1
|
Li L, Xiao H, Wu X, Tang Z, Khoury JD, Wang J, Wan S. RanBALL: An Ensemble Random Projection Model for Identifying Subtypes of B-Cell Acute Lymphoblastic Leukemia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.09.24.614777. [PMID: 39386448 PMCID: PMC11463541 DOI: 10.1101/2024.09.24.614777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
As the most common pediatric malignancy, B-cell acute lymphoblastic leukemia (B-ALL) has multiple distinct subtypes characterized by recurrent and sporadic somatic and germline genetic alterations. Identifying B-ALL subtypes can facilitate risk stratification and enable tailored therapeutic design. Existing methods for B-ALL subtyping primarily depend on immunophenotyping, cytogenetic tests and genomic profiling, which would be costly, complicated, and laborious. To overcome these challenges, we present RanBALL (an ensemble Random projection-based model for identifying B-ALL subtypes), an accurate and cost-effective model for B-ALL subtype identification. By leveraging random projection (RP) and ensemble learning, RanBALL can preserve patient-to-patient distances after dimension reduction and yield robustly accurate classification performance for B-ALL subtyping. Benchmarking results based on > 1700 B-ALL patients demonstrated that RanBALL achieved remarkable performance (accuracy: 0.93, F1-score: 0.93, and Matthews correlation coefficient: 0.93), significantly outperforming state-of-the-art methods like ALLSorts in terms of all performance metrics. In addition, RanBALL performs better than tSNE in terms of visualizing B-ALL subtype information. We believe RanBALL will facilitate the discovery of B-ALL subtype-specific marker genes and therapeutic targets to have consequential positive impacts on downstream risk stratification and tailored treatment design. To extend its applicability and impacts, a Python-based RanBALL package is available at https://github.com/wan-mlab/RanBALL.
Collapse
Affiliation(s)
- Lusheng Li
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Hanyu Xiao
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Xinchao Wu
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Zhenya Tang
- Department of Pathology, Microbiology and Immunology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Joseph D. Khoury
- Department of Pathology, Microbiology and Immunology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Jieqiong Wang
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Shibiao Wan
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
2
|
Wan YL, Sapra P, Bolton J, Chua JX, Durrant LG, Stern PL. Combination Treatment with an Antibody-Drug Conjugate (A1mcMMAF) Targeting the Oncofetal Glycoprotein 5T4 and Carboplatin Improves Survival in a Xenograft Model of Ovarian Cancer. Target Oncol 2020; 14:465-477. [PMID: 31332693 PMCID: PMC6684567 DOI: 10.1007/s11523-019-00650-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Background Recurrence occurs in over 75% of women with epithelial ovarian cancer despite optimal treatment. Selectively killing tumour cells thought to initiate relapse using an antibody–drug conjugate could prolong progression-free survival and offer an improved side-effect profile. A1mcMMAF is an antibody–drug conjugate designed to target cells expressing the tumour-associated antigen 5T4. It has shown to be efficacious in various cell line models and have a greater impact when combined with routine chemotherapeutic regimes. Objectives This study aims to explore the potential for the use of a 5T4 antibody–drug conjugate in women with ovarian cancer both as a monotherapy and in combination with platinum-based chemotherapy. Methods Immunohistochemical analysis was used to assess 5T4 expression in tumours from patients with ovarian cancer. Effectiveness of A1mcMMAF therapy as a single agent and in combination with carboplatin was assessed in vitro in the ovarian cancer cell line SKOV3 and confirmed in vivo using a serial bioluminescence assay in a SKOV3 xenograft model of ovarian cancer. Results 5T4 is confirmed as suitably expressed in epithelial ovarian cancers prior to adjuvant therapy and is an independent predictor of poor survival. A1mcMMAF showed specific activity, both in vitro and in vivo, against SKOV3 ovarian cancer cells. When used in combination with carboplatin, in vivo tumour growth was inhibited resulting in prolonged survival in a SKOV3 xenograft model. Conclusions These data support further investigation of A1mcMMAF in combination with platinum-based chemotherapy in ovarian and other cancer treatments. Electronic supplementary material The online version of this article (10.1007/s11523-019-00650-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Y Louise Wan
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, 5th Floor Research, St Mary's Hospital, Oxford Road, Manchester, M13 9WL, UK
| | - Puja Sapra
- Oncology Research and Development, Pfizer Inc., 401 N. Middletown Road, Pearl River, NY, 10954, USA
| | - James Bolton
- Department of Histopathology, Manchester University NHS Foundation Trust, Oxford Road, Manchester, M13 9WL, UK
| | - Jia Xin Chua
- Academic Clinical Oncology, The University of Nottingham, City Hospital Campus, Hucknall Road, Nottingham, NG5 1PB, UK
| | - Lindy G Durrant
- Academic Clinical Oncology, The University of Nottingham, City Hospital Campus, Hucknall Road, Nottingham, NG5 1PB, UK
| | - Peter L Stern
- Manchester Cancer Research Centre, Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Wilmslow Road, Manchester, M20 4BX, UK.
| |
Collapse
|
3
|
Zhong Q, Li BH, Zhu QQ, Zhang ZM, Zou ZH, Jin YH. The Top 100 Highly Cited Original Articles on Immunotherapy for Childhood Leukemia. Front Pharmacol 2019; 10:1100. [PMID: 31611792 PMCID: PMC6769078 DOI: 10.3389/fphar.2019.01100] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Accepted: 08/26/2019] [Indexed: 01/11/2023] Open
Abstract
Background: Childhood leukemia is one of the most common cancers in children. As a potential treatment for leukemia, immunotherapy has become a new research hotspot. This research aimed at exploring the status and trends of current researches on immunotherapy for childhood leukemia through bibliometric analysis. Methods: The Institute for Scientific Information Web of Science core collection database was searched for articles on immunotherapy and childhood leukemia using a computer. Time period for retrieval was from the beginning of the database to June 15, 2019. The top 100 highly cited articles were selected to extract their information on publication year, authors, title, publication journal, number of citations, author’s affiliations, country, and so on. These general information and bibliometric data were collected for analysis. VOSviewer software was used to generate a figure for keywords’ co-occurrence network and a figure for researcher’s coauthorship network that visualized reference and cooperation patterns for different terms in the 100 articles. Results: The number of citations in the top 100 articles ranged from 17 to 471. These articles were published in 52 different publications. The top four journals in terms of the number of our selected articles were Leukemia (11 articles), Blood (10 articles), Bone Marrow Transplantation (6 articles), and Clinical Cancer Research. The most frequently nominated author was T. Klingebiel from Goethe University Frankfurt, and of the top 100 articles, 12 listed his name. These top 100 articles were published after the year 2000. Most of these articles were original (67%). The United States and Germany were the major countries researching immunotherapy for childhood leukemia and made significant contributions to the combat against the disease. Adoptive immunotherapy and stem cell transplantation appeared more frequently in keywords. Conclusions: This study analyzed the top 100 highly cited articles on immunotherapy for childhood leukemia and provided insights into the features and research hotspots of the articles on this issue.
Collapse
Affiliation(s)
- Qing Zhong
- Department of Pediatrics, Guangzhou Hospital of Integrated Traditional and West Medicine, Guangzhou, China
| | - Bing-Hui Li
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China.,Center for Evidence-Based Medicine, Institute of Evidence-Based Medicine and Knowledge Translation, Henan University, Kaifeng, China
| | - Qi-Qi Zhu
- Department of Pediatrics, Guangzhou Hospital of Integrated Traditional and West Medicine, Guangzhou, China
| | - Zhi-Min Zhang
- Department of Pediatrics, Guangzhou Hospital of Integrated Traditional and West Medicine, Guangzhou, China
| | - Zhi-Hao Zou
- Department of Pediatrics, Guangzhou Hospital of Integrated Traditional and West Medicine, Guangzhou, China
| | - Ying-Hui Jin
- Department of Pediatrics, Guangzhou Hospital of Integrated Traditional and West Medicine, Guangzhou, China.,Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
4
|
Marcucci F, Caserta CA, Romeo E, Rumio C. Antibody-Drug Conjugates (ADC) Against Cancer Stem-Like Cells (CSC)-Is There Still Room for Optimism? Front Oncol 2019; 9:167. [PMID: 30984612 PMCID: PMC6449442 DOI: 10.3389/fonc.2019.00167] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 02/25/2019] [Indexed: 01/06/2023] Open
Abstract
Cancer stem-like cells (CSC) represent a subpopulation of tumor cells with peculiar functionalities that distinguish them from the bulk of tumor cells, most notably their tumor-initiating potential and drug resistance. Given these properties, it appears logical that CSCs have become an important target for many pharma companies. Antibody-drug conjugates (ADC) have emerged over the last decade as one of the most promising new tools for the selective ablation of tumor cells. Three ADCs have already received regulatory approval and many others are in different phases of clinical development. Not surprisingly, also a considerable number of anti-CSC ADCs have been described in the literature and some of these have entered clinical development. Several of these ADCs, however, have yielded disappointing results in clinical studies. This is similar to the results obtained with other anti-CSC drug candidates, including native antibodies, that have been investigated in the clinic. In this article we review the anti-CSC ADCs that have been described in the literature and, in the following, we discuss reasons that may underlie the failures in clinical trials that have been observed. Possible reasons relate to the biology of CSCs themselves, including their heterogeneity, the lack of strictly CSC-specific markers, and the capacity to interconvert between CSCs and non-CSCs; second, inherent limitations of some classes of cytotoxins that have been used for the construction of ADCs; third, the inadequacy of animal models in predicting efficacy in humans. We conclude suggesting some possibilities to address these limitations.
Collapse
Affiliation(s)
- Fabrizio Marcucci
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | | | | | - Cristiano Rumio
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| |
Collapse
|
5
|
Harrop R, O’Neill E, Stern PL. Cancer stem cell mobilization and therapeutic targeting of the 5T4 oncofetal antigen. Ther Adv Vaccines Immunother 2019; 7:2515135518821623. [PMID: 30719508 PMCID: PMC6348545 DOI: 10.1177/2515135518821623] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 11/27/2018] [Indexed: 12/21/2022] Open
Abstract
Cancer stem cells (CSCs) can act as the cellular drivers of tumors harnessing stem cell properties that contribute to tumorigenesis either as founder elements or by the gain of stem cell traits by the malignant cells. Thus, CSCs can self-renew and generate the cellular heterogeneity of tumors including a hierarchical organization similar to the normal tissue. While the principle tumor growth contribution is often from the non-CSC components, it is the ability of small numbers of CSCs to avoid the effects of therapeutic strategies that can contribute to recurrence after treatment. However, identifying and characterizing CSCs for therapeutic targeting is made more challenging by their cellular potency being influenced by a particular tissue niche or by the capacity of more committed cells to regain stem cell functions. This review discusses the properties of CSCs including the limitations of the available cell surface markers, the assays that document tumor initiation and clonogenicity, the roles of epithelial mesenchymal transition and molecular pathways such as Notch, Wnt, Hippo and Hedgehog. The ability to target and eliminate CSCs is thought to be critical in the search for curative cancer treatments. The oncofetal tumor-associated antigen 5T4 (TBGP) has been linked with CSC properties in several different malignancies. 5T4 has functional attributes that are relevant to the spread of tumors including through EMT, CXCR4/CXCL12, Wnt, and Hippo pathways which may all contribute through the mobilization of CSCs. There are several different immunotherapies targeting 5T4 in development including antibody-drug conjugates, antibody-targeted bacterial super-antigens, a Modified Vaccinia Ankara-basedvaccine and 5T4-directed chimeric antigen receptor T-cells. These immune therapies would have the advantage of targeting both the bulk tumor as well as mobilized CSC populations.
Collapse
Affiliation(s)
- Richard Harrop
- Oxford BioMedica plc, Windrush Court, Transport Way, Oxford, OX4 6LT, UK
| | - Eric O’Neill
- Department of Oncology, University of Oxford, Oxford, UK
| | - Peter L. Stern
- Division of Molecular & Clinical Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Cancer Research Centre, University of Manchester, Manchester, UK
| |
Collapse
|
6
|
Chen CY, Hutzen B, Wedekind MF, Cripe TP. Oncolytic virus and PD-1/PD-L1 blockade combination therapy. Oncolytic Virother 2018; 7:65-77. [PMID: 30105219 PMCID: PMC6074764 DOI: 10.2147/ov.s145532] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Oncolytic viruses are lytic for many types of cancers but are attenuated or replication-defective in normal tissues. Aside from tumor lysis, oncolytic viruses can induce host immune responses against cancer cells and may thus be viewed as a form of immunotherapy. Although recent successes with checkpoint inhibitors have shown that enhancing antitumor immunity can be effective, the dynamic nature of the immunosuppressive tumor microenvironment presents significant hurdles to the broader application of these therapies. Targeting one immune-suppressive pathway may not be sufficient to eliminate tumors. Here we focus on the development of the combination of oncolytic virotherapy with checkpoint inhibitors designed to target the programmed cell death protein 1 and programmed cell death ligand 1 signaling axis. We also discuss future directions for the clinical application of this novel combination therapy.
Collapse
Affiliation(s)
- Chun-Yu Chen
- Department of Pediatrics, Center for Childhood Cancer and Blood Diseases, Nationwide Children's Hospital,
| | - Brian Hutzen
- Department of Pediatrics, Center for Childhood Cancer and Blood Diseases, Nationwide Children's Hospital,
| | - Mary F Wedekind
- Department of Pediatrics, Center for Childhood Cancer and Blood Diseases, Nationwide Children's Hospital, .,Division of Hematology/Oncology/Blood and Marrow Transplantation, Nationwide Children's Hospital, The Ohio State University, Columbus, OH, USA,
| | - Timothy P Cripe
- Department of Pediatrics, Center for Childhood Cancer and Blood Diseases, Nationwide Children's Hospital, .,Division of Hematology/Oncology/Blood and Marrow Transplantation, Nationwide Children's Hospital, The Ohio State University, Columbus, OH, USA,
| |
Collapse
|
7
|
Wang R, Lai Q, Lu Y, Zhou Y, Tang L, Tao Y, Yao Y, Yu L, Liu Y, Wang Y, Zhang R, Jiang X, Gou L, Yang J. Expression of 5T4 extracellular domain fusion protein and preparation of anti-5T4 monoclonal antibody with high affinity and internalization efficiency. Protein Expr Purif 2018; 158:51-58. [PMID: 29981846 DOI: 10.1016/j.pep.2018.07.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 06/26/2018] [Accepted: 07/04/2018] [Indexed: 02/05/2023]
Abstract
5T4, a membrane protein, is overexpressed in many tumor tissues but rarely expressed in normal tissues. Here, CHO-5T4+ cells were generated and served as the antigen to immunize mice. Hybridoma techniques were employed to produce monoclonal antibodies (mAbs). The recombinant protein of human IgG Fc-fused extracellular domain of 5T4 (5T4 ECD-Fc) was obtained from transient expression in HEK293F cells. The fusion protein 5T4 ECD-Fc and CHO-5T4+ cells were respectively utilized to screen anti-5T4 antibodies that could bind to the native antigen. In preliminary screening, three hundred and fifty mAbs were obtained. Via surface plasmon resonance and flow cytometry screening, seven anti-5T4 mAbs stood out. Among them, H6 showed a high affinity (KD = 1.6 × 10-11 M) and internalization percentage (36% for 1 h and 80% for 4 h). The molecular weight and isoelectric point of H6 were determined by LC-MS and iCIEF. Moreover, the specific reactivity of H6 was demonstrated by western blotting, flow cytometry, and immunohistochemistry, respectively. In conclusion, we produced human recombinant protein of 5T4 extracellular domain and developed high-affinity internalizing monoclonal antibodies which may be applied in the 5T4-targeting ADC therapy and basic research.
Collapse
Affiliation(s)
- Ruixue Wang
- Department of Biotherapy, Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Qinhuai Lai
- Department of Biotherapy, Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Ying Lu
- Department of Biotherapy, Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yan Zhou
- The Gastroenterology Tumor and Microenvironment Laboratory, Department of Gastroenterology, The First Affiliated Hospital of Chengdu Medical College, Chengdu Medical College, Chengdu, China
| | - Liangze Tang
- Department of Biotherapy, Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yiran Tao
- Department of Biotherapy, Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yuqin Yao
- Department of Biotherapy, Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China; Research Center for Public Health and Preventive Medicine, West China School of Public Health and Healthy Food Evaluation Research Center, NO. 4 West China Teaching Hospital, Sichuan University, Chengdu, China; Guangdong Zhongsheng Pharmaceutical Co., Ltd., China
| | - Lin Yu
- Department of Biotherapy, Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yu Liu
- Department of Biotherapy, Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yuxi Wang
- Department of Biotherapy, Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Ruirui Zhang
- Department of Biotherapy, Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaohua Jiang
- Department of Biotherapy, Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Lantu Gou
- Department of Biotherapy, Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Jinliang Yang
- Department of Biotherapy, Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China; Guangdong Zhongsheng Pharmaceutical Co., Ltd., China.
| |
Collapse
|