1
|
Cataland SR, Coppo P, Scully M, Lämmle B. Thrombotic thrombocytopenic purpura: 100 years of research on Moschcowitz syndrome. Blood 2024; 144:1143-1152. [PMID: 38958481 DOI: 10.1182/blood.2023022277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/21/2024] [Accepted: 06/23/2024] [Indexed: 07/04/2024] Open
Abstract
ABSTRACT In the 100 years since Eli Moschcowitz reported the first case of thrombotic thrombocytopenic purpura (TTP), there has been remarkable awareness and progress in the diagnosis and management of this rare blood disorder. This progress initially was the result of careful clinical observations followed by well thought-out therapeutic interventions, with dual goals of both improving outcomes and discerning the pathophysiology of TTP. The discovery of the ADAMTS13 protease set in motion the efforts to more accurately define the specific etiologies of thrombotic microangiopathies (TMAs) based on objective, scientific data rather than clinical characterizations alone. This accurate differentiation led to better and more revealing clinical trials and advancements in the treatment of TTP and other TMAs. Further advances followed and included improvements in immune-suppressive therapy and targeted therapies of immune-mediated TTP (iTTP; caplacizumab) and congenital TTP (cTTP; recombinant ADAMTS13). The longitudinal study of patients with TTP revealed the unexpected risk for long-term complications in both patients with iTTP and those with cTTP in remission. Ongoing studies aim to further understand the prevalence, mechanisms, and appropriate screening for these mood disorders, neurocognitive deficits, and cardiovascular complications that develop at remarkably high rates and are associated with a decreased life expectancy. These discoveries are a result of the collaborative efforts of investigators worldwide that have been fostered by the frequent interactions of investigators via the International TTP Working Group meetings and TMA workshops held regularly at international meetings. These efforts will support the rapid pace of discovery and improved understanding of this rare disease.
Collapse
Affiliation(s)
| | - Paul Coppo
- Centre de Référence des Microangiopathies Thrombotiques, Service d'Hématologie, Hôpital Saint-Antoine, Sorbonne Université, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Marie Scully
- Department of Clinical Haematology, University College London Hospitals NHS Foundation Trust, London, United Kingdom
- National Institute for Health Research University College London Hospital/University College London Biomedical Research Centre, London, United Kingdom
| | - Bernhard Lämmle
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
- Department of Hematology and Central Hematology Laboratory, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
2
|
Du P, Cristarella T, Goyer C, Moride Y. A Systematic Review of the Epidemiology and Disease Burden of Congenital and Immune-Mediated Thrombotic Thrombocytopenic Purpura. J Blood Med 2024; 15:363-386. [PMID: 39161536 PMCID: PMC11330749 DOI: 10.2147/jbm.s464365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 07/23/2024] [Indexed: 08/21/2024] Open
Abstract
Congenital (cTTP) and immune-mediated (iTTP) thrombotic thrombocytopenic purpura are serious and rare clotting disorders resulting from a deficiency in the ADAMTS13 enzyme. A systematic review was conducted using the Ovid® MEDLINE & Embase databases to synthesize the epidemiology and burden of cTTP and iTTP worldwide (from January 1, 2010, to February 6, 2020, with an update that covered the period January 1, 2020-February 11, 2022). Outcomes of interest were incidence and prevalence of TTP, incidence of acute episodes, mortality, burden of illness (eg complications, healthcare utilization, patient-reported outcomes) and disease management. A total of 221 eligible observational studies were included. The incidence rate of acute episodes ranged from 0.19-0.35 person-years in adult patients with cTTP, and 1.81-3.93 per million persons per year for iTTP in the general population. Triggers of acute episodes were similar for cTTP and iTTP, with pregnancy and infection the most commonly observed. Exacerbation in patients with iTTP varied widely, ranging from 2.4-63.1%. All-cause mortality was observed in 0-13.4% of patients with cTTP, across studies and follow-up periods, and in 1.1% (median follow-up: 0.4 years) to 18.8% (1 year) of patients with iTTP during acute episodes. Cardiovascular, renal, and neurological disease were common complications. TTP also led to work disturbances, feelings of anxiety and depression, and general activity impairment. TTP treatment regimens used were generally reflective of current treatment guidelines. The evidence identified describes a high patient burden, highlighting the need for effective treatment regimens leading to improvements in outcomes. Considerable evidence gaps exist, particularly for disease epidemiology, patient-reported outcomes, costs of disease management, and associated healthcare resource utilization. This review may help increase disease awareness and highlights the need for additional real-world studies, particularly in geographical regions outside the United States and Western Europe.
Collapse
Affiliation(s)
- Ping Du
- Global Evidence and Outcomes, Takeda Development Center Americas, Inc., Cambridge, MA, USA
| | | | | | - Yola Moride
- YolaRX Consultants Inc., Montreal, QC, Canada
- Center for Pharmacoepidemiology and Treatment Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| |
Collapse
|
3
|
Dolin HH, Maitta RW. Pathological Mechanisms and Novel Testing Methods in Thrombotic Thrombocytopenic Purpura. Biomedicines 2024; 12:621. [PMID: 38540234 PMCID: PMC10968366 DOI: 10.3390/biomedicines12030621] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/02/2024] [Accepted: 03/08/2024] [Indexed: 11/11/2024] Open
Abstract
Thrombotic thrombocytopenic purpura (TTP) is an uncommon, but potentially disabling or even deadly, thrombotic microangiopathy with a well-studied mechanism of ADAMTS13 deficiency or dysfunction. While established treatments are largely effective, the standard ADAMTS13 testing required to definitively diagnose TTP may cause delays in diagnosis and treatment, highlighting the need for rapid and effective diagnostic methods. Additionally, the heterogeneous presentation and varied inciting events of TTP suggest more variation in its mechanism than previously thought, implying three potential pathways rather than the accepted two. The recent discovery of ADAMTS13 conformation as a potential contributor to TTP in addition to the proposal of using the absolute immature platelet count (A-IPC) as a biomarker, present novel areas for monitoring and treatment. A-IPC in particular may serve as a more rapid and accurate diagnostic test to distinguish TTP from non-TTP TMAs and to monitor treatment response and relapse. These considerations highlight the need to further study TTP in order to improve best practices and patient care.
Collapse
Affiliation(s)
| | - Robert W. Maitta
- Department of Pathology, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, OH 44106, USA;
| |
Collapse
|
4
|
Oliver M, Patriquin CJ, Pavenski K. Predictors of relapse and prophylactic management of immune thrombotic thrombocytopenic purpura. Transfus Apher Sci 2023; 62:103749. [PMID: 37344323 DOI: 10.1016/j.transci.2023.103749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2023]
Affiliation(s)
- Monika Oliver
- Department of Medicine, University of Alberta, Canada; Division of Hematology, University of Alberta Hospital, Canada
| | - Christopher J Patriquin
- Department of Medicine, University of Toronto, Canada; Division of Medical Oncology & Hematology, University Health Network, Toronto, Canada
| | - Katerina Pavenski
- Department of Medicine, University of Toronto, Canada; Department of Laboratory Medicine & Pathobiology, University of Toronto, Canada; Departments of Medicine and Laboratory Medicine, St. Michael's Hospital-Unity Health Toronto, Canada.
| |
Collapse
|
5
|
Lancellotti S, Sacco M, Tardugno M, Ferretti A, De Cristofaro R. Immune and Hereditary Thrombotic Thrombocytopenic Purpura: Can ADAMTS13 Deficiency Alone Explain the Different Clinical Phenotypes? J Clin Med 2023; 12:3111. [PMID: 37176552 PMCID: PMC10179526 DOI: 10.3390/jcm12093111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/17/2023] [Accepted: 04/19/2023] [Indexed: 05/15/2023] Open
Abstract
Thrombotic thrombocytopenic purpura (TTP) is a thrombotic microangiopathy caused by a hereditary or immune-mediated deficiency of the enzyme ADAMTS13 (a disintegrin and metalloproteinase with a thrombospondin type 1 motif, member 13). TTPs are caused by the following pathophysiological mechanisms: (1) the presence of inhibitory autoantibodies against ADAMTS13; and (2) hereditary mutations of the ADAMTS13 gene, which is present on chromosome 9. In both syndromes, TTP results from a severe deficiency of ADAMTS13, which is responsible for the impaired proteolytic processing of high-molecular-weight von Willebrand factor (HMW-VWF) multimers, which avidly interact with platelets and subendothelial collagen and promote tissue and multiorgan ischemia. Although the acute presentation of the occurring symptoms in acquired and hereditary TTPs is similar (microangiopathic hemolytic anemia, thrombocytopenia, and variable ischemic end-organ injury), their intensity, incidence, and precipitating factors are different, although, in both forms, a severe ADAMTS13 deficiency characterizes their physiopathology. This review is aimed at exploring the possible factors responsible for the different clinical and pathological features occurring in hereditary and immune-mediated TTPs.
Collapse
Affiliation(s)
- Stefano Lancellotti
- Servizio Malattie Emorragiche e Trombotiche, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Roma, Italy;
| | - Monica Sacco
- Dipartimento di Medicina e Chirurgia Traslazionale, Facoltà di Medicina e Chirurgia “Agostino Gemelli”, Università Cattolica S. Cuore, 00168 Roma, Italy; (M.S.); (M.T.)
| | - Maira Tardugno
- Dipartimento di Medicina e Chirurgia Traslazionale, Facoltà di Medicina e Chirurgia “Agostino Gemelli”, Università Cattolica S. Cuore, 00168 Roma, Italy; (M.S.); (M.T.)
| | - Antonietta Ferretti
- Dipartimento di Medicina e Chirurgia Traslazionale, Facoltà di Medicina e Chirurgia “Agostino Gemelli”, Università Cattolica S. Cuore, 00168 Roma, Italy; (M.S.); (M.T.)
| | - Raimondo De Cristofaro
- Servizio Malattie Emorragiche e Trombotiche, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Roma, Italy;
- Dipartimento di Medicina e Chirurgia Traslazionale, Facoltà di Medicina e Chirurgia “Agostino Gemelli”, Università Cattolica S. Cuore, 00168 Roma, Italy; (M.S.); (M.T.)
| |
Collapse
|
6
|
Azoulay E, Souppart V, Kentish-Barnes N, Benhamou Y, Joly BS, Zafrani L, Joseph A, Canet E, Presne C, Grall M, Zerbib Y, Provot F, Fadlallah J, Mariotte E, Urbina T, Veyradier A, Coppo P. Post-traumatic stress disorder and quality of life alterations in survivors of immune-mediated thrombotic thrombocytopenic purpura and atypical hemolytic and uremic syndrome. J Crit Care 2023; 76:154283. [PMID: 36931181 DOI: 10.1016/j.jcrc.2023.154283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 01/20/2023] [Accepted: 02/22/2023] [Indexed: 03/17/2023]
Abstract
Thrombotic thrombocytopenic purpura (iTTP) and atypical hemolytic-uremic syndrome (aHUS), once in remission, may cause long-term symptoms, among which mental-health impairments may be difficult to detect. We conducted telephone interviews 72 [48-84] months after ICU discharge to assess symptoms of anxiety, depression, and posttraumatic stress disorder (PTSD) and the 36-item Short Form questionnaire (SF-36). Of 103 included patients, 52 had iTTP and 51 aHUS; 74% were female, median age was 39 y (31-54), and 39 (38%) patients were still taking treatment. Symptoms of anxiety, PTSD and depression were present in 50%, 27% and 14% of patients, respectively, with no significant difference between the iTTP and aHUS groups. Patients with PTSD symptoms had significantly greater weight gain and significantly worse perceived physical and/or emotional wellbeing, anxiety symptoms, and depression symptoms. The SF-36 physical and mental components indicated significantly greater quality-of-life impairments in patients with vs. without PTSD symptoms and in those with aHUS and PTSD vs. iTTP with or without PTSD. In the aHUS group, quality of life was significantly better in patients with vs. without eculizumab treatment. Factors independently associated with PTSD symptoms were male sex (odds ratio [OR], 0.11; 95%CI, 0.02-0.53), platelet count ≤20 G/L at acute-episode presentation (OR, 2.68; 1.01-7.38), and current treatment (OR, 2.69; 95%CI, 1.01-7.36). Mental-health screening should be routine in patients with iTTP and aHUS to ensure appropriate care.
Collapse
Affiliation(s)
- Elie Azoulay
- Centre National de Référence des MicroAngiopathies Thrombotiques, Paris, France; Médecine Intensive et Réanimation, APHP, Hôpital Saint Louis, Paris, France,; Famirea Study Group, APHP, Hôpital Saint Louis, Paris, France.
| | - Virginie Souppart
- Médecine Intensive et Réanimation, APHP, Hôpital Saint Louis, Paris, France,; Famirea Study Group, APHP, Hôpital Saint Louis, Paris, France
| | - Nancy Kentish-Barnes
- Médecine Intensive et Réanimation, APHP, Hôpital Saint Louis, Paris, France,; Famirea Study Group, APHP, Hôpital Saint Louis, Paris, France
| | - Ygal Benhamou
- Centre National de Référence des MicroAngiopathies Thrombotiques, Paris, France; Département de médecine interne, Hôpital universitaire de Rouen, Université de Normandie, Rouen, France
| | - Bérangère S Joly
- Centre National de Référence des MicroAngiopathies Thrombotiques, Paris, France; Service d'hématologie biologique, laboratoire ADAMTS13, Hôpital Lariboisière, AP-HP Nord, Université Paris Cité, Paris, France; EA3518, Institut de recherche Saint Louis, Université Paris Cité, Paris, France
| | - Lara Zafrani
- Centre National de Référence des MicroAngiopathies Thrombotiques, Paris, France; Médecine Intensive et Réanimation, APHP, Hôpital Saint Louis, Paris, France
| | - Adrien Joseph
- Centre National de Référence des MicroAngiopathies Thrombotiques, Paris, France; Médecine Intensive et Réanimation, APHP, Hôpital Saint Louis, Paris, France
| | - Emmanuel Canet
- Médecine Intensive et Réanimation, CHU de Nantes, France
| | - Claire Presne
- Centre National de Référence des MicroAngiopathies Thrombotiques, Paris, France; Service de Néphrologie, Médecine Interne, Hémodialyse, Transplantation du CHU d'AMIENS PICARDIE, France
| | - Maximilien Grall
- Centre National de Référence des MicroAngiopathies Thrombotiques, Paris, France; Département de médecine interne, Hôpital universitaire de Rouen, Université de Normandie, Rouen, France
| | - Yoann Zerbib
- Médecine Intensive et Réanimation, CHU d'Amiens, France
| | - François Provot
- Centre National de Référence des MicroAngiopathies Thrombotiques, Paris, France; Département de néphrologie, dialyse et transplantation, Université de Lille, CHU de Lille, France
| | - Jehane Fadlallah
- Département d'immunologie clinique, AP-HP, Hôpital Saint-Louis, Paris, France
| | - Eric Mariotte
- Centre National de Référence des MicroAngiopathies Thrombotiques, Paris, France; Médecine Intensive et Réanimation, APHP, Hôpital Saint Louis, Paris, France
| | - Tomas Urbina
- Centre National de Référence des MicroAngiopathies Thrombotiques, Paris, France; Médecine Intensive et Réanimation, APHP, Hôpital Saint-Antoine, France
| | - Agnès Veyradier
- Centre National de Référence des MicroAngiopathies Thrombotiques, Paris, France; Service d'hématologie biologique, laboratoire ADAMTS13, Hôpital Lariboisière, AP-HP Nord, Université Paris Cité, Paris, France; EA3518, Institut de recherche Saint Louis, Université Paris Cité, Paris, France
| | - Paul Coppo
- Centre National de Référence des MicroAngiopathies Thrombotiques, Paris, France; Service d'Hématologie, Hôpital Saint-Antoine, AP-HP, Paris, France; INSERM UMRS 1138, Centre de Recherche des Cordeliers, Paris, France
| |
Collapse
|
7
|
Ręka G, Stefaniak M, Lejman M. Novel Molecular Therapies and Genetic Landscape in Selected Rare Diseases with Hematologic Manifestations: A Review of the Literature. Cells 2023; 12:cells12030449. [PMID: 36766791 PMCID: PMC9913931 DOI: 10.3390/cells12030449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/25/2023] [Accepted: 01/26/2023] [Indexed: 02/03/2023] Open
Abstract
Rare diseases affect less than 1 in 2000 people and are characterized by a serious, chronic, and progressive course. Among the described diseases, a mutation in a single gene caused mastocytosis, thrombotic thrombocytopenic purpura, Gaucher disease, and paroxysmal nocturnal hemoglobinuria (KIT, ADAMTS13, GBA1, and PIG-A genes, respectively). In Castleman disease, improper ETS1, PTPN6, TGFBR2, DNMT3A, and PDGFRB genes cause the appearance of symptoms. In histiocytosis, several mutation variants are described: BRAF, MAP2K1, MAP3K1, ARAF, ERBB3, NRAS, KRAS, PICK1, PIK3R2, and PIK3CA. Genes like HPLH1, PRF1, UNC13D, STX11, STXBP2, SH2D1A, BIRC4, ITK, CD27, MAGT1, LYST, AP3B1, and RAB27A are possible reasons for hemophagocytic lymphohistiocytosis. Among novel molecular medicines, tyrosine kinase inhibitors, mTOR inhibitors, BRAF inhibitors, interleukin 1 or 6 receptor antagonists, monoclonal antibodies, and JAK inhibitors are examples of drugs expanding therapeutic possibilities. An explanation of the molecular basis of rare diseases might lead to a better understanding of the pathogenesis and prognosis of the disease and may allow for the development of new molecularly targeted therapies.
Collapse
Affiliation(s)
- Gabriela Ręka
- Independent Laboratory of Genetic Diagnostics, Medical University of Lublin, A. Gębali 6, 20-093 Lublin, Poland
- Correspondence:
| | - Martyna Stefaniak
- Student Scientific Society of Independent Laboratory of Genetic Diagnostics, Medical University of Lublin, A. Gębali 6, 20-093 Lublin, Poland
| | - Monika Lejman
- Independent Laboratory of Genetic Diagnostics, Medical University of Lublin, A. Gębali 6, 20-093 Lublin, Poland
| |
Collapse
|
8
|
Gómez-Seguí I, Pascual Izquierdo C, Mingot Castellano ME, de la Rubia Comos J. An update on the pathogenesis and diagnosis of thrombotic thrombocytopenic purpura. Expert Rev Hematol 2023; 16:17-32. [PMID: 36537217 DOI: 10.1080/17474086.2023.2159803] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Severe ADAMTS13 deficiency defines thrombotic thrombocytopenic purpura (TTP). ADAMTS13 is responsible for VWF cleavage. In the absence of this enzyme, widespread thrombi formation occurs, causing microangiopathic anemia and thrombocytopenia and leading to ischemic organ injury. Understanding ADAMTS13 function is crucial to diagnose and manage TTP, both in the immune and hereditary forms. AREAS COVERED The role of ADAMTS13 in coagulation homeostasis and the consequences of its deficiency are detailed. Other factors that modulate the consequences of ADAMTS13 deficiency are explained, such as complement system activation, genetic predisposition, or the presence of an inflammatory status. Clinical suspicion of TTP is crucial to start prompt treatment and avoid mortality and sequelae. Available techniques to diagnose this deficiency and detect autoantibodies or gene mutations are presented, as they have become faster and more available in recent years. EXPERT OPINION A better knowledge of TTP pathophysiology is leading to an improvement in diagnosis and follow-up, as well as a customized treatment in patients with TTP. This scenario is necessary to define the role of new targeted therapies already available or coming soon and the need to better diagnose and monitor at the molecular level the evolution of the disease.
Collapse
Affiliation(s)
- Inés Gómez-Seguí
- Servicio de Hematología y Hemoterapia, Hospital Universitari i Politècnic La Fe, Avda, Fernando Abril Martorell, 106, 46026, Valencia, Spain
| | - Cristina Pascual Izquierdo
- Servicio de Hematología y Hemoterapia, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Gregorio Marañón, Calle Dr. Esquerdo 46, 28007, Madrid, Spain
| | - María Eva Mingot Castellano
- Servicio de Hematología, Área de Banco de Sangre y Establecimiento de Tejidos, Hospital Universitario Virgen del Rocío, Calle Manuel Siurot s/n, 41013, Sevilla, Spain
| | - Javier de la Rubia Comos
- Servicio de Hematología y Hemoterapia, Hospital Universitari i Politècnic La Fe, Avda, Fernando Abril Martorell, 106, 46026, Valencia, Spain.,School of Medicine and Dentistry, Catholic University of Valencia, Valencia, Spain
| |
Collapse
|
9
|
Alterations in B- and circulating T-follicular helper cell subsets in immune thrombotic thrombocytopenic purpura. Blood Adv 2022; 6:3792-3802. [PMID: 35507753 PMCID: PMC9631570 DOI: 10.1182/bloodadvances.2022007025] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 04/19/2022] [Indexed: 11/20/2022] Open
Abstract
Abnormal B-cell phenotype in acute iTTP with decreased transitional and post–germinal center memory cells and increased plasmablasts. Decreased total and PD1+ circulating T-follicular helper cells and changes in B-cell CD80 expression suggest altered B- and T-cell interactions.
T follicular helper (Tfh) cells regulate development of antigen-specific B-cell immunity. We prospectively investigated B-cell and circulating Tfh (cTfh) cell subsets in 45 patients with immune thrombotic thrombocytopenic purpura (iTTP) at presentation and longitudinally after rituximab (RTX). B-cell phenotype was altered at acute iTTP presentation with decreased transitional cells and post–germinal center (post-GC) memory B cells and increased plasmablasts compared with healthy controls. A higher percentage of plasmablasts was associated with higher anti-ADAMTS13 IgG and lower ADAMTS13 antigen levels. In asymptomatic patients with ADAMTS13 relapse, there were increased naïve B cells and a global decrease in memory subsets, with a trend to increased plasmablasts. Total circulating Tfh (CD4+CXCR5+) and PD1+ Tfh cells were decreased at iTTP presentation. CD80 expression was decreased on IgD+ memory cells and double-negative memory cells in acute iTTP. At repopulation after B-cell depletion in de novo iTTP, post-GC and double-negative memory B cells were reduced compared with pre-RTX. RTX did not cause alteration in cTfh cell frequency. The subsequent kinetics of naïve, transitional, memory B cells and plasmablasts did not differ significantly between patients who went on to relapse vs those who remained in remission. In summary, acute iTTP is characterized by dysregulation of B- and cTfh cell homeostasis with depletion of post-GC memory cells and cTfh cells and increased plasmablasts. Changes in CD80 expression on B cells further suggest altered interactions with T cells.
Collapse
|
10
|
Joly BS, Roose E, Coppo P, Vanhoorelbeke K, Veyradier A. ADAMTS13 conformation is closed in non-immune acquired thrombotic thrombocytopenic purpura of unidentified pathophysiology. Haematologica 2022; 108:638-644. [PMID: 35484652 PMCID: PMC9892849 DOI: 10.3324/haematol.2022.280768] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Indexed: 02/03/2023] Open
Affiliation(s)
- Bérangère S. Joly
- Service d’Hématologie Biologique, Hôpital Lariboisière, AP-HP.Nord, Université de Paris and EA3518, Institut Universitaire d’Hématologie, Hôpital Saint Louis, Université de Paris, Paris, France,A. VEYRADIER -
| | - Elien Roose
- Laboratory for Thrombosis Research, IRF Life Sciences, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium,A. VEYRADIER -
| | - Paul Coppo
- Département d’Hématologie Clinique, Hôpital Saint Antoine, Assistance Publique-Hôpitaux de Paris and Université Pierre et Marie Curie, Paris, France *BSY and ER contributed equally as co-first authors
| | - Karen Vanhoorelbeke
- Laboratory for Thrombosis Research, IRF Life Sciences, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| | - Agnès Veyradier
- Service d'Hématologie biologique, Hôpital Lariboisière, AP-HP.Nord, Université de Paris and EA3518, Institut Universitaire d'Hématologie, Hôpital Saint Louis, Université de Paris, Paris.
| |
Collapse
|
11
|
Mopuru R, Chaturvedi S, Burkholder BM. Relapsing Thrombotic Thrombocytopenic Purpura (TTP) in a Patient Treated with Infliximab for Chronic Uveitis. Ocul Immunol Inflamm 2022; 30:241-243. [PMID: 32945712 DOI: 10.1080/09273948.2020.1797117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
PURPOSE To report a case of relapsing thrombotic thrombocytopenic purpura (TTP) in a patient treated with infliximab for chronic uveitis. CASE REPORT A 57-year-old African American woman with chronic anterior and intermediate uveitis, treated with infliximab for more than 1 year, presented with fatigue, dark colored urine, and ecchymosis on her extremities. She was diagnosed with thrombotic thrombocytopenic purpura (TTP) and recovered after treatment. After a remission period of 8 months, she was treated again with infliximab for recurrent intraocular inflammation. She developed a relapse of TTP 4 weeks after reintroducing infliximab. CONCLUSION Relapsing thrombotic thrombocytopenic purpura can be a rare complication associated with infliximab. To our knowledge, it has not been reported in the literature to date.
Collapse
Affiliation(s)
- Renuka Mopuru
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Shruti Chaturvedi
- Division of Hematology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Bryn M Burkholder
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
12
|
Updates on thrombotic thrombocytopenic purpura: Recent developments in pathogenesis, treatment and survivorship. THROMBOSIS UPDATE 2021. [DOI: 10.1016/j.tru.2021.100062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
13
|
Szóstek-Mioduchowska A, Kordowitzki P. Shedding Light on the Possible Link between ADAMTS13 and Vaccine-Induced Thrombotic Thrombocytopenia. Cells 2021; 10:cells10102785. [PMID: 34685765 PMCID: PMC8535032 DOI: 10.3390/cells10102785] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 12/26/2022] Open
Abstract
Several recent reports have highlighted the onset of vaccine-induced thrombotic thrombocytopaenia (VITT) in some recipients (approximately 1 case out of 100k exposures) of the ChAdOx1 nCoV-19 vaccine (AstraZeneca). Although the underlying events leading to this blood-clotting phenomenon has yet to be elucidated, several critical observations present a compelling potential mechanism. Thrombus formation requires the von Willebrand (VWF) protein to be in ultra-large multimeric state. The conservation of this state is controlled by the ADAMTS13 enzyme, whose proteolytic activity reduces the size of VWF multimers, keeping blood clotting at bay. However, ADAMTS13 cannot act on VWF that is bound to platelet factor 4 (PF4). As such, it is of particular interest to note that a common feature between subjects presenting with VITT is high titres of antibodies against PF4. This raises the possibility that these antibodies preserve the stability of ultra-large VWF complexes, leading to the formation of endothelium-anchored VWF strings, which are capable of recruiting circulating platelets and causing uncontrolled thrombosis in terminal capillaries. Here, we share our viewpoint about the current understanding of the VITT pathogenesis involving the prevention of ADAMTS13's activity on VWF by PF4 antibody-mediated stabilisation/ protection of the PF4-VWF complex.
Collapse
Affiliation(s)
- Anna Szóstek-Mioduchowska
- Department for Immunology and Pathology, Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Tuwima Street 10, 10-243 Olsztyn, Poland;
| | - Paweł Kordowitzki
- Department for Immunology and Pathology, Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Tuwima Street 10, 10-243 Olsztyn, Poland;
- Faculty of Biology and Veterinary Medicine, Nicolaus Copernicus University, Gagarina Street 1, 87-100 Torun, Poland
- Correspondence: ; Tel.: +48-89-539-31-28
| |
Collapse
|
14
|
Influence of Vincristine, Clinically Used in Cancer Therapy and Immune Thrombocytopenia, on the Function of Human Platelets. Molecules 2021; 26:molecules26175340. [PMID: 34500771 PMCID: PMC8434001 DOI: 10.3390/molecules26175340] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/27/2021] [Accepted: 08/31/2021] [Indexed: 12/05/2022] Open
Abstract
Vincristine is a clinically used antimicrotubule drug for treating patients with lymphoma. Due to its property of increasing platelet counts, vincristine is also used to treat patients with immune thrombocytopenia. Moreover, antiplatelet agents were reported to be beneficial in thrombotic thrombocytopenic purpura (TTP). Therefore, we investigated the detailed mechanisms underlying the antiplatelet effect of vincristine. Our results revealed that vincristine inhibited platelet aggregation induced by collagen, but not by thrombin, arachidonic acid, and the thromboxane A2 analog U46619, suggesting that vincristine exerts higher inhibitory effects on collagen-mediated platelet aggregation. Vincristine also reduced collagen-mediated platelet granule release and calcium mobilization. In addition, vincristine inhibited glycoprotein VI (GPVI) signaling, including Syk, phospholipase Cγ2, protein kinase C, Akt, and mitogen-activated protein kinases. In addition, the in vitro PFA-100 assay revealed that vincristine did not prolong the closure time, and the in vivo study tail bleeding assay showed that vincristine did not prolong the tail bleeding time; both findings suggested that vincristine may not affect normal hemostasis. In conclusion, we demonstrated that vincristine exerts antiplatelet effects at least in part through the suppression of GPVI signaling. Moreover, this property of antiplatelet activity of vincristine may provide additional benefits in the treatment of TTP.
Collapse
|
15
|
Ercig B, Arfman T, Hrdinova J, Wichapong K, Reutelingsperger CPM, Vanhoorelbeke K, Nicolaes GAF, Voorberg J. Conformational plasticity of ADAMTS13 in hemostasis and autoimmunity. J Biol Chem 2021; 297:101132. [PMID: 34461090 PMCID: PMC8449270 DOI: 10.1016/j.jbc.2021.101132] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 08/24/2021] [Accepted: 08/26/2021] [Indexed: 11/08/2022] Open
Abstract
A disintegrin and metalloproteinase with a thrombospondin type 1 motif, member 13 (ADAMTS13) is a multidomain metalloprotease for which until now only a single substrate has been identified. ADAMTS13 cleaves the polymeric force-sensor von Willebrand factor (VWF) that unfolds under shear stress and recruits platelets to sites of vascular injury. Shear force–dependent cleavage at a single Tyr–Met peptide bond in the unfolded VWF A2 domain serves to reduce the size of VWF polymers in circulation. In patients with immune-mediated thrombotic thrombocytopenic purpura (iTTP), a rare life-threatening disease, ADAMTS13 is targeted by autoantibodies that inhibit its activity or promote its clearance. In the absence of ADAMTS13, VWF polymers are not adequately processed, resulting in spontaneous adhesion of blood platelets, which presents as severe, life-threatening microvascular thrombosis. In healthy individuals, ADAMTS13–VWF interactions are guided by controlled conversion of ADAMTS13 from a closed, inactive to an open, active conformation through a series of interdomain contacts that are now beginning to be defined. Recently, it has been shown that ADAMTS13 adopts an open conformation in the acute phase and during subclinical disease in iTTP patients, making open ADAMTS13 a novel biomarker for iTTP. In this review, we summarize our current knowledge on ADAMTS13 conformation and speculate on potential triggers inducing conformational changes of ADAMTS13 and how these relate to the pathogenesis of iTTP.
Collapse
Affiliation(s)
- Bogac Ercig
- Department of Molecular Hematology, Sanquin-Academic Medical Center Landsteiner Laboratory, Amsterdam, the Netherlands; Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
| | - Tom Arfman
- Department of Molecular Hematology, Sanquin-Academic Medical Center Landsteiner Laboratory, Amsterdam, the Netherlands
| | - Johana Hrdinova
- Department of Molecular Hematology, Sanquin-Academic Medical Center Landsteiner Laboratory, Amsterdam, the Netherlands; Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
| | - Kanin Wichapong
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
| | - Chris P M Reutelingsperger
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
| | - Karen Vanhoorelbeke
- Laboratory for Thrombosis Research, IRF Life Sciences, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| | - Gerry A F Nicolaes
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
| | - Jan Voorberg
- Department of Molecular Hematology, Sanquin-Academic Medical Center Landsteiner Laboratory, Amsterdam, the Netherlands; Department of Experimental Vascular Medicine, Amsterdam UMC, Amsterdam, the Netherlands.
| |
Collapse
|
16
|
N-glycan-mediated shielding of ADAMTS13 prevents binding of pathogenic autoantibodies in immune-mediated TTP. Blood 2021; 137:2694-2698. [PMID: 33544829 DOI: 10.1182/blood.2020007972] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 01/31/2021] [Indexed: 12/11/2022] Open
Abstract
Immune-mediated thrombotic thrombocytopenic purpura (iTTP) is an autoimmune disorder caused by the development of autoantibodies targeting different domains of ADAMTS13. Profiling studies have shown that residues R568, F592, R660, Y661, and Y665 within exosite-3 of the spacer domain provide an immunodominant region of ADAMTS13 for pathogenic autoantibodies that develop in patients with iTTP. Modification of these 5 core residues with the goal of reducing autoantibody binding revealed a significant tradeoff between autoantibody resistance and proteolytic activity. Here, we employed structural bioinformatics to identify a larger epitope landscape on the ADAMTS13 spacer domain. Models of spacer-antibody complexes predicted that residues R568, L591, F592, K608, M609, R636, L637, R639, R660, Y661, Y665, and L668 contribute to an expanded epitope within the spacer domain. Based on bioinformatics-guided predictions, we designed a panel of N-glycan insertions in this expanded epitope to reduce the binding of spacer domain autoantibodies. One N-glycan variant (NGLY3-ADAMTS13, containing a K608N substitution) showed strongly reduced reactivity with TTP patient sera (28%) as compared with WT-ADAMTS13 (100%). Insertion of an N-glycan at amino acid position 608 did not interfere with processing of von Willebrand factor, positioning the resulting NGLY3-ADAMTS13 variant as a potential novel therapeutic option for treatment of iTTP.
Collapse
|
17
|
|
18
|
Abstract
INTRODUCTION Proteomics, i.e. the study of the set of proteins produced in a cell, tissue, organism, or biological entity, has made possible analyses and contextual comparisons of proteomes/proteins and biological functions among the most disparate entities, from viruses to the human being. In this way, proteomic scrutiny of tumor-associated proteins, autoantigens, and pathogen antigens offers the tools for fighting cancer, autoimmunity, and infections. AREAS COVERED Comparative proteomics and immunoproteomics, the new scientific disciplines generated by proteomics, are the main themes of the present review that describes how comparative analyses of pathogen and human proteomes led to re-modulate the molecular mimicry concept of the pre-proteomic era. I.e. before proteomics, molecular mimicry - the sharing of peptide sequences between two biological entities - was considered as intrinsically endowed with immunologic properties and was related to cross-reactivity. Proteomics allowed to redefine such an assumption using physicochemical parameters according to which frequency and hydrophobicity preferentially confer an immunologic potential to shared peptide sequences. EXPERT OPINION Proteomics is outlining peptide platforms to be used for the diagnostics and management of human diseases. A Molecular Medicine targeted to obtain healing without paying the price for adverse events is on the horizon. The next step is to take up the challenge and operate the paradigm shift that the current proteomic era requires.
Collapse
Affiliation(s)
- Darja Kanduc
- Department of Biosciences, Biotechnologies, and Biopharmaceutics, University of Bari, Bari, Italy
| |
Collapse
|
19
|
Hidalgo Filho CMT, Dalessandro Adamo DSM, Lopes CM, Martin EM. Thrombotic thrombocytopenic purpura associated with COVID-19 in a pediatric patient: case report. Hematol Transfus Cell Ther 2021; 43:349-352. [PMID: 33846700 PMCID: PMC8026276 DOI: 10.1016/j.htct.2021.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 02/24/2021] [Indexed: 11/16/2022] Open
|
20
|
Sukumar S, Lämmle B, Cataland SR. Thrombotic Thrombocytopenic Purpura: Pathophysiology, Diagnosis, and Management. J Clin Med 2021; 10:536. [PMID: 33540569 PMCID: PMC7867179 DOI: 10.3390/jcm10030536] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/24/2021] [Accepted: 01/27/2021] [Indexed: 12/12/2022] Open
Abstract
Thrombotic thrombocytopenic purpura (TTP) is a rare thrombotic microangiopathy characterized by microangiopathic hemolytic anemia, severe thrombocytopenia, and ischemic end organ injury due to microvascular platelet-rich thrombi. TTP results from a severe deficiency of the specific von Willebrand factor (VWF)-cleaving protease, ADAMTS13 (a disintegrin and metalloprotease with thrombospondin type 1 repeats, member 13). ADAMTS13 deficiency is most commonly acquired due to anti-ADAMTS13 autoantibodies. It can also be inherited in the congenital form as a result of biallelic mutations in the ADAMTS13 gene. In adults, the condition is most often immune-mediated (iTTP) whereas congenital TTP (cTTP) is often detected in childhood or during pregnancy. iTTP occurs more often in women and is potentially lethal without prompt recognition and treatment. Front-line therapy includes daily plasma exchange with fresh frozen plasma replacement and immunosuppression with corticosteroids. Immunosuppression targeting ADAMTS13 autoantibodies with the humanized anti-CD20 monoclonal antibody rituximab is frequently added to the initial therapy. If available, anti-VWF therapy with caplacizumab is also added to the front-line setting. While it is hypothesized that refractory TTP will be less common in the era of caplacizumab, in relapsed or refractory cases cyclosporine A, N-acetylcysteine, bortezomib, cyclophosphamide, vincristine, or splenectomy can be considered. Novel agents, such as recombinant ADAMTS13, are also currently under investigation and show promise for the treatment of TTP. Long-term follow-up after the acute episode is critical to monitor for relapse and to diagnose and manage chronic sequelae of this disease.
Collapse
Affiliation(s)
- Senthil Sukumar
- Division of Hematology, Department of Medicine, The Ohio State University, Columbus, OH 43210, USA;
| | - Bernhard Lämmle
- Department of Hematology and Central Hematology Laboratory, Inselspital, Bern University Hospital, University of Bern, CH 3010 Bern, Switzerland;
- Center for Thrombosis and Hemostasis, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany
- Haemostasis Research Unit, University College London, London WC1E 6BT, UK
| | - Spero R. Cataland
- Division of Hematology, Department of Medicine, The Ohio State University, Columbus, OH 43210, USA;
| |
Collapse
|
21
|
Ning J, Guan X, Li X. Case of acquired thrombotic thrombocytopenic purpura associated with influenza A (H1N1) virus and literature review. J Paediatr Child Health 2021; 57:282-285. [PMID: 32216073 DOI: 10.1111/jpc.14846] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 02/11/2020] [Accepted: 02/24/2020] [Indexed: 11/29/2022]
Affiliation(s)
- Junjie Ning
- Pediatric Intensive Care Unit, First People's Hospital, Zigong, China
| | - Xiaoyan Guan
- Pediatric Intensive Care Unit, First People's Hospital, Zigong, China
| | - Xuemei Li
- Pediatric Intensive Care Unit, First People's Hospital, Zigong, China
| |
Collapse
|
22
|
Graça NAG, Ercig B, Pereira LCV, Kangro K, Kaijen P, Nicolaes GAF, Veyradier A, Coppo P, Vanhoorelbeke K, Männik A, Voorberg J. Modifying ADAMTS13 to modulate binding of pathogenic autoantibodies of patients with acquired thrombotic thrombocytopenic purpura. Haematologica 2020; 105:2619-2630. [PMID: 33131251 PMCID: PMC7604655 DOI: 10.3324/haematol.2019.226068] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 11/21/2019] [Indexed: 11/09/2022] Open
Abstract
Antibodies that develop in patients with immune thrombotic thrombocytopenic purpura (iTTP) commonly target the spacer epitope R568/F592/R660/Y661/Y665 (RFRYY). In this study we present a detailed contribution of each residue in this epitope for autoantibody binding. Different panels of mutations were introduced here to create a large collection of full-length ADAMTS13 variants comprising conservative (Y←→F), semi-conservative (Y/F→L), non-conservative (Y/F→N) or alanine (Y/F/R→A) substitutions. Previously reported Gain-of-Function (GoF, KYKFF) and truncated 'MDTCS' variants were also included. Sera of 18 patients were screened against all variants. Conservative mutations of the aromatic residues did not reduce the binding of autoantibodies. Moderate resistance was achieved by replacing R568 and R660 by lysines or alanines. Semi-conservative mutations of aromatic residues show a moderate effectiveness in autoantibody resistance. Non-conservative asparagine or alanine mutations of aromatic residues are the most effective. In the mixtures of autoantibodies from the majority (89%) of patients screened, autoantibodies targeting the spacer RFRYY epitope have preponderance compared to other epitopes. Reductions in ADAMTS13 proteolytic activity were observed for all full-length mutant variants, in varying degrees. The greatest activity reductions were observed in the most autoantibody-resistant variants (15-35% residual activity in FRETS-VWF73). Among these, a triple-alanine mutant RARAA showed activity in a VWF multimer assay. This study shows that non-conservative and alanine modifications of residues within the exosite-3 spacer RFRYY epitope in full-length ADAMTS13 resist the binding of autoantibodies from iTTP patients, while retaining residual proteolytic activity. Our study provides a framework for the design of autoantibody-resistant ADAMTS13 variants for further therapeutic development.
Collapse
Affiliation(s)
- Nuno A. G. Graça
- Icosagen Cell Factory OU, Ossu, Kambja, Tartumaa, Estonia
- Department of Molecular and Cellular Hemostasis, Sanquin-Academic Medical Center Landsteiner Laboratory, Amsterdam, the Netherlands
| | - Bogac Ercig
- Department of Molecular and Cellular Hemostasis, Sanquin-Academic Medical Center Landsteiner Laboratory, Amsterdam, the Netherlands
- Pharmatarget, Maastricht, the Netherlands
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
| | | | - Kadri Kangro
- Laboratory for Thrombosis Research, IRF Life Sciences, KU, Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| | - Paul Kaijen
- Department of Molecular and Cellular Hemostasis, Sanquin-Academic Medical Center Landsteiner Laboratory, Amsterdam, the Netherlands
| | - Gerry A. F. Nicolaes
- Pharmatarget, Maastricht, the Netherlands
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
| | - Agnès Veyradier
- Service d’Hématologie Biologique and EA3518-Institut Universitaire d’Hématologie, Groupe Hospitalier Saint Louis-Lariboisiere, AP-HP, Universite Paris Diderot, Paris, France
- Centre de Reference des Microangiopathies Thrombotiques, Hopital Saint-Antoine, AP-HP, Paris, France
| | | | - Karen Vanhoorelbeke
- Laboratory for Thrombosis Research, IRF Life Sciences, KU, Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| | - Andres Männik
- Icosagen Cell Factory OU, Ossu, Kambja, Tartumaa, Estonia
| | - Jan Voorberg
- Department of Molecular and Cellular Hemostasis, Sanquin-Academic Medical Center Landsteiner Laboratory, Amsterdam, the Netherlands
| |
Collapse
|
23
|
Pereira LCV, Ercig B, Kangro K, Jamme M, Malot S, Galicier L, Poullin P, Provôt F, Presne C, Kanouni T, Servais A, Benhamou Y, Daguindau N, Vanhoorelbeke K, Azoulay E, Veyradier A, Coppo P. Understanding the Health Literacy in Patients With Thrombotic Thrombocytopenic Purpura. Hemasphere 2020; 4:e462. [PMID: 32885148 PMCID: PMC7430230 DOI: 10.1097/hs9.0000000000000462] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 06/29/2020] [Indexed: 12/21/2022] Open
Abstract
Following an acute thrombotic thrombocytopenic purpura (TTP) episode, patients are at risk for relapse, and a careful long-term follow-up is needed. Adherence to the follow-up by patients implies a good understanding of the disease. However, TTP literacy in patients is currently unknown. To explore the TTP literacy in patients and identify factors associated with poor disease understanding, a questionnaire was developed focusing on patient's characteristics, knowledge about TTP and patients' actions in an emergency. The questionnaire was presented to 120 TTP patients in remission from the French National Registry for Thrombotic Microangiopathies. TTP literacy was low in 24%, intermediate in 43% and high in 33% of the patients. Low TTP literacy was associated with older age and low education level. Among the knowledge gaps identified, few patients knew that plasma exchange in acute phase is mandatory and has to be done daily (39%), 47% of participants did not consider themselves at risk for relapse, and 30% of women did not know that pregnancy exposes them to a greater risk of relapse. Importantly, few patients responded about life-saving actions in an emergency. Hence, the design of educational material should pay special attention to the age and education level of the target population focusing on the events leading to TTP, the importance of the emergency treatment, controllable predisposing factors for TTP development and patient attitude in an emergency.
Collapse
Affiliation(s)
- Leydi C. Velasquez Pereira
- Laboratory for Thrombosis Research, IRF Life Sciences, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| | - Bogac Ercig
- Department of Plasma Proteins, Sanquin-Academic Medical Center Landsteiner Laboratory, Amsterdam, the Netherlands
| | - Kadri Kangro
- Laboratory for Thrombosis Research, IRF Life Sciences, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| | - Matthieu Jamme
- Médecine Intensive Réanimation-Néphrologie, CH de Poissy Saint Germain en Laye, Poissy, Centre de Recherche en Epidémiologie et Santé des Populations, INSERM U1018, Paris-Sud University, Villejuif, France
| | - Sandrine Malot
- Centre de Référence des Microangiopathies Thrombotiques, AP-HP.6, Paris, France
| | - Lionel Galicier
- Centre de Référence des Microangiopathies Thrombotiques, AP-HP.6, Paris, France
- Department of Clinical Immunology, Hôpital Saint-Louis, AP-HP, Université Paris-Diderot, Paris, France
- National Reference Center for Castleman Disease (CRMdC), Paris, France
- EA3518, Université Paris-Diderot, Paris, France
| | - Pascale Poullin
- Centre de Référence des Microangiopathies Thrombotiques, AP-HP.6, Paris, France
- Department of Apheresis, Regional Reference Center for Thrombotic Microangiopathy, Aix-Marseille University, CHU de Marseille-Hôpital de la Conception, Marseille, France
| | - François Provôt
- Centre de Référence des Microangiopathies Thrombotiques, AP-HP.6, Paris, France
- Service de Néphrologie, Hôpital Albert Calmette, Lille, France
| | - Claire Presne
- Centre de Référence des Microangiopathies Thrombotiques, AP-HP.6, Paris, France
- Service de Néphrologie, Hôpital Sud, CHU Amiens, Amiens, France
| | - Tarik Kanouni
- Centre de Référence des Microangiopathies Thrombotiques, AP-HP.6, Paris, France
- Service d’Hématologie, CHU Saint Eloi, Montpellier, France
| | - Aude Servais
- Centre de Référence des Microangiopathies Thrombotiques, AP-HP.6, Paris, France
- Service de Néphrologie–Dialyse Adulte, Hôpital Necker-Enfants Malades, AP-HP, Paris, France
| | - Ygal Benhamou
- Centre de Référence des Microangiopathies Thrombotiques, AP-HP.6, Paris, France
- Service de Médecine Interne, U1096, UNIROUEN, Normandie Universitaire, Rouen, France
| | | | - Karen Vanhoorelbeke
- Laboratory for Thrombosis Research, IRF Life Sciences, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| | - Elie Azoulay
- Centre de Référence des Microangiopathies Thrombotiques, AP-HP.6, Paris, France
- Medical ICU, Saint-Louis Hospital, AP-HP, ECSTRA Team, and Clinical Epidemiology, UMR 1153 (Center of Epidemiology and Biostatistics, Sorbonne Paris Cité, CRESS), INSERM, Paris Diderot Sorbonne University, Paris, France
| | - Agnès Veyradier
- Centre de Référence des Microangiopathies Thrombotiques, AP-HP.6, Paris, France
- service d’Hématologie Biologique, Groupe Hospitalier Saint-Louis-Lariboisière, AP-HP, Université Paris-Diderot, Paris, France
- EA3518 Recherche Clinique en Hématologie, Immunologie et Transplantation, Équipe Microangiopathies Thrombotiques, ADAMTS13 et Facteur Willebrand, Institut de Recherche Saint-Louis, Université Paris-Diderot, Paris, France
| | - Paul Coppo
- Centre de Référence des Microangiopathies Thrombotiques, AP-HP.6, Paris, France
- service d’Hématologie et Sorbonne Université, AP-HP.6, Paris, France
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, USPC, Université Paris Descartes, Université Paris-Diderot, Paris, France
| |
Collapse
|
24
|
HLA loci predisposing to immune TTP in Japanese: potential role of the shared ADAMTS13 peptide bound to different HLA-DR. Blood 2020; 135:2413-2419. [DOI: 10.1182/blood.2020005395] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 03/23/2020] [Indexed: 12/12/2022] Open
Abstract
Abstract
Immune-mediated thrombotic thrombocytopenic purpura (iTTP) is a rare autoimmune disorder caused by neutralizing anti-ADAMTS13 autoantibodies. In white individuals, HLA allele DRB1*11 is a predisposing factor for iTTP, whereas DRB1*04 is a protective factor. However, the role of HLA in Asians is unclear. In this study, we analyzed 10 HLA loci using next-generation sequencing in 52 Japanese patients with iTTP, and the allele frequency in the iTTP group was compared with that in a Japanese control group. We identified the following HLA alleles as predisposing factors for iTTP in the Japanese population: DRB1*08:03 (odds ratio [OR], 3.06; corrected P [Pc] = .005), DRB3/4/5*blank (OR, 2.3; Pc = .007), DQA1*01:03 (OR, 2.25; Pc = .006), and DQB1*06:01 (OR,: 2.41; Pc = .003). The estimated haplotype consisting of these 4 alleles was significantly more frequent in the iTTP group than in the control group (30.8% vs 6.0%; Pc < .001). DRB1*15:01 and DRB5*01:01 were weak protective factors for iTTP (OR, 0.23; Pc = .076; and OR, 0.23, Pc = .034, respectively). On the other hand, DRB1*11 and DRB1*04 were not associated with iTTP in the Japanese. These findings indicated that predisposing and protective factors for iTTP differ between Japanese and white individuals. HLA-DR molecules encoded by DRB1*08:03 and DRB1*11:01 have different peptide-binding motifs, but interestingly, bound to the shared ADAMTS13 peptide in an in silico prediction model.
Collapse
|
25
|
Coppo P. Immune TTP pathogenesis: the rising sun on HLA. Blood 2020; 135:2335-2336. [PMID: 32585027 DOI: 10.1182/blood.2020006078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Paul Coppo
- French Reference Center for Thrombotic Microangiopathies
| |
Collapse
|
26
|
[Advances in the treatment of thrombotic thrombocytopenic purpura]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2020; 40:1055-1059. [PMID: 32023744 PMCID: PMC7342685 DOI: 10.3760/cma.j.issn.0253-2727.2019.12.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
27
|
Zini G, De Cristofaro R. Diagnostic Testing for Differential Diagnosis in Thrombotic Microangiopathies. Turk J Haematol 2019; 36:222-229. [PMID: 31337190 PMCID: PMC6863018 DOI: 10.4274/tjh.galenos.2019.2019.0165] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 07/22/2019] [Indexed: 12/16/2022] Open
Abstract
Thrombotic microangiopathies (TMAs) are multiple disease entities with different etiopathogeneses, characterized by thrombocytopenia, microangiopathic hemolytic anemia (MAHA) with schistocytosis, variable symptoms including fever, and multi-organ failure such as mild renal impairment and neurological deficits. The two paradigms of TMAs are represented on one hand by acquired thrombotic thrombocytopenic purpura (TTP) and on the other by hemolytic uremic syndrome (HUS). The differential diagnosis between these two paradigmatic forms of TMA is based on the presence of either frank renal failure in HUS or a severe deficiency (<10%) of the zinc-protease ADAMTS13 (a disintegrin and metalloproteinase with a thrombospondin type 1 motif, member 13) in TTP. ADAMTS13 is an enzyme involved in the proteolytic processing of von Willebrand factor (vWF), and its deficiency results in formation of high-molecular-weight vWF-rich microthrombi in the environment of the microvasculature. The presence of these ultra-large vWF multimers in the microcirculation can recruit platelets, promoting multi-organ ischemic lesions. The presence of ADAMTS13 activity at >10% could rule out the presence of a TTP form. However, it is often difficult to differentiate either a TTP or HUS clinical scenario presenting with typical symptoms of TMA. There are in fact several additional diagnoses that should be considered in patients with ADAMTS13 activity of >10%. Widespread inflammation with endothelial damage and adverse reactions to drugs play a central role in the pathogenesis of several forms of TMA, and in these cases, the differential diagnosis should be directed at the underlying disease. Hence, a correct etiologic diagnosis of TMA should involve a critical illness, cancer-associated TMA, drug-induced TMA, and hematopoietic transplant-associated TMA. A complete assessment of all the possible etiologies for TMA symptoms, including acquired or congenital TTP, will allow for a more accurate diagnosis and application of a more appropriate treatment.
Collapse
Affiliation(s)
- Gina Zini
- Fondazione Policlinico Universitario A. Gemelli IRCCS - Rome, Italy
- Institute of Hematology, Università Cattolica del S. Cuore, Rome, Italy
| | - Raimondo De Cristofaro
- Fondazione Policlinico Universitario A. Gemelli IRCCS - Rome, Italy
- Institute of Internal Medicine and Geriatrics, Università Cattolica del S. Cuore, Rome, Italy
| |
Collapse
|
28
|
Coppo P, Cuker A, George JN. Thrombotic thrombocytopenic purpura: Toward targeted therapy and precision medicine. Res Pract Thromb Haemost 2019; 3:26-37. [PMID: 30656273 PMCID: PMC6332733 DOI: 10.1002/rth2.12160] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 09/18/2018] [Indexed: 12/21/2022] Open
Abstract
Thrombotic thrombocytopenic purpura (TTP) is a thrombotic microangiopathy characterized by severe congenital or immune-mediated deficiency in ADAMTS13, the enzyme that cleaves von Willebrand factor multimers. This rare condition leads invariably and rapidly to a fatal outcome in the absence of treatment, and therefore raises multiple diagnostic and therapeutic challenges. The novel concepts and mechanisms identified in the laboratory for this disease have been rapidly and successfully translated into the clinic for the benefit of patients, making TTP an archetypal disease that has benefited from targeted therapies. After decades of empirical treatment with plasma exchange, identification of ADAMTS13 as the key enzyme involved in TTP pathophysiology provided an explanation for the remarkable efficacy of plasma administration, in which the missing enzyme is replenished, and paved the way for development of a recombinant form of the enzyme. Similarly, the demonstration of a major role of anti-ADAMTS13 antibodies through models of passive transfer of autoimmunity spurred development of immunomodulatory strategies based on B-cell depletion. More recently, an inhibitor of the platelet-von Willebrand factor interaction demonstrated efficacy in large clinical trials through prevention of formation of further microthrombi and protection of organs from ischemia. These translational breakthroughs in TTP are described in our review.
Collapse
Affiliation(s)
- Paul Coppo
- Centre de Référence des Microangiopathies ThrombotiquesParisFrance
- Service d'HématologieHôpital Saint‐AntoineAP‐HPParisFrance
- Sorbonne UniversitésParisFrance
| | - Adam Cuker
- Departments of Medicine and Pathology & Laboratory MedicinePerelman School of Medicine, University of PennsylvaniaPhiladelphiaPennsylvania
| | - James N. George
- Departments of Epidemiology & Biostatistics, MedicineUniversity of Oklahoma Health Sciences CenterOklahoma CityOklahoma
| |
Collapse
|
29
|
From influenza infection to anti-ADAMTS13 autoantibodies via cross-reactivity. INFECTION INTERNATIONAL 2018. [DOI: 10.2478/ii-2019-0002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Abstract
Autoantibodies (AAbs) against von Willebrand factor (vWF)-cleaving protease ADAMTS13 causally relate to thrombotic thrombocytopenic purpura (TTP). How anti-ADAMTS13 AAbs are generated is unknown. Starting from reports according to which influenza infection can trigger TTP by the production of ADAMTS13 AAbs, this study explores influenza viruses and ADAMTS13 protein for common peptide sequences that might underlie anti-influenza immune responses able to cross-react with ADAMTS13. Results document that numerous peptides are shared between influenza A and B viruses and ADAMTS13, thus supporting the hypothesis of cross-reactivity as a mechanism driving the generation of anti-ADAMTS13 AAbs.
Collapse
|
30
|
Preemptive rituximab prevents long-term relapses in immune-mediated thrombotic thrombocytopenic purpura. Blood 2018; 132:2143-2153. [PMID: 30201758 DOI: 10.1182/blood-2018-04-840090] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 08/16/2018] [Indexed: 12/15/2022] Open
Abstract
Preemptive rituximab infusions prevent relapses in immune thrombotic thrombocytopenic purpura (iTTP) by maintaining normal ADAMTS13 activity. However, the long-term outcome of these patients and the potential adverse events of this strategy need to be determined. We report the long-term outcome of 92 patients with iTTP in clinical remission who received preemptive rituximab after identification of severe ADAMTS13 deficiency (activity <10%) during the follow-up. Thirty-seven patients had >1 iTTP episode, and the median cumulative relapse incidence before preemptive rituximab was 0.33 episode per year (interquartile range [IQR], 0.23-0.66). After preemptive rituximab, the median cumulative relapse incidence in the whole population decreased to 0 episodes per year (IQR, 0-1.32; P < .001). After preemptive rituximab, ADAMTS13 activity recovery was sustained in 34 patients (37%) during a follow-up of 31.5 months (IQR, 18-65), and severe ADAMTS13 deficiency recurred in 45 patients (49%) after the initial improvement. ADAMTS13 activity usually improved with additional courses of preemptive rituximab. In 13 patients (14%), ADAMTS13 activity remained undetectable after the first rituximab course, but retreatment was efficient in 6 of 10 cases. In total, 14 patients (15%) clinically relapsed, and 19 patients (20.7%) experienced benign adverse effects. Preemptive rituximab treatment was associated with a change in ADAMTS13 conformation in respondent patients. Finally, in the group of 23 historical patients with iTTP and persistently undetectable ADAMTS13 activity, 74% clinically relapsed after a 7-year follow-up (IQR, 5-11). In conclusion, persistently undetectable ADAMTS13 activity in iTTP during remission is associated with a higher relapse rate. Preemptive rituximab reduces clinical relapses by maintaining a detectable ADAMTS13 activity with an advantageous risk-benefit balance.
Collapse
|