1
|
Zou J, Wang D, Yin G, Lu K, Chang K, Li H. Prognostic significance of p27 in colorectal cancer: a meta-analysis and bioinformatics analysis. Front Oncol 2024; 14:1495476. [PMID: 39845325 PMCID: PMC11751620 DOI: 10.3389/fonc.2024.1495476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 11/29/2024] [Indexed: 01/24/2025] Open
Abstract
Background In the past, numerous investigations have delved into the influence of p27 (p27kip) on the prognosis and clinicopathological characteristics of colorectal cancer (CRC), yielding conclusions that are not universally statistically significant, thus rendering the discourse rather contentious. Methods We collected available articles published before August 2024 and extracted data to analyze the association between the expression of p27 and the prognosis and clinicopathological features of CRC. In addition, we used Gene Expression Profiling Interactive Analysis (GEPIA), University of Alabama at Birmingham's Cancer Data Analysis Portal (UALCAN), and the Human Protein Atlas (HPA) to validate our results. Results Through an extensive examination of four prominent databases, a total of 21 original articles encompassing a cohort of 3,378 patients were identified. The findings indicated that a low expression of p27 could lead to shorter overall survival (OS) [hazard ratio (HR) = 0.44, 95% confidence interval (95%CI) = 0.31-0.61, Z = 4.89, p = 0.000] and disease-free survival (DFS) (HR = 0.40, 95%CI = 0.28-0.59, Z = 4.75, p = 0.000). In addition, a low expression of p27 predisposed tumors to the right colon [odds ratio (OR) = 0.61, 95%CI = 0.46-0.82, Z = 3.32, p = 0.001] and limited tumor differentiation (OR = 0.56, 95%CI = 0.41-0.77, Z = 3.62, p = 0.000), but had no effect on TNM staging (OR = 0.80, 95%CI = 0.52-1.22, Z = 1.05, p = 0.295), lymph node metastasis (OR = 0.90, 95%CI = 0.25-3.28, Z = 0.16, p = 0.876), and tumor size (OR = 0.94, 95%CI = 0.54-1.65, Z = 0.21, p = 0.835). The results from GEPIA and UALCAN showed that p27 had no effect on TNM staging, lymph node metastasis, DFS, and OS; moreover, there was no expression difference between tumor tissues and normal tissues. The findings from the HPA indicated that there was lower expression of p27 in tumor tissues compared with normal tissues. Conclusion Although inconsistent results were reached with the bioinformatics analysis from this meta-analysis, it was confirmed that a low expression of p27 can adversely affect the prognosis of patients with CRC and make a meaningful impact on a part of the clinicopathological features in the meta-analysis with abundant data. In the future, predicting the prognosis of patients with CRC and guiding treatment might emerge as a significant objective.
Collapse
Affiliation(s)
- Jing Zou
- Department of Radiology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong, China
| | - Dong Wang
- Department of Stomach and Intestine, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong, China
| | - Gaoping Yin
- Department of Stomach and Intestine, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong, China
| | - Kexiang Lu
- Department of Stomach and Intestine, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong, China
| | - Kaibin Chang
- Department of Stomach and Intestine, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong, China
| | - He Li
- Department of Stomach and Intestine, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong, China
| |
Collapse
|
2
|
Khamari R, Degand C, Fovez Q, Trinh A, Chomy A, Laine W, Dekiouk S, Ghesquiere B, Quesnel B, Marchetti P, Manier S, Kluza J. Key role of glutamine metabolism in persistence of leukemic cells upon exposition to FLT3 tyrosine kinase inhibitors. Exp Hematol 2024; 137:104253. [PMID: 38879112 DOI: 10.1016/j.exphem.2024.104253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/29/2024] [Accepted: 06/02/2024] [Indexed: 07/02/2024]
Abstract
Acute myeloid leukemias are a group of hematological malignancies characterized by a poor prognosis for survival. The discovery of oncogenic mutations in the FMS-like tyrosine kinase 3 (FLT3) gene has led to the development of tyrosine kinase inhibitors such as quizartinib. However, achieving complete remission in patients remains challenging because these new tyrosine kinase inhibitors (TKIs) are unable to completely eradicate all leukemic cells. Residual leukemic cells persist during quizartinib treatment, leading to the rapid emergence of drug-resistant leukemia. Given that mitochondrial oxidative metabolism promotes the survival of leukemic cells after exposure to multiple anticancer drugs, we characterized the metabolism of leukemic cells that persisted during quizartinib treatment and developed metabolic strategies to eradicate them. In our study, employing biochemical and metabolomics approaches, we confirmed that the survival of leukemic cells treated with FLT3 inhibitors critically depends on maintaining mitochondrial metabolism, specifically through glutamine oxidation. We uncovered a synergistic interaction between the FLT3 inhibitor quizartinib and L-asparaginase, operating through antimetabolic mechanisms. Utilizing various models of persistent leukemia, we demonstrated that leukemic cells resistant to quizartinib are susceptible to L-asparaginase. This combined therapeutic strategy shows promise in reducing the development of resistance to FLT3 inhibitors, offering a potential strategy to enhance treatment outcomes.
Collapse
MESH Headings
- fms-Like Tyrosine Kinase 3/metabolism
- fms-Like Tyrosine Kinase 3/genetics
- fms-Like Tyrosine Kinase 3/antagonists & inhibitors
- Humans
- Glutamine/metabolism
- Protein Kinase Inhibitors/pharmacology
- Protein Kinase Inhibitors/therapeutic use
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/genetics
- Phenylurea Compounds/pharmacology
- Phenylurea Compounds/therapeutic use
- Drug Resistance, Neoplasm/drug effects
- Mitochondria/metabolism
- Mitochondria/drug effects
- Benzothiazoles/pharmacology
- Cell Line, Tumor
- Animals
- Mice
- Tyrosine Kinase Inhibitors
Collapse
Affiliation(s)
- Raeeka Khamari
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277 - CANTHER - Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France
| | - Claire Degand
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277 - CANTHER - Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France
| | - Quentin Fovez
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277 - CANTHER - Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France
| | - Anne Trinh
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277 - CANTHER - Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France
| | - Axel Chomy
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277 - CANTHER - Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France
| | - William Laine
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277 - CANTHER - Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France
| | - Salim Dekiouk
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277 - CANTHER - Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; Centre de Bio-Pathologie, Banque de Tissus, CHU of Lille, Lille, France
| | - Bart Ghesquiere
- Department of Oncology, Metabolomics Core Facility, Center for Cancer Biology, KU Leuven, Leuven, Belgium
| | - Bruno Quesnel
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277 - CANTHER - Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; Hematology Department, CHU of Lille, Lille, France
| | - Philippe Marchetti
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277 - CANTHER - Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; Centre de Bio-Pathologie, Banque de Tissus, CHU of Lille, Lille, France
| | - Salomon Manier
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277 - CANTHER - Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; Hematology Department, CHU of Lille, Lille, France
| | - J Kluza
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277 - CANTHER - Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France.
| |
Collapse
|
3
|
Nopora A, Weidle UH. CircRNAs as New Therapeutic Entities and Tools for Target Identification in Acute Myeloid Leukemia. Cancer Genomics Proteomics 2024; 21:118-136. [PMID: 38423599 PMCID: PMC10905271 DOI: 10.21873/cgp.20434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 03/02/2024] Open
Abstract
Acute myeloid leukemia (AML) is a genetically extremely heterogeneous disease. Drug resistance after induction therapy is a very frequent event resulting in poor medium survival times. Therefore, the identification of new targets and treatment modalities is a medical high priority issue. We addressed our attention to circular RNAs (circRNAs), which can act as oncogenes or tumor suppressors in AML. We searched the literature (PubMed) and identified eight up-regulated and two down-regulated circ-RNAs with activity in preclinical in vivo models. In addition, we identified twenty-two up-regulated and four down-regulated circRNAs with activity in preclinical in vitro systems, but pending in vivo activity. Up-regulated RNAs are potential targets for si- or shRNA-based approaches, and down-regulated circRNAs can be reconstituted by replacement therapy to achieve a therapeutic benefit in preclinical systems. The up-regulated targets can be tackled with small molecules, antibody-based entities, or other modes of intervention. For down-regulated targets, up-regulators must be identified. The ranking of the identified circRNAs with respect to therapy of AML will depend on further target validation experiments.
Collapse
Affiliation(s)
- Adam Nopora
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| | - Ulrich H Weidle
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| |
Collapse
|
4
|
Pegka F, Ben-Califa N, Neumann D, Jäkel H, Hengst L. EpoR Activation Stimulates Erythroid Precursor Proliferation by Inducing Phosphorylation of Tyrosine-88 of the CDK-Inhibitor p27 Kip1. Cells 2023; 12:1704. [PMID: 37443738 PMCID: PMC10340229 DOI: 10.3390/cells12131704] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/07/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Erythrocyte biogenesis needs to be tightly regulated to secure oxygen transport and control plasma viscosity. The cytokine erythropoietin (Epo) governs erythropoiesis by promoting cell proliferation, differentiation, and survival of erythroid precursor cells. Erythroid differentiation is associated with an accumulation of the cyclin-dependent kinase inhibitor p27Kip1, but the regulation and role of p27 during erythroid proliferation remain largely unknown. We observed that p27 can bind to the erythropoietin receptor (EpoR). Activation of EpoR leads to immediate Jak2-dependent p27 phosphorylation of tyrosine residue 88 (Y88). This modification is known to impair its CDK-inhibitory activity and convert the inhibitor into an activator and assembly factor of CDK4,6. To investigate the physiological role of p27-Y88 phosphorylation in erythropoiesis, we analyzed p27Y88F/Y88F knock-in mice, where tyrosine-88 was mutated to phenylalanine. We observed lower red blood cell counts, lower hematocrit levels, and a reduced capacity for colony outgrowth of CFU-Es (colony-forming unit-erythroid), indicating impaired cell proliferation of early erythroid progenitors. Compensatory mechanisms of reduced p27 and increased Epo expression protect from stronger dysregulation of erythropoiesis. These observations suggest that p27-Y88 phosphorylation by EpoR pathway activation plays an important role in the stimulation of erythroid progenitor proliferation during the early stages of erythropoiesis.
Collapse
Affiliation(s)
- Fragka Pegka
- Institute of Medical Biochemistry, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Nathalie Ben-Califa
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel (D.N.)
| | - Drorit Neumann
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel (D.N.)
| | - Heidelinde Jäkel
- Institute of Medical Biochemistry, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Ludger Hengst
- Institute of Medical Biochemistry, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
5
|
Overcoming Resistance: FLT3 Inhibitors Past, Present, Future and the Challenge of Cure. Cancers (Basel) 2022; 14:cancers14174315. [PMID: 36077850 PMCID: PMC9454516 DOI: 10.3390/cancers14174315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/27/2022] [Accepted: 08/29/2022] [Indexed: 11/17/2022] Open
Abstract
FLT3 ITD and TKD mutations occur in 20% and 10% of Acute Myeloid Leukemia (AML), respectively, and they represent the target of the first approved anti-leukemic therapies in the 2000s. Type I and type II FLT3 inhibitors (FLT3i) are active against FLT3 TKD/ITD and FLT3 ITD mutations alone respectively, but they still fail remissions in 30-40% of patients due to primary and secondary mechanisms of resistance, with variable relapse rate of 30-50%, influenced by NPM status and FLT3 allelic ratio. Mechanisms of resistance to FLT3i have recently been analyzed through NGS and single cell assays that have identified and elucidated the polyclonal nature of relapse in clinical and preclinical studies, summarized here. Knowledge of tumor escape pathways has helped in the identification of new targeted drugs to overcome resistance. Immunotherapy and combination or sequential use of BCL2 inhibitors and experimental drugs including aurora kinases, menin and JAK2 inhibitors will be the goal of present and future clinical trials, especially in patients with FLT3-mutated (FLT3mut) AML who are not eligible for allogeneic transplantation.
Collapse
|
6
|
Schirripa A, Sexl V, Kollmann K. Cyclin-dependent kinase inhibitors in malignant hematopoiesis. Front Oncol 2022; 12:916682. [PMID: 36033505 PMCID: PMC9403899 DOI: 10.3389/fonc.2022.916682] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
The cell-cycle is a tightly orchestrated process where sequential steps guarantee cellular growth linked to a correct DNA replication. The entire cell division is controlled by cyclin-dependent kinases (CDKs). CDK activation is balanced by the activating cyclins and CDK inhibitors whose correct expression, accumulation and degradation schedule the time-flow through the cell cycle phases. Dysregulation of the cell cycle regulatory proteins causes the loss of a controlled cell division and is inevitably linked to neoplastic transformation. Due to their function as cell-cycle brakes, CDK inhibitors are considered as tumor suppressors. The CDK inhibitors p16INK4a and p15INK4b are among the most frequently altered genes in cancer, including hematopoietic malignancies. Aberrant cell cycle regulation in hematopoietic stem cells (HSCs) bears severe consequences on hematopoiesis and provokes hematological disorders with a broad array of symptoms. In this review, we focus on the importance and prevalence of deregulated CDK inhibitors in hematological malignancies.
Collapse
|
7
|
Inability to phosphorylate Y88 of p27 Kip1 enforces reduced p27 protein levels and accelerates leukemia progression. Leukemia 2022; 36:1916-1925. [PMID: 35597806 PMCID: PMC9252907 DOI: 10.1038/s41375-022-01598-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 04/26/2022] [Accepted: 05/09/2022] [Indexed: 11/18/2022]
Abstract
The cyclin-dependent kinase (CDK) inhibitor p27Kip1 regulates cell proliferation. Phosphorylation of tyrosine residue 88 (Y88) converts the inhibitor into an assembly factor and activator of CDKs, since Y88-phosphorylation restores activity to cyclin E,A/CDK2 and enables assembly of active cyclin D/CDK4,6. To investigate the physiological significance of p27 tyrosine phosphorylation, we have generated a knock-in mouse model where Y88 was replaced by phenylalanine (p27-Y88F). Young p27-Y88F mice developed a moderately reduced body weight, indicative for robust CDK inhibition by p27-Y88F. When transformed with v-ABL or BCR::ABL1p190, primary p27-Y88F cells are refractory to initial transformation as evidenced by a diminished outgrowth of progenitor B-cell colonies. This indicates that p27-Y88 phosphorylation contributes to v-ABL and BCR::ABL1p190 induced transformation. Surprisingly, p27-Y88F mice succumbed to premature v-ABL induced leukemia/lymphoma compared to p27 wild type animals. This was accompanied by a robust reduction of p27-Y88F levels in v-ABL transformed cells. Reduced p27-Y88F levels seem to be required for efficient cell proliferation and may subsequently support accelerated leukemia progression. The potent downregulation p27-Y88F levels in all leukemia-derived cells could uncover a novel mechanism in human oncogenesis, where reduced p27 levels are frequently observed.
Collapse
|
8
|
Discovery of a Benzimidazole-based Dual FLT3/TrKA Inhibitor Targeting Acute Myeloid Leukemia. Bioorg Med Chem 2021; 56:116596. [DOI: 10.1016/j.bmc.2021.116596] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/13/2021] [Accepted: 12/27/2021] [Indexed: 12/17/2022]
|
9
|
Beyer M, Henninger SJ, Haehnel PS, Mustafa AHM, Gurdal E, Schubert B, Christmann M, Sellmer A, Mahboobi S, Drube S, Sippl W, Kindler T, Krämer OH. Identification of a highly efficient dual type I/II FMS-like tyrosine kinase inhibitor that disrupts the growth of leukemic cells. Cell Chem Biol 2021; 29:398-411.e4. [PMID: 34762849 DOI: 10.1016/j.chembiol.2021.10.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 08/17/2021] [Accepted: 10/21/2021] [Indexed: 12/20/2022]
Abstract
Internal tandem duplications (ITDs) in the FMS-like tyrosine kinase-3 (FLT3) are causally linked to acute myeloid leukemia (AML) with poor prognosis. Available FLT3 inhibitors (FLT3i) preferentially target inactive or active conformations of FLT3. Moreover, they co-target kinases for normal hematopoiesis, are vulnerable to therapy-associated tyrosine kinase domain (TKD) FLT3 mutants, or lack low nanomolar activity. We show that the tyrosine kinase inhibitor marbotinib suppresses the phosphorylation of FLT3-ITD and the growth of permanent and primary AML cells with FLT3-ITD. This also applies to leukemic cells carrying FLT3-ITD/TKD mutants that confer resistance to clinically used FLT3i. Marbotinib shows high selectivity for FLT3 and alters signaling, reminiscent of genetic elimination of FLT3-ITD. Molecular docking shows that marbotinib fits in opposite orientations into inactive and active conformations of FLT3. The water-soluble marbotinib-carbamate significantly prolongs survival of mice with FLT3-driven leukemia. Marbotinib is a nanomolar next-generation FLT3i that represents a hybrid inhibitory principle.
Collapse
Affiliation(s)
- Mandy Beyer
- Department of Toxicology, University Medical Center, 55131 Mainz, Germany
| | - Sven J Henninger
- Department of Toxicology, University Medical Center, 55131 Mainz, Germany
| | - Patricia S Haehnel
- Department of Hematology, Medical Oncology, and Pneumology, University Medical Center, 55131 Mainz, Germany; University Cancer Center, University Medical Center, Mainz, Germany; German Consortia for Translational Cancer Research, 55131 Mainz, Germany
| | - Al-Hassan M Mustafa
- Department of Toxicology, University Medical Center, 55131 Mainz, Germany; Department of Zoology, Faculty of Science, Aswan University, Aswan, Egypt
| | - Ece Gurdal
- Institute for Pharmacy, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Strasse 3, 06120 Halle (Saale), Germany; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Yeditepe University, Atasehir, Istanbul 34755, Turkey
| | - Bastian Schubert
- Department of Toxicology, University Medical Center, 55131 Mainz, Germany
| | - Markus Christmann
- Department of Toxicology, University Medical Center, 55131 Mainz, Germany
| | - Andreas Sellmer
- Institute of Pharmacy, Department of Pharmaceutical/Medicinal Chemistry I, University of Regensburg, 93053 Regensburg, Germany
| | - Siavosh Mahboobi
- Institute of Pharmacy, Department of Pharmaceutical/Medicinal Chemistry I, University of Regensburg, 93053 Regensburg, Germany
| | - Sebastian Drube
- Institute of Immunology, Jena University Hospital, 07743 Jena, Germany
| | - Wolfgang Sippl
- Institute for Pharmacy, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Strasse 3, 06120 Halle (Saale), Germany
| | - Thomas Kindler
- Department of Hematology, Medical Oncology, and Pneumology, University Medical Center, 55131 Mainz, Germany; University Cancer Center, University Medical Center, Mainz, Germany; German Consortia for Translational Cancer Research, 55131 Mainz, Germany
| | - Oliver H Krämer
- Department of Toxicology, University Medical Center, 55131 Mainz, Germany.
| |
Collapse
|
10
|
Powell RM, Peeters MJW, Rahbech A, Aehnlich P, Seremet T, thor Straten P. Small Molecule Inhibitors of MERTK and FLT3 Induce Cell Cycle Arrest in Human CD8 + T Cells. Vaccines (Basel) 2021; 9:vaccines9111294. [PMID: 34835225 PMCID: PMC8617686 DOI: 10.3390/vaccines9111294] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 12/23/2022] Open
Abstract
There is an increasing interest in the development of Receptor Tyrosine Kinases inhibitors (RTKIs) for cancer treatment, as dysregulation of RTK expression can govern oncogenesis. Among the newer generations of RTKIs, many target Mer Tyrosine Kinase (MERTK) and Fms related RTK 3 (FLT3). Next to being overexpressed in many cancers, MERTK and FLT3 have important roles in immune cell development and function. In this study, we address how the new generation and potent RTKIs of MERTK/FLT3 affect human primary CD8+ T cell function. Using ex vivo T cell receptor (TCR)-activated CD8+ T cells, we demonstrate that use of dual MERTK/FLT3 inhibitor UNC2025 restricts CD8+ T proliferation at the G2 phase, at least in part by modulation of mTOR signaling. Cytokine production and activation remain largely unaffected. Finally, we show that activated CD8+ T cells express FLT3 from day two post activation, and FLT3 inhibition with AC220 (quizartinib) or siRNA-mediated knockdown affects cell cycle kinetics. These results signify that caution is needed when using potent RTKIs in the context of antitumor immune responses.
Collapse
Affiliation(s)
- Richard M. Powell
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, University Hospital Herlev, 2730 Herlev, Denmark; (R.M.P.); (M.J.W.P.); (A.R.); (P.A.); (T.S.)
| | - Marlies J. W. Peeters
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, University Hospital Herlev, 2730 Herlev, Denmark; (R.M.P.); (M.J.W.P.); (A.R.); (P.A.); (T.S.)
| | - Anne Rahbech
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, University Hospital Herlev, 2730 Herlev, Denmark; (R.M.P.); (M.J.W.P.); (A.R.); (P.A.); (T.S.)
| | - Pia Aehnlich
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, University Hospital Herlev, 2730 Herlev, Denmark; (R.M.P.); (M.J.W.P.); (A.R.); (P.A.); (T.S.)
| | - Tina Seremet
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, University Hospital Herlev, 2730 Herlev, Denmark; (R.M.P.); (M.J.W.P.); (A.R.); (P.A.); (T.S.)
| | - Per thor Straten
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, University Hospital Herlev, 2730 Herlev, Denmark; (R.M.P.); (M.J.W.P.); (A.R.); (P.A.); (T.S.)
- Inflammation and Cancer Group, Department of Immunology and Microbiology, University of Copenhagen, 2200 Copenhagen, Denmark
- Correspondence:
| |
Collapse
|
11
|
Marensi V, Keeshan KR, MacEwan DJ. Pharmacological impact of FLT3 mutations on receptor activity and responsiveness to tyrosine kinase inhibitors. Biochem Pharmacol 2020; 183:114348. [PMID: 33242449 DOI: 10.1016/j.bcp.2020.114348] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 11/19/2020] [Accepted: 11/19/2020] [Indexed: 01/09/2023]
Abstract
Acute myelogenous leukaemia (AML) is an aggressive blood cancer characterized by the rapid proliferation of immature myeloid blast cells, resulting in a high mortality rate. The 5-year overall survival rate for AML patients is approximately 25%. Circa 35% of all patients carry a mutation in the FLT3 gene which have a poor prognosis. Targeting FLT3 receptor tyrosine kinase has become a treatment strategy in AML patients possessing FLT3 mutations. The most common mutations are internal tandem duplications (ITD) within exon 14 and a single nucleotide polymorphism (SNP) that leads to a point mutation in the D835 of the tyrosine kinase domain (TKD). Variations in the ITD sequence and the occurrence of other point mutations that lead to ligand-independent FLT3 receptor activation create difficulties in developing personalized therapeutic strategies to overcome observed mutation-driven drug resistance. Midostaurin and quizartinib are tyrosine kinase inhibitors (TKIs) with inhibitory efficacy against FLT3-ITD, but exhibit limited clinical impact. In this review, we focus on the structural aspects of the FLT3 receptor and correlate those mutations with receptor activation and the consequences for molecular and clinical responsiveness towards therapies targeting FLT3-ITD positive AML.
Collapse
Affiliation(s)
- Vanessa Marensi
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Karen R Keeshan
- Paul O'Gorman Leukaemia Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - David J MacEwan
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom.
| |
Collapse
|
12
|
Gebru MT, Wang HG. Therapeutic targeting of FLT3 and associated drug resistance in acute myeloid leukemia. J Hematol Oncol 2020; 13:155. [PMID: 33213500 PMCID: PMC7678146 DOI: 10.1186/s13045-020-00992-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 11/03/2020] [Indexed: 02/07/2023] Open
Abstract
Acute myeloid leukemia (AML) is a heterogeneous disease caused by several gene mutations and cytogenetic abnormalities affecting differentiation and proliferation of myeloid lineage cells. FLT3 is a receptor tyrosine kinase commonly overexpressed or mutated, and its mutations are associated with poor prognosis in AML. Although aggressive chemotherapy often followed by hematopoietic stem cell transplant is the current standard of care, the recent approval of FLT3-targeted drugs is revolutionizing AML treatment that had remained unchanged since the 1970s. However, despite the dramatic clinical response to targeted agents, such as FLT3 inhibitors, remission is almost invariably short-lived and ensued by relapse and drug resistance. Hence, there is an urgent need to understand the molecular mechanisms driving drug resistance in order to prevent relapse. In this review, we discuss FLT3 as a target and highlight current understanding of FLT3 inhibitor resistance.
Collapse
Affiliation(s)
- Melat T Gebru
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Hong-Gang Wang
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA, USA. .,Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA, USA. .,Penn State College of Medicine, 500 University Drive, Hershey, PA, 17033, USA.
| |
Collapse
|
13
|
Li X, Jiang Y, Peterson YK, Xu T, Himes RA, Luo X, Yin G, Inks ES, Dolloff N, Halene S, Chan SSL, Chou CJ. Design of Hydrazide-Bearing HDACIs Based on Panobinostat and Their p53 and FLT3-ITD Dependency in Antileukemia Activity. J Med Chem 2020; 63:5501-5525. [PMID: 32321249 DOI: 10.1021/acs.jmedchem.0c00442] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Here, we present a new series of hydrazide-bearing class I selective HDAC inhibitors designed based on panobinostat. The cap, linker, and zinc-binding group were derivatized to improve HDAC affinity and antileukemia efficacy. Lead inhibitor 13a shows picomolar or low nanomolar IC50 values against HDAC1 and HDAC3 and exhibits differential toxicity profiles toward multiple cancer cells with different FLT3 and p53 statuses. 13a indirectly inhibits the FLT3 signaling pathway and down-regulates master antiapoptotic proteins, resulting in the activation of pro-caspase3 in wt-p53 FLT3-ITD MV4-11 cells. While in the wt-FLT3 and p53-null cells, 13a is incapable of causing apoptosis at a therapeutic concentration. The MDM2 antagonist and the proteasome inhibitor promote 13a-triggered apoptosis by preventing p53 degradation. Furthermore, we demonstrate that apoptosis rather than autophagy is the key contributing factor for 13a-triggered cell death. When compared to panobinostat, 13a is not mutagenic and displays superior in vivo bioavailability and a higher AUC0-inf value.
Collapse
Affiliation(s)
- Xiaoyang Li
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong 266071, China.,Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, Medical University of South Carolina, Charleston, South Carolina 29425, United States
| | - Yuqi Jiang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong 266071, China
| | - Yuri K Peterson
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, Medical University of South Carolina, Charleston, South Carolina 29425, United States
| | - Tongqiang Xu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong 266071, China
| | - Richard A Himes
- Department of Chemistry and Biochemistry, College of Charleston, 66 George Street, Charleston, South Carolina 29424, United States
| | - Xin Luo
- Technology Center of Qingdao Customs, Qingdao, Shandong 266002, China
| | - Guilin Yin
- Technology Center of Qingdao Customs, Qingdao, Shandong 266002, China
| | - Elizabeth S Inks
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, Medical University of South Carolina, Charleston, South Carolina 29425, United States
| | - Nathan Dolloff
- Department of Cellular and Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, Charleston SC29425, United States
| | - Stephanie Halene
- Section of Hematology, Department of Internal Medicine and Yale Cancer Center, Yale University School of Medicine, New Haven, Connecticut 06511, United States
| | - Sherine S L Chan
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, Medical University of South Carolina, Charleston, South Carolina 29425, United States
| | - C James Chou
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, Medical University of South Carolina, Charleston, South Carolina 29425, United States
| |
Collapse
|
14
|
Uras IZ, Sexl V, Kollmann K. CDK6 Inhibition: A Novel Approach in AML Management. Int J Mol Sci 2020; 21:ijms21072528. [PMID: 32260549 PMCID: PMC7178035 DOI: 10.3390/ijms21072528] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 03/29/2020] [Accepted: 04/02/2020] [Indexed: 02/01/2023] Open
Abstract
Acute myeloid leukemia (AML) is a complex disease with an aggressive clinical course and high mortality rate. The standard of care for patients has only changed minimally over the past 40 years. However, potentially useful agents have moved from bench to bedside with the potential to revolutionize therapeutic strategies. As such, cell-cycle inhibitors have been discussed as alternative treatment options for AML. In this review, we focus on cyclin-dependent kinase 6 (CDK6) emerging as a key molecule with distinct functions in different subsets of AML. CDK6 exerts its effects in a kinase-dependent and -independent manner which is of clinical significance as current inhibitors only target the enzymatic activity.
Collapse
Affiliation(s)
- Iris Z. Uras
- Department of Pharmacology, Center of Physiology and Pharmacology & Comprehensive Cancer Center (CCC), Medical University of Vienna, 1090 Vienna, Austria;
| | - Veronika Sexl
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine, 1210 Vienna, Austria;
| | - Karoline Kollmann
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine, 1210 Vienna, Austria;
- Correspondence: ; Tel.: + 43-1-25077-2917
| |
Collapse
|
15
|
Morales ML, Arenas A, Ortiz-Ruiz A, Leivas A, Rapado I, Rodríguez-García A, Castro N, Zagorac I, Quintela-Fandino M, Gómez-López G, Gallardo M, Ayala R, Linares M, Martínez-López J. MEK inhibition enhances the response to tyrosine kinase inhibitors in acute myeloid leukemia. Sci Rep 2019; 9:18630. [PMID: 31819100 PMCID: PMC6901485 DOI: 10.1038/s41598-019-54901-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 11/19/2019] [Indexed: 12/28/2022] Open
Abstract
FMS-like tyrosine kinase 3 (FLT3) is a key driver of acute myeloid leukemia (AML). Several tyrosine kinase inhibitors (TKIs) targeting FLT3 have been evaluated clinically, but their effects are limited when used in monotherapy due to the emergence of drug-resistance. Thus, a better understanding of drug-resistance pathways could be a good strategy to explore and evaluate new combinational therapies for AML. Here, we used phosphoproteomics to identify differentially-phosphorylated proteins in patients with AML and TKI resistance. We then studied resistance mechanisms in vitro and evaluated the efficacy and safety of rational combinational therapy in vitro, ex vivo and in vivo in mice. Proteomic and immunohistochemical studies showed the sustained activation of ERK1/2 in bone marrow samples of patients with AML after developing resistance to FLT3 inhibitors, which was identified as a common resistance pathway. We examined the concomitant inhibition of MEK-ERK1/2 and FLT3 as a strategy to overcome drug-resistance, finding that the MEK inhibitor trametinib remained potent in TKI-resistant cells and exerted strong synergy when combined with the TKI midostaurin in cells with mutated and wild-type FLT3. Importantly, this combination was not toxic to CD34+ cells from healthy donors, but produced survival improvements in vivo when compared with single therapy groups. Thus, our data point to trametinib plus midostaurin as a potentially beneficial therapy in patients with AML.
Collapse
Affiliation(s)
- María Luz Morales
- H12O-CNIO Haematological Malignancies Clinical Research Unit, Hospital 12 de Octubre - Centro Nacional de Investigaciones Oncológicas, Madrid, Spain
| | - Alicia Arenas
- H12O-CNIO Haematological Malignancies Clinical Research Unit, Hospital 12 de Octubre - Centro Nacional de Investigaciones Oncológicas, Madrid, Spain
| | - Alejandra Ortiz-Ruiz
- H12O-CNIO Haematological Malignancies Clinical Research Unit, Hospital 12 de Octubre - Centro Nacional de Investigaciones Oncológicas, Madrid, Spain
| | - Alejandra Leivas
- H12O-CNIO Haematological Malignancies Clinical Research Unit, Hospital 12 de Octubre - Centro Nacional de Investigaciones Oncológicas, Madrid, Spain
| | - Inmaculada Rapado
- H12O-CNIO Haematological Malignancies Clinical Research Unit, Hospital 12 de Octubre - Centro Nacional de Investigaciones Oncológicas, Madrid, Spain
- Servicio de Hematología, Hospital 12 de Octubre, Madrid, Spain
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), ISCIII, Madrid, Spain
| | - Alba Rodríguez-García
- H12O-CNIO Haematological Malignancies Clinical Research Unit, Hospital 12 de Octubre - Centro Nacional de Investigaciones Oncológicas, Madrid, Spain
| | - Nerea Castro
- Servicio de Hematología, Hospital 12 de Octubre, Madrid, Spain
| | - Ivana Zagorac
- Breast Cancer Clinical Research Unit, Centro Nacional de Investigaciones Oncológicas, Madrid, Spain
| | - Miguel Quintela-Fandino
- Breast Cancer Clinical Research Unit, Centro Nacional de Investigaciones Oncológicas, Madrid, Spain
| | - Gonzalo Gómez-López
- Bioinformatics Unit, Centro Nacional de Investigaciones Oncológicas, Madrid, Spain
| | - Miguel Gallardo
- H12O-CNIO Haematological Malignancies Clinical Research Unit, Hospital 12 de Octubre - Centro Nacional de Investigaciones Oncológicas, Madrid, Spain
| | - Rosa Ayala
- H12O-CNIO Haematological Malignancies Clinical Research Unit, Hospital 12 de Octubre - Centro Nacional de Investigaciones Oncológicas, Madrid, Spain
- Servicio de Hematología, Hospital 12 de Octubre, Madrid, Spain
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), ISCIII, Madrid, Spain
- Universidad Complutense de Madrid, Madrid, Spain
| | - María Linares
- H12O-CNIO Haematological Malignancies Clinical Research Unit, Hospital 12 de Octubre - Centro Nacional de Investigaciones Oncológicas, Madrid, Spain.
- Universidad Complutense de Madrid, Madrid, Spain.
| | - Joaquín Martínez-López
- H12O-CNIO Haematological Malignancies Clinical Research Unit, Hospital 12 de Octubre - Centro Nacional de Investigaciones Oncológicas, Madrid, Spain
- Servicio de Hematología, Hospital 12 de Octubre, Madrid, Spain
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), ISCIII, Madrid, Spain
- Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
16
|
Ye C, Zhou Q, Hong Y, Li QQ. Role of alternative polyadenylation dynamics in acute myeloid leukaemia at single-cell resolution. RNA Biol 2019; 16:785-797. [PMID: 30810468 DOI: 10.1080/15476286.2019.1586139] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Alternative polyadenylation (APA) has been discovered to play regulatory roles in the development of many cancer cells through preferential addition of a poly(A) tail at specific sites of pre-mRNA. A recent study found that APA was involved in the mediation of acute myeloid leukaemia (AML). However, unlike gene expression heterogeneity, little attention has been directed toward variations in single-cell APA for different cell types during AML development. Here, we used single-cell RNA-seq data of a massive population of 16,843 bone marrow mononuclear cells (BMMCs) from healthy and AML patient samples to investigate dynamic APA usage in different cell types. Abnormalities of APA dynamics in the BMMCs from AML patient samples were uncovered compared to the stable APA dynamics in samples from healthy individuals, as well as lower APA diversity between eight cell types in AML patients. Genes with APA dynamics specific to the AML samples were significantly enriched in cellular signal transduction pathways that contribute to AML development. Moreover, many leukaemic cell marker genes such as NF-κB, GATA2 and IAP-Family genes exhibited APA dynamics that specifically affected abnormal proliferation and differentiation of leukemic BMMCs. Additionally, mature erythroid cells displayed greater APA dynamics and global 3' UTR shortening compared with other cell types. Our results revealed extensive involvement of APA regulation in leukemia development and erythropoiesis at the single-cell level, providing a high-resolution atlas to navigate cellular mRNA processing landscapes of differentiated cells in AML.
Collapse
Affiliation(s)
- Congting Ye
- a Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems , College of the Environment and Ecology, Xiamen University , Xiamen , Fujian , China
| | - Qian Zhou
- a Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems , College of the Environment and Ecology, Xiamen University , Xiamen , Fujian , China.,b Graduate College of Biomedical Sciences , Western University of Health Sciences , Pomona , CA , USA
| | - Yiling Hong
- c College of Veterinary Medicine , Western University of Health Sciences , Pomona , CA , USA
| | - Qingshun Quinn Li
- a Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems , College of the Environment and Ecology, Xiamen University , Xiamen , Fujian , China.,b Graduate College of Biomedical Sciences , Western University of Health Sciences , Pomona , CA , USA
| |
Collapse
|
17
|
Zhong Y, Zhang Y, Ma D, Ren X, Xu C, Wan D. Inhibition of HOXB7 suppresses p27-mediated acute lymphoblastic leukemia by regulating basic fibroblast growth factor and ERK1/2. Life Sci 2019; 218:1-7. [DOI: 10.1016/j.lfs.2018.12.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 12/07/2018] [Accepted: 12/07/2018] [Indexed: 01/30/2023]
|
18
|
Staudt D, Murray HC, McLachlan T, Alvaro F, Enjeti AK, Verrills NM, Dun MD. Targeting Oncogenic Signaling in Mutant FLT3 Acute Myeloid Leukemia: The Path to Least Resistance. Int J Mol Sci 2018; 19:ijms19103198. [PMID: 30332834 PMCID: PMC6214138 DOI: 10.3390/ijms19103198] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 10/10/2018] [Accepted: 10/11/2018] [Indexed: 02/07/2023] Open
Abstract
The identification of recurrent driver mutations in genes encoding tyrosine kinases has resulted in the development of molecularly-targeted treatment strategies designed to improve outcomes for patients diagnosed with acute myeloid leukemia (AML). The receptor tyrosine kinase FLT3 is the most commonly mutated gene in AML, with internal tandem duplications within the juxtamembrane domain (FLT3-ITD) or missense mutations in the tyrosine kinase domain (FLT3-TKD) present in 30–35% of AML patients at diagnosis. An established driver mutation and marker of poor prognosis, the FLT3 tyrosine kinase has emerged as an attractive therapeutic target, and thus, encouraged the development of FLT3 tyrosine kinase inhibitors (TKIs). However, the therapeutic benefit of FLT3 inhibition, particularly as a monotherapy, frequently results in the development of treatment resistance and disease relapse. Commonly, FLT3 inhibitor resistance occurs by the emergence of secondary lesions in the FLT3 gene, particularly in the second tyrosine kinase domain (TKD) at residue Asp835 (D835) to form a ‘dual mutation’ (ITD-D835). Individual FLT3-ITD and FLT3-TKD mutations influence independent signaling cascades; however, little is known about which divergent signaling pathways are controlled by each of the FLT3 specific mutations, particularly in the context of patients harboring dual ITD-D835 mutations. This review provides a comprehensive analysis of the known discrete and cooperative signaling pathways deregulated by each of the FLT3 specific mutations, as well as the therapeutic approaches that hold the most promise of more durable and personalized therapeutic approaches to improve treatments of FLT3 mutant AML.
Collapse
Affiliation(s)
- Dilana Staudt
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW 2308, Australia.
- Priority Research Centre for Cancer Research, Innovation & Translation, Faculty of Health & Medicine, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia.
| | - Heather C Murray
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW 2308, Australia.
- Priority Research Centre for Cancer Research, Innovation & Translation, Faculty of Health & Medicine, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia.
| | - Tabitha McLachlan
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW 2308, Australia.
- Priority Research Centre for Cancer Research, Innovation & Translation, Faculty of Health & Medicine, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia.
| | - Frank Alvaro
- Priority Research Centre for Cancer Research, Innovation & Translation, Faculty of Health & Medicine, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia.
- John Hunter Children's Hospital, Faculty of Health and Medicine, University of Newcastle, New Lambton Heights, NSW 2305, Australia.
| | - Anoop K Enjeti
- Priority Research Centre for Cancer Research, Innovation & Translation, Faculty of Health & Medicine, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia.
- Calvary Mater Hospital, Hematology Department, Waratah, NSW 2298, Australia.
- NSW Health Pathology North, John Hunter Hospital, New Lambton Heights, NSW 2305, Australia.
| | - Nicole M Verrills
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW 2308, Australia.
- Priority Research Centre for Cancer Research, Innovation & Translation, Faculty of Health & Medicine, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia.
| | - Matthew D Dun
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW 2308, Australia.
- Priority Research Centre for Cancer Research, Innovation & Translation, Faculty of Health & Medicine, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia.
| |
Collapse
|
19
|
Bachs O, Gallastegui E, Orlando S, Bigas A, Morante-Redolat JM, Serratosa J, Fariñas I, Aligué R, Pujol MJ. Role of p27 Kip1 as a transcriptional regulator. Oncotarget 2018; 9:26259-26278. [PMID: 29899857 PMCID: PMC5995243 DOI: 10.18632/oncotarget.25447] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 05/01/2018] [Indexed: 12/16/2022] Open
Abstract
The protein p27Kip1 is a member of the Cip/Kip family of cyclin-dependent kinase (Cdk) inhibitors. It interacts with both the catalytic and the regulatory subunit (cyclin) and introduces a region into the catalytic cleave of the Cdk inducing its inactivation. Its inhibitory capacity can be modulated by specific tyrosine phosphorylations. p27Kip1 also behaves as a transcriptional regulator. It associates with specific chromatin domains through different transcription factors. ChIP on chip, ChIP-seq and expression microarray analysis allowed the identification of the transcriptional programs regulated by p27Kip1. Thus, important cellular functions as cell division cycle, respiration, RNA processing, translation and cell adhesion, are under p27Kip1 regulation. Moreover, genes involved in pathologies as cancer and neurodegeneration are also regulated by p27Kip1, suggesting its implication in these pathologies. The carboxyl moiety of p27Kip1 can associate with different proteins, including transcriptional regulators. In contrast, its NH2-terminal region specifically interacts with cyclin-Cdk complexes. The general mechanistic model of how p27Kip1 regulates transcription is that it associates by its COOH region to the transcriptional regulators on the chromatin and by the NH2-domain to cyclin-Cdk complexes. After Cdk activation it would phosphorylate the specific targets on the chromatin leading to gene expression. This model has been demonstrated to apply in the transcriptional regulation of p130/E2F4 repressed genes involved in cell cycle progression. We summarize in this review our current knowledge on the role of p27Kip1 in the regulation of transcription, on the transcriptional programs under its regulation and on its relevance in pathologies as cancer and neurodegeneration.
Collapse
Affiliation(s)
- Oriol Bachs
- Department of Biomedical Sciences, Faculty of Medicine, University of Barcelona, IDIBAPS, CIBERONC, Barcelona, Spain
| | - Edurne Gallastegui
- Department of Biomedical Sciences, Faculty of Medicine, University of Barcelona, IDIBAPS, CIBERONC, Barcelona, Spain
| | - Serena Orlando
- Department of Biomedical Sciences, Faculty of Medicine, University of Barcelona, IDIBAPS, CIBERONC, Barcelona, Spain
| | - Anna Bigas
- Program in Cancer Research, Institut Hospital Del Mar d'Investigacions Mèdiques (IMIM), CIBERONC, Barcelona, Spain
| | - José Manuel Morante-Redolat
- Departamento de Biología Celular, Biología Funcional y Antropología Física and ERI de Biotecnología y Biomedicina, CIBERNED, Universidad de Valencia, Valencia, Spain
| | - Joan Serratosa
- Department of Cerebral Ischemia and Neurodegeneration, Institut d'Investigacions Biomèdiques de Barcelona, Consejo Superior de Investigaciones Científicas (CSIC), IDIBAPS, Barcelona, Spain
| | - Isabel Fariñas
- Departamento de Biología Celular, Biología Funcional y Antropología Física and ERI de Biotecnología y Biomedicina, CIBERNED, Universidad de Valencia, Valencia, Spain
| | - Rosa Aligué
- Department of Biomedical Sciences, Faculty of Medicine, University of Barcelona, IDIBAPS, CIBERONC, Barcelona, Spain
| | - Maria Jesús Pujol
- Department of Biomedical Sciences, Faculty of Medicine, University of Barcelona, IDIBAPS, CIBERONC, Barcelona, Spain
| |
Collapse
|