myelodysplastic syndrome patients with del(5q). Importantly, RINF knockdown attenuated SMAD7 expression in primary cells and ectopic SMAD7 expression was sufficient to prevent the RINF knockdown-dependent erythroid phenotype. Finally, RINF silencing affects 5’-hydroxymethylation of human erythroblasts, in agreement with its recently described role as a TET2-anchoring platform in mouse. Collectively, our data bring insight into how the epigenetic factor RINF, as a transcriptional regulator of SMAD7, may fine-tune cell sensitivity to TGFb superfamily cytokines and thus play an important role in both normal and pathological erythropoiesis.
Collapse
Affiliation(s)
- Audrey Astori
- Université de Paris, Institut Cochin, INSERM, CNRS, F-75014 Paris, France; Laboratory of Excellence GR-ex, Paris, France; Equipe Labellisée Ligue Nationale Contre le Cancer (LNCC), Paris
| | - Gabriel Matherat
- Université de Paris, Institut Cochin, INSERM, CNRS, F-75014 Paris, France; Laboratory of Excellence GR-ex, Paris, France; Equipe Labellisée Ligue Nationale Contre le Cancer (LNCC), Paris
| | - Isabelle Munoz
- Université de Paris, Institut Cochin, INSERM, CNRS, F-75014 Paris, France; Laboratory of Excellence GR-ex, Paris, France; Equipe Labellisée Ligue Nationale Contre le Cancer (LNCC), Paris
| | - Emilie-Fleur Gautier
- Université de Paris, Institut Cochin, INSERM, CNRS, F-75014 Paris, France; Laboratory of Excellence GR-ex, Paris, France; Equipe Labellisée Ligue Nationale Contre le Cancer (LNCC), Paris
| | - Didier Surdez
- Equipe Labellisée Ligue Nationale Contre le Cancer (LNCC), Paris, France; PSL Research University, Institut Curie Research Center, INSERM U830, Paris, France; SIREDO: Care, Innovation and Research for Children, Adolescents and Young Adults with Cancer, Institut Curie, Paris
| | - Yaël Zermati
- Université de Paris, Institut Cochin, INSERM, CNRS, F-75014 Paris, France; Laboratory of Excellence GR-ex, Paris
| | - Frédérique Verdier
- Université de Paris, Institut Cochin, INSERM, CNRS, F-75014 Paris, France; Laboratory of Excellence GR-ex, Paris
| | - Sakina Zaidi
- Equipe Labellisée Ligue Nationale Contre le Cancer (LNCC), Paris, France; PSL Research University, Institut Curie Research Center, INSERM U830, Paris, France; SIREDO: Care, Innovation and Research for Children, Adolescents and Young Adults with Cancer, Institut Curie, Paris
| | - Vincent Feuillet
- Université de Paris, Institut Cochin, INSERM, CNRS, F-75014 Paris
| | - Amir Kadi
- Université de Paris, Institut Cochin, INSERM, CNRS, F-75014 Paris
| | - Evelyne Lauret
- Université de Paris, Institut Cochin, INSERM, CNRS, F-75014 Paris, France; Equipe Labellisée Ligue Nationale Contre le Cancer (LNCC), Paris
| | - Olivier Delattre
- Equipe Labellisée Ligue Nationale Contre le Cancer (LNCC), Paris, France; PSL Research University, Institut Curie Research Center, INSERM U830, Paris, France; SIREDO: Care, Innovation and Research for Children, Adolescents and Young Adults with Cancer, Institut Curie, Paris
| | - Carine Lefèvre
- Université de Paris, Institut Cochin, INSERM, CNRS, F-75014 Paris, France; Laboratory of Excellence GR-ex, Paris
| | - Michaela Fontenay
- Université de Paris, Institut Cochin, INSERM, CNRS, F-75014 Paris, France; Laboratory of Excellence GR-ex, Paris, France; Service d'Hématologie Biologique, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris, Centre-Université de Paris, Paris
| | | | - Isabelle Dusanter-Fourt
- Université de Paris, Institut Cochin, INSERM, CNRS, F-75014 Paris, France; Equipe Labellisée Ligue Nationale Contre le Cancer (LNCC), Paris
| | - Didier Bouscary
- Université de Paris, Institut Cochin, INSERM, CNRS, F-75014 Paris, France; Equipe Labellisée Ligue Nationale Contre le Cancer (LNCC), Paris
| | - Olivier Hermine
- Laboratory of Excellence GR-ex, Paris, France; Equipe Labellisée Ligue Nationale Contre le Cancer (LNCC), Paris, France; Université de Paris, Institut Imagine, INSERM, CNRS, F-75015, Paris
| | - Patrick Mayeux
- Université de Paris, Institut Cochin, INSERM, CNRS, F-75014 Paris, France; Laboratory of Excellence GR-ex, Paris, France; Equipe Labellisée Ligue Nationale Contre le Cancer (LNCC), Paris
| | - Frédéric Pendino
- Université de Paris, Institut Cochin, INSERM, CNRS, F-75014 Paris, France; Laboratory of Excellence GR-ex, Paris, France; Equipe Labellisée Ligue Nationale Contre le Cancer (LNCC), Paris.
| |
Collapse
|
7
|
Niederkorn M, Agarwal P, Starczynowski DT. TIFA and TIFAB: FHA-domain proteins involved in inflammation, hematopoiesis, and disease. Exp Hematol 2020; 90:18-29. [PMID: 32910997 DOI: 10.1016/j.exphem.2020.08.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/24/2020] [Accepted: 08/25/2020] [Indexed: 12/19/2022]
Abstract
Forkhead-associated (FHA) domain-containing proteins are widely expressed across eubacteria and in eukaryotes. FHA domains contain phosphopeptide recognition motifs, which operate in a variety of phosphorylation-dependent and -independent biological processes, including the DNA damage response, signal transduction, and regulation of the cell cycle. More recently, two FHA domain-containing proteins were discovered in mammalian cells as tumor necrosis factor receptor-associated factor (TRAF)-interacting proteins: TIFA and TIFAB. TIFA and TIFAB are important modifiers of the innate immune signaling through their regulation of TRAF proteins. Recent studies have also revealed distinct roles for TIFA and TIFAB in the context of immune cell function, chronic inflammation, hematopoiesis, and hematologic disorders. Collectively, these studies indicate the important role of TIFA- and TIFAB-dependent signaling in hematopoietic cells and their dysregulation in several human diseases. In this review, we summarize the molecular mechanisms and biological role of these FHA-domain homologues, placing them into the context of human disease.
Collapse
Affiliation(s)
- Madeline Niederkorn
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH; Department of Cancer Biology, University of Cincinnati, Cincinnati, OH
| | - Puneet Agarwal
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Daniel T Starczynowski
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH; Department of Cancer Biology, University of Cincinnati, Cincinnati, OH; Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH.
| |
Collapse
|
8
|
Computational analysis and verification of molecular genetic targets for glioblastoma. Biosci Rep 2020; 40:225082. [PMID: 32469390 PMCID: PMC7298167 DOI: 10.1042/bsr20201401] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/23/2020] [Accepted: 05/26/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Glioblastoma (GBM) is the most common malignant brain tumor with a poor prognosis. The initial treatment for high-grade gliomas is surgical excision. However, even with concomitant use of radiation or chemotherapy, patients are still prone to recurrence. The specific pathogenesis of GBM is still controversial. METHODS Differentially expressed genes (DEGs) and differentially expressed miRNAs (DEMs) between GBM and normal brain tissues were screened. P-value was obtained by Bayes test based on the limma package. Statistical significance was set as P-value <0.05 and |Fold change (FC)| > 0.2 (GSE90886); P-value <0.05 and |FC| > 1 (GSE116520, GSE103228). Gene Ontology (GO) analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG), protein-protein interaction (PPI) network were performed. Hub genes were selected from miRNA target genes and DEGs. GBM and normal brain tissues were extracted to verify the expression. RESULTS A total of 100 DEGs were overlapped in both datasets. Analysis of pathways and process enrichment tests indicated that ion transport, positive regulation of macromolecule metabolic process, cell cycle, axon guidance were enriched in the GBM. Sixteen hub genes were identified. Hub genes ADARB1 and neuropilin 1 (NRP1) were significantly associated with overall survival (OS) and disease-free survival (DFS) (P<0.05). Eukaryotic translation termination factor 1 (ETF1) was associated with DFS (P<0.05). CONCLUSIONS DEGs and DEMs were found between GBM tumor tissues and normal brain tissues. These biomarkers may be used as targets for early diagnosis and specific treatment.
Collapse
|
9
|
Stoddart A, Wang J, Fernald AA, Davis EM, Johnson CR, Hu C, Cheng JX, McNerney ME, Le Beau MM. Cytotoxic Therapy-Induced Effects on Both Hematopoietic and Marrow Stromal Cells Promotes Therapy-Related Myeloid Neoplasms. Blood Cancer Discov 2020; 1:32-47. [PMID: 32924016 DOI: 10.1158/2643-3230.bcd-19-0028] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Therapy-related myeloid neoplasms (t-MNs) following treatment with alkylating agents are characterized by a del(5q), complex karyotypes, alterations of TP53, and a dismal prognosis. To decipher the molecular pathway(s) leading to the pathogenesis of del(5q) t-MN and the effect(s) of cytotoxic therapy on the marrow microenvironment, we developed a mouse model with loss of two key del(5q) genes, EGR1 and APC, in hematopoietic cells. We used the well-characterized drug, N-ethyl-N-nitrosurea (ENU) to demonstrate that alkylating agent exposure of stromal cells in the microenvironment increases the incidence of myeloid disease. In addition, loss of Trp53 with Egr1 and Apc was required to drive the development of a transplantable leukemia, and accompanied by the acquisition of somatic mutations in DNA damage response genes. ENU treatment of mesenchymal stromal cells induced cellular senescence, and led to the acquisition of a senescence-associated secretory phenotype, which may be a critical microenvironmental alteration in the pathogenesis of myeloid neoplasms.
Collapse
Affiliation(s)
| | - Jianghong Wang
- Department of Medicine, University of Chicago, Chicago, IL
| | | | | | | | - Chunmei Hu
- Department of Medicine, University of Chicago, Chicago, IL
| | - Jason X Cheng
- Department of Pathology, University of Chicago, Chicago, IL.,University of Chicago Medicine Comprehensive Cancer Center, Chicago, IL
| | - Megan E McNerney
- Department of Pathology, University of Chicago, Chicago, IL.,University of Chicago Medicine Comprehensive Cancer Center, Chicago, IL.,Department of Pediatrics, University of Chicago, Chicago IL
| | - Michelle M Le Beau
- Department of Medicine, University of Chicago, Chicago, IL.,University of Chicago Medicine Comprehensive Cancer Center, Chicago, IL
| |
Collapse
|
10
|
Al-wajeeh AS, Salhimi SM, Al-Mansoub MA, Khalid IA, Harvey TM, Latiff A, Ismail MN. Comparative proteomic analysis of different stages of breast cancer tissues using ultra high performance liquid chromatography tandem mass spectrometer. PLoS One 2020; 15:e0227404. [PMID: 31945087 PMCID: PMC6964830 DOI: 10.1371/journal.pone.0227404] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 12/18/2019] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Breast cancer is the fifth most prevalent cause of death among women worldwide. It is also one of the most common types of cancer among Malaysian women. This study aimed to characterize and differentiate the proteomics profiles of different stages of breast cancer and its matched adjacent normal tissues in Malaysian breast cancer patients. Also, this study aimed to construct a pertinent protein pathway involved in each stage of cancer. METHODS In total, 80 samples of tumor and matched adjacent normal tissues were collected from breast cancer patients at Seberang Jaya Hospital (SJH) and Kepala Batas Hospital (KBH), both in Penang, Malaysia. The protein expression profiles of breast cancer and normal tissues were mapped by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). The Gel-Eluted Liquid Fractionation Entrapment Electrophoresis (GELFREE) Technology System was used for the separation and fractionation of extracted proteins, which also were analyzed to maximize protein detection. The protein fractions were then analyzed by tandem mass spectrometry (LC-MS/MS) analysis using LC/MS LTQ-Orbitrap Fusion and Elite. This study identified the proteins contained within the tissue samples using de novo sequencing and database matching via PEAKS software. We performed two different pathway analyses, DAVID and STRING, in the sets of proteins from stage 2 and stage 3 breast cancer samples. The lists of molecules were generated by the REACTOME-FI plugin, part of the CYTOSCAPE tool, and linker nodes were added in order to generate a connected network. Then, pathway enrichment was obtained, and a graphical model was created to depict the participation of the input proteins as well as the linker nodes. RESULTS This study identified 12 proteins that were detected in stage 2 tumor tissues, and 17 proteins that were detected in stage 3 tumor tissues, related to their normal counterparts. It also identified some proteins that were present in stage 2 but not stage 3 and vice versa. Based on these results, this study clarified unique proteins pathways involved in carcinogenesis within stage 2 and stage 3 breast cancers. CONCLUSIONS This study provided some useful insights about the proteins associated with breast cancer carcinogenesis and could establish an important foundation for future cancer-related discoveries using differential proteomics profiling. Beyond protein identification, this study considered the interaction, function, network, signaling pathway, and protein pathway involved in each profile. These results suggest that knowledge of protein expression, especially in stage 2 and stage 3 breast cancer, can provide important clues that may enable the discovery of novel biomarkers in carcinogenesis.
Collapse
Affiliation(s)
- Abdullah Saleh Al-wajeeh
- Anti-Doping Lab Qatar, Doha, Qatar
- Analytical Biochemistry Research Centre (ABrC), Universiti Sains Malaysia, USM, Penang, Malaysia
| | | | | | | | | | | | - Mohd Nazri Ismail
- Analytical Biochemistry Research Centre (ABrC), Universiti Sains Malaysia, USM, Penang, Malaysia
| |
Collapse
|
11
|
Chronic immune response dysregulation in MDS pathogenesis. Blood 2018; 132:1553-1560. [PMID: 30104218 DOI: 10.1182/blood-2018-03-784116] [Citation(s) in RCA: 160] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 08/03/2018] [Indexed: 12/18/2022] Open
Abstract
Chronic innate immune signaling in hematopoietic cells is widely described in myelodysplastic syndromes (MDS), and innate immune pathway activation, predominantly via pattern recognition receptors, increases the risk of developing MDS. An inflammatory component to MDS has been reported for many years, but only recently has evidence supported a more direct role of chronic innate immune signaling and associated inflammatory pathways in the pathogenesis of MDS. Here we review recent findings and discuss relevant questions related to chronic immune response dysregulation in MDS.
Collapse
|
12
|
Fang L, Wang Y, Gao Y, Chen X. Overexpression of CXXC5 is a strong poor prognostic factor in ER+ breast cancer. Oncol Lett 2018; 16:395-401. [PMID: 29928427 PMCID: PMC6006432 DOI: 10.3892/ol.2018.8647] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 04/26/2018] [Indexed: 12/13/2022] Open
Abstract
CXXC5 is a newly identified CXXC-type zinc finger family protein, which is encoded by the CXXC5 gene localised to the 5q31.3 chromosomal region. Previous studies revealed that CXXC5 is associated with various malignant tumours. The aim of the present study was to investigate the prognosis prediction of CXXC5 in different breast cancer subtypes via the Gene Expression Omnibus database and bc-GenExMiner. CXXC5 overexpression was observed as associated with a poor prognosis for oestrogen receptor positive (ER+) breast cancer. Basal-like breast cancer and triple-negative breast cancer also suggest a poor prognosis, however their CXXC5 expression was low and could not be used as a prognostic factor. The CXXC5 correlated genes and their enriched Gene Ontology (GO) terms were obtained. Among those enriched GO terms, GO:0070062 (extracellular exosome) had the greatest number of associated genes and the associated genes of GO:0000122 (negative regulation of transcription from RNA polymerase II promoter) and GO:0008134 (transcription factor binding) contained CXXC5. These results suggest that overexpression of CXXC5 is a strongly poor prognostic factor in ER+ breast cancer. However, the role of CXXC5 in breast cancer requires further investigation.
Collapse
Affiliation(s)
- Lei Fang
- Department of Pathology and Pathophysiology, Jinzhou Medical University, Jinzhou, Liaoning 121000, P.R. China
| | - Yu Wang
- Department of Radiology and NFCR Center for Molecular Imaging, Case Western Reserve University, Cleveland, OH 44106-5065, USA
| | - Yang Gao
- Department of Oncology, The First Affiliated Hospital of Liaoning Medical University, Jinzhou, Liaoning 121000, P.R. China
| | - Xuejun Chen
- Department of Pathology and Pathophysiology, Jinzhou Medical University, Jinzhou, Liaoning 121000, P.R. China
| |
Collapse
|
13
|
Inhibition of WNT signaling in the bone marrow niche prevents the development of MDS in the Apcdel/+ MDS mouse model. Blood 2017; 129:2959-2970. [PMID: 28348148 DOI: 10.1182/blood-2016-08-736454] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 03/21/2017] [Indexed: 01/21/2023] Open
Abstract
There is accumulating evidence that functional alteration(s) of the bone marrow (BM) microenvironment contribute to the development of some myeloid disorders, such as myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML). In addition to a cell-intrinsic role of WNT activation in leukemia stem cells, WNT activation in the BM niche is also thought to contribute to the pathogenesis of MDS and AML. We previously showed that the Apc-haploinsufficient mice (Apcdel/+ ) model MDS induced by an aberrant BM microenvironment. We sought to determine whether Apc, a multifunctional protein and key negative regulator of the canonical β-catenin (Ctnnb1)/WNT-signaling pathway, mediates this disease through modulating WNT signaling, and whether inhibition of WNT signaling prevents the development of MDS in Apcdel/+ mice. Here, we demonstrate that loss of 1 copy of Ctnnb1 is sufficient to prevent the development of MDS in Apcdel/+ mice and that altered canonical WNT signaling in the microenvironment is responsible for the disease. Furthermore, the US Food and Drug Administration (FDA)-approved drug pyrvinium delays and/or inhibits disease in Apcdel/+ mice, even when it is administered after the presentation of anemia. Other groups have observed increased nuclear CTNNB1 in stromal cells from a high frequency of MDS/AML patients, a finding that together with our results highlights a potential new strategy for treating some myeloid disorders.
Collapse
|
14
|
Varney ME, Choi K, Bolanos L, Christie S, Fang J, Grimes HL, Maciejewski JP, Inoue JI, Starczynowski DT. Epistasis between TIFAB and miR-146a: neighboring genes in del(5q) myelodysplastic syndrome. Leukemia 2016; 31:491-495. [PMID: 27733775 DOI: 10.1038/leu.2016.276] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- M E Varney
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - K Choi
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - L Bolanos
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - S Christie
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - J Fang
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - H L Grimes
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - J P Maciejewski
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - J-I Inoue
- Division of Cellular and Molecular Biology, Department of Cancer Biology, The Institute of Medical Science, The University of Tokyo, Shirokanedai, Minato-ku, Tokyo, Japan
| | - D T Starczynowski
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|