1
|
García R, Alkayyali T, Gomez LM, Wright C, Chen W, Oliver D, Koduru P. Recurrent cytogenetic abnormalities reveal alterations that promote progression and transformation in myelodysplastic syndrome. Cancer Genet 2024; 288-289:92-105. [PMID: 39499993 DOI: 10.1016/j.cancergen.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 07/05/2024] [Accepted: 10/14/2024] [Indexed: 12/10/2024]
Abstract
OBJECTIVE To illustrate patterns of cytogenetic abnormalities that promote progression and/or transformation in myelodysplastic syndrome. METHODS In this study we evaluated three different data sets to identify recurrent cytogenetic abnormalities (RCAs) to delineate the cytogenetic evolutionary trajectories and their clinical significance. RESULTS Datasets 1 and 2 were 2402 cross sectional samples from Mitelman database of Chromosome Aberrations and Gene Fusions in Cancer; these were used to discover RCAs and to validate them. Dataset 3 was a cohort of 163 institutional patients with serial samples from 35 % of them. This was used to further validate RCAs identified in the cross-sectional data, and their clinical impact. We identified MDS subtype associated RCAs, and some exclusive RCAs (Xp-, 2q-, 17q-, 21q-) that led to disease progression or transformation to leukemia. Evolutionary pathway analysis had shown temporal acquisition of RCAs. Therefore, presence of two or more RCAs suggests cooperative or complementary role in disease progression or transformation. Patients with one or more of these RCAs had poor prognosis and high risk for transformation. Genes frequently altered in MDS are mapped to some of the RCAs and suggest a close correlation between RCAs and molecular alterations in MDS. Karyotypic complexity, clonal evolution, loss of 17p had poor clinical outcomes. CONCLUSION This study identified a unique combination of RCAs that are components in distinct cytogenetic trajectories. Some of these were primary changes while others were secondary or tertiary changes. Acquiring specific additional aberrations predicts progression or transformation to leukemia.
Collapse
Affiliation(s)
- Rolando García
- Department of Pathology, UT Southwestern Medical Center, Dallas TX, United States.
| | - Tasnim Alkayyali
- Department of Pathology, UT Southwestern Medical Center, Dallas TX, United States
| | - Luis Mosquera Gomez
- Department of Pathology, UT Southwestern Medical Center, Dallas TX, United States
| | - Carter Wright
- Department of Pathology, UT Southwestern Medical Center, Dallas TX, United States
| | - Weina Chen
- Department of Pathology, UT Southwestern Medical Center, Dallas TX, United States
| | - Dwight Oliver
- Department of Pathology, UT Southwestern Medical Center, Dallas TX, United States
| | - Prasad Koduru
- Department of Pathology, UT Southwestern Medical Center, Dallas TX, United States
| |
Collapse
|
2
|
Adès L. Impact of TP53 in MDS with isolated del(5q). Blood 2024; 144:1655-1656. [PMID: 39418036 DOI: 10.1182/blood.2024026010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024] Open
Affiliation(s)
- Lionel Adès
- Hôpital Saint Louis
- Institut de Recherche Saint Louis
- Université Paris-Cité
| |
Collapse
|
3
|
Montoro MJ, Palomo L, Haferlach C, Acha P, Chan O, Navarro V, Kubota Y, Schulz FI, Meggendorfer M, Briski R, Al Ali N, Xicoy B, López-Cadenas F, Bosch F, González T, Eder LN, Jerez A, Wang YH, Campagna A, Santini V, Bernal Del Castillo T, Such E, Tien HF, Diaz Varela N, Platzbecker U, Haase D, Díez-Campelo M, Della Porta M, Garcia-Manero G, Wiseman DH, Germing U, Maciejewski JP, Komrokji RS, Sole F, Haferlach T, Valcárcel D. Influence of TP53 gene mutations and their allelic status in myelodysplastic syndromes with isolated 5q deletion. Blood 2024; 144:1722-1731. [PMID: 39074355 DOI: 10.1182/blood.2024023840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 06/10/2024] [Accepted: 06/30/2024] [Indexed: 07/31/2024] Open
Abstract
ABSTRACT Mutations in the TP53 gene, particularly multihit alterations, have been associated with unfavorable clinical features and prognosis in patients diagnosed with myelodysplastic syndrome (MDS). Despite this, the role of TP53 gene aberrations in MDS with isolated deletion of chromosome 5 [MDS-del(5q)] remains unclear. This study aimed to assess the impact of TP53 gene mutations and their allelic state in patients with MDS-del(5q). To that end, a comprehensive analysis of TP53 abnormalities, examining both TP53 mutations and allelic imbalances, in 682 patients diagnosed with MDS-del(5q) was conducted. Twenty-four percent of TP53-mutated patients exhibited multihit alterations, whereas the remaining patients displayed monoallelic mutations. TP53-multihit alterations were predictive of an increased risk of leukemic transformation. The impact of monoallelic alterations was dependent on the variant allele frequency (VAF); patients with TP53-monoallelic mutations and VAF <20% exhibited behavior similar to TP53 wild type, and those with TP53-monoallelic mutations and VAF ≥20% presented outcomes equivalent to TP53-multihit patients. This study underscores the importance of considering TP53 allelic state and VAF in the risk stratification and treatment decision-making process for patients with MDS-del(5q).
Collapse
Affiliation(s)
- Maria Julia Montoro
- Department of Hematology, Vall d'Hebron Barcelona Hospital Campus, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Laura Palomo
- Department of Hematology, Vall d'Hebron Barcelona Hospital Campus, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | | | - Pamela Acha
- MDS Group, Institut de Recerca Contra la Leucèmia Josep Carreras, Badalona, Spain
| | - Onyee Chan
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center, Tampa, FL
| | - Víctor Navarro
- Oncology Data Science Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Yasuo Kubota
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH
| | - Felicitas Isabel Schulz
- Department of Hematology, Oncology and Clinical Immunology, Heinrich-Heine University, University Hospital of Düsseldorf, Düsseldorf, Germany
| | | | - Robert Briski
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Najla Al Ali
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center, Tampa, FL
| | - Blanca Xicoy
- MDS Group, Institut de Recerca Contra la Leucèmia Josep Carreras, Badalona, Spain
| | | | - Francesc Bosch
- Department of Hematology, Vall d'Hebron Barcelona Hospital Campus, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Teresa González
- Department of Hematology, Hospital Universitario de Salamanca, Instituto de Investigación Biomédica de Salamanca, Salamanca, Spain
| | - Lea Naomi Eder
- Clinics of Hematology and Medical Oncology, University Medical Center Göttingen, Georg August University, Göttingen, Germany
| | - Andrés Jerez
- Department of Hematology, Hospital Morales Meseguer, Murcia, Spain
| | - Yu-Hung Wang
- Division of Cancer Sciences, Epigenetics of Haematopoiesis Laboratory, The University of Manchester, Manchester, United Kingdom
| | - Alessia Campagna
- Department of Biomedical Sciences, Humanitas Clinical and Research Center-IRCCS and Humanitas University, Milan, Italy
| | - Valeria Santini
- Hematology, MDS Unit, University of Florence, Azienda Ospedaliero Universitaria Careggi, Florence, Italy
| | - Teresa Bernal Del Castillo
- Department of Hematology, Servicio de Hematología, Hospital Universitario Central de Asturias Instituto de Investigación del Principado de Asturias, Oviedo, Spain
| | - Esperanza Such
- Department of Hematology, Servicio de Hematología, Hospital La Fe, Valencia, Spain
| | - Hwei-Fang Tien
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Nicolás Diaz Varela
- Department of Hematology, Servicio de Hematología, Hospital Universitario Central de Asturias Instituto de Investigación del Principado de Asturias, Oviedo, Spain
| | - Uwe Platzbecker
- Department of Hematology, University Hospital of Leipzig, Dresden, Germany
| | - Detlef Haase
- Clinics of Hematology and Medical Oncology, University Medical Center Göttingen, Georg August University, Göttingen, Germany
| | - María Díez-Campelo
- Department of Hematology, Hospital Universitario de Salamanca, Instituto de Investigación Biomédica de Salamanca, Salamanca, Spain
| | - Matteo Della Porta
- Department of Biomedical Sciences, Humanitas Clinical and Research Center-IRCCS and Humanitas University, Milan, Italy
| | | | - Daniel H Wiseman
- Division of Cancer Sciences, Epigenetics of Haematopoiesis Laboratory, The University of Manchester, Manchester, United Kingdom
| | - Ulrich Germing
- Department of Hematology, Oncology and Clinical Immunology, Heinrich-Heine University, University Hospital of Düsseldorf, Düsseldorf, Germany
| | - Jaroslaw P Maciejewski
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH
| | - Rami S Komrokji
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center, Tampa, FL
| | - Francesc Sole
- MDS Group, Institut de Recerca Contra la Leucèmia Josep Carreras, Badalona, Spain
| | | | - David Valcárcel
- Department of Hematology, Vall d'Hebron Barcelona Hospital Campus, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| |
Collapse
|
4
|
Jann JC, Hergott CB, Winkler M, Liu Y, Braun B, Charles A, Copson KM, Barua S, Meggendorfer M, Nadarajah N, Shimony S, Winer ES, Wadleigh M, Stone RM, DeAngelo DJ, Garcia JS, Haferlach T, Lindsley RC, Luskin MR, Stahl M, Tothova Z. Subunit-specific analysis of cohesin-mutant myeloid malignancies reveals distinct ontogeny and outcomes. Leukemia 2024; 38:1992-2002. [PMID: 39033241 PMCID: PMC11347381 DOI: 10.1038/s41375-024-02347-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 07/07/2024] [Accepted: 07/09/2024] [Indexed: 07/23/2024]
Abstract
Mutations in the cohesin complex components (STAG2, RAD21, SMC1A, SMC3, and PDS5B) are recurrent genetic drivers in myelodysplastic neoplasm (MDS) and acute myeloid leukemia (AML). Whether the different cohesin subunit mutations share clinical characteristics and prognostic significance is not known. We analyzed 790 cohesin-mutant patients from the Dana-Farber Cancer Institute (DFCI) and the Munich Leukemia Laboratory (MLL), 390 of which had available outcome data, and identified subunit-specific clinical, prognostic, and genetic characteristics suggestive of distinct ontogenies. We found that STAG2 mutations are acquired at MDS stage and are associated with secondary AML, adverse prognosis, and co-occurrence of secondary AML-type mutations. In contrast, mutations in RAD21, SMC1A and SMC3 share features with de novo AML with better prognosis, and co-occurrence with de novo AML-type lesions. The findings show the heterogeneous nature of cohesin complex mutations, and inform clinical and prognostic classification, as well as distinct biology of the cohesin complex.
Collapse
Affiliation(s)
- Johann-Christoph Jann
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Cancer Program, Broad Institute, Cambridge, MA, 02142, USA
| | - Christopher B Hergott
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Marisa Winkler
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Element Iowa City (JMI Laboratories), North Liberty, IA, 52317, USA
| | - Yiwen Liu
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Benjamin Braun
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Anne Charles
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Kevin M Copson
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Shougat Barua
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Manja Meggendorfer
- MLL Munich Leukemia Laboratory, Max-Lebsche-Platz 31, 81377, Munich, Germany
| | - Niroshan Nadarajah
- MLL Munich Leukemia Laboratory, Max-Lebsche-Platz 31, 81377, Munich, Germany
| | - Shai Shimony
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Eric S Winer
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Martha Wadleigh
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Richard M Stone
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Daniel J DeAngelo
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Jacqueline S Garcia
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Torsten Haferlach
- MLL Munich Leukemia Laboratory, Max-Lebsche-Platz 31, 81377, Munich, Germany
| | - R Coleman Lindsley
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Marlise R Luskin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Maximilian Stahl
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA.
| | - Zuzana Tothova
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA.
- Cancer Program, Broad Institute, Cambridge, MA, 02142, USA.
| |
Collapse
|
5
|
Bruzzese A, Martino EA, Mendicino F, Lucia E, Olivito V, Capodanno I, Neri A, Morabito F, Vigna E, Gentile M. Myelodysplastic syndromes del(5q): Pathogenesis and its therapeutic implications. Eur J Haematol 2024; 112:860-869. [PMID: 38294126 DOI: 10.1111/ejh.14181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/20/2024] [Accepted: 01/22/2024] [Indexed: 02/01/2024]
Abstract
Myelodysplastic syndromes (MDS) encompass a heterogeneous set of acquired bone marrow neoplastic disorders characterized by ineffective hematopoiesis within one or more bone marrow lineages. Nearly half of MDS patients carry cytogenetic alterations, with del(5q) being the most prevalent. Since its first description, del(5q) was consistently correlated with a typical clinical phenotype marked by anemia, thrombocytosis, and a low risk of evolving into acute leukemia. Presently, the World Health Organization (WHO) classification of myeloid neoplasms recognizes a specific subtype of MDS known as "myelodysplastic neoplasm with low blast and isolated del(5q)" identified by the sole presence of 5q deletion or in combination with one other abnormality excluding -7/del(7q). Several studies have sought to unravel the biological processes triggered by del(5q) in the development of MDS, revealing the involvement of various genes localized in specific regions of chromosome 5 referred to as common deleted regions (CDR). This intricate biological landscape makes the MDS cells with del(5q) exceptionally sensitive to lenalidomide. Several studies have confirmed the efficacy of lenalidomide in this context. Regrettably, the response to lenalidomide is not conclusive, prompting ongoing research into biological mechanisms that drive patients toward leukemia and strategies to circumvent lenalidomide resistance and disease progression.
Collapse
Affiliation(s)
- Antonella Bruzzese
- Department of Onco-hematology, Hematology Unit, A.O. of Cosenza, Cosenza, Italy
| | | | - Francesco Mendicino
- Department of Onco-hematology, Hematology Unit, A.O. of Cosenza, Cosenza, Italy
| | - Eugenio Lucia
- Department of Onco-hematology, Hematology Unit, A.O. of Cosenza, Cosenza, Italy
| | - Virginia Olivito
- Department of Onco-hematology, Hematology Unit, A.O. of Cosenza, Cosenza, Italy
| | | | - Antonino Neri
- Scientific Direction Azienda USL-IRCCS of Reggio Emilia, Reggio Emilia, Italy
| | - Fortunato Morabito
- Biotechnology Research Unit, Aprigliano, A.O./ASP of Cosenza, Cosenza, Italy
| | - Ernesto Vigna
- Department of Onco-hematology, Hematology Unit, A.O. of Cosenza, Cosenza, Italy
| | - Massimo Gentile
- Department of Onco-hematology, Hematology Unit, A.O. of Cosenza, Cosenza, Italy
- Department of Pharmacy, Health and Nutritional Science, University of Calabria, Rende, Italy
| |
Collapse
|
6
|
van de Loosdrecht AA, Cremers EMP, Alhan C, Duetz C, In 't Hout FEM, Visser-Wisselaar HA, Chitu DA, Verbrugge A, Cunha SM, Ossenkoppele GJ, Janssen JJWM, Klein SK, Vellenga E, Huls GA, Muus P, Langemeijer SMC, de Greef GE, Te Boekhorst PAW, Raaijmakers MHG, van Marwijk Kooy M, Legdeur MC, Wegman JJ, Deenik W, de Weerdt O, van Maanen-Lamme TM, Jobse P, van Kampen RJW, Beeker A, Wijermans PW, Biemond BJ, Tanis BC, van Esser JWJ, Schaar CG, Noordzij-Nooteboom HS, Jacobs EMG, de Graaf AO, Jongen-Lavrencic M, Stevens-Kroef MJPL, Westers TM, Jansen JH. Determinants of lenalidomide response with or without erythropoiesis-stimulating agents in myelodysplastic syndromes: the HOVON89 trial. Leukemia 2024; 38:840-850. [PMID: 38297135 PMCID: PMC10997501 DOI: 10.1038/s41375-024-02161-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 01/11/2024] [Accepted: 01/17/2024] [Indexed: 02/02/2024]
Abstract
A randomized phase-II study was performed in low/int-1 risk MDS (IPSS) to study efficacy and safety of lenalidomide without (arm A) or with (arm B) ESA/G-CSF. In arm B, patients without erythroid response (HI-E) after 4 cycles received ESA; G-CSF was added if no HI-E was obtained by cycle 9. HI-E served as primary endpoint. Flow cytometry and next-generation sequencing were performed to identify predictors of response. The final evaluation comprised 184 patients; 84% non-del(5q), 16% isolated del(5q); median follow-up: 70.7 months. In arm A and B, 39 and 41% of patients achieved HI-E; median time-to-HI-E: 3.2 months for both arms, median duration of-HI-E: 9.8 months. HI-E was significantly lower in non-del(5q) vs. del(5q): 32% vs. 80%. The same accounted for transfusion independency-at-week 24 (16% vs. 67%), but similar in both arms. Apart from presence of del(5q), high percentages of bone marrow lymphocytes and progenitor B-cells, a low number of mutations, absence of ring sideroblasts, and SF3B1 mutations predicted HI-E. In conclusion, lenalidomide induced HI-E in patients with non-del(5q) and del(5q) MDS without additional effect of ESA/G-CSF. The identified predictors of response may guide application of lenalidomide in lower-risk MDS in the era of precision medicine. (EudraCT 2008-002195-10).
Collapse
Affiliation(s)
- A A van de Loosdrecht
- Department of Hematology, Amsterdam UMC, location VUmc, Cancer Center Amsterdam, Amsterdam, The Netherlands.
| | - E M P Cremers
- Department of Hematology, Amsterdam UMC, location VUmc, Cancer Center Amsterdam, Amsterdam, The Netherlands
- Department of Laboratory Medicine - Laboratory of Hematology, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Hematology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - C Alhan
- Department of Hematology, Amsterdam UMC, location VUmc, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - C Duetz
- Department of Hematology, Amsterdam UMC, location VUmc, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - F E M In 't Hout
- Department of Laboratory Medicine - Laboratory of Hematology, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Hematology, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - D A Chitu
- HOVON Foundation, Rotterdam, The Netherlands
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - A Verbrugge
- HOVON Foundation, Rotterdam, The Netherlands
| | - S M Cunha
- HOVON Foundation, Rotterdam, The Netherlands
| | - G J Ossenkoppele
- Department of Hematology, Amsterdam UMC, location VUmc, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - J J W M Janssen
- Department of Hematology, Amsterdam UMC, location VUmc, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - S K Klein
- Department of Hematology, Meander Medisch Centrum, Amersfoort, The Netherlands
- Department of Hematology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - E Vellenga
- Department of Hematology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - G A Huls
- Department of Hematology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - P Muus
- Department of Hematology, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Haematology, St. James University Hospital, Leeds, UK
| | - S M C Langemeijer
- Department of Laboratory Medicine - Laboratory of Hematology, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Hematology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - G E de Greef
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - P A W Te Boekhorst
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - M H G Raaijmakers
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | | | - M C Legdeur
- Department of Hematology, Medisch Spectrum Twente, Enschede, The Netherlands
| | - J J Wegman
- Department of Hematology, Deventer Ziekenhuis, Deventer, The Netherlands
- Department of Hematology, Amsterdam UMC, location AMC, Amsterdam, The Netherlands
| | - W Deenik
- Department of Internal Medicine, Tergooi Ziekenhuis, Hilversum, The Netherlands
- Department of Internal Medicine, Rijnstate, Arnhem, the Netherlands
| | - O de Weerdt
- Department of Internal Medicine, St. Antonius Ziekenhuis, Nieuwegein, The Netherlands
| | | | - P Jobse
- Department of Internal Medicine, Admiraal de Ruyter Ziekenhuis, Goes, The Netherlands
| | - R J W van Kampen
- Department of Internal Medicine, Zuyderland Ziekenhuis, Geleen, The Netherlands
| | - A Beeker
- Department of Hematology, Spaarne Gasthuis, Hoofddorp, The Netherlands
| | - P W Wijermans
- Department of Hematology, Haaglanden Ziekenhuis, Den Haag, The Netherlands
| | - B J Biemond
- Department of Hematology, Amsterdam UMC, location AMC, Amsterdam, The Netherlands
| | - B C Tanis
- Department of Internal Medicine, Groene Hart Ziekenhuis, Gouda, The Netherlands
- Department of General Practice Erasmus MC, Rotterdam, The Netherlands
| | - J W J van Esser
- Department of Internal Medicine, Amphia Ziekenhuis, Breda, The Netherlands
| | - C G Schaar
- Department of Internal Medicine, Gelre Ziekenhuis, Apeldoorn, The Netherlands
| | - H S Noordzij-Nooteboom
- Department of Internal Medicine, Van Weel Bethesda Ziekenhuis, Dirksland, The Netherlands
| | - E M G Jacobs
- Department of Internal Medicine, Elkerliek Ziekenhuis, Helmond, The Netherlands
| | - A O de Graaf
- Department of Laboratory Medicine - Laboratory of Hematology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - M Jongen-Lavrencic
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - M J P L Stevens-Kroef
- Department of human genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - T M Westers
- Department of Hematology, Amsterdam UMC, location VUmc, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - J H Jansen
- Department of Laboratory Medicine - Laboratory of Hematology, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
7
|
Fuchs SNR, Stalmann USA, Snoeren IAM, Bindels E, Schmitz S, Banjanin B, Hoogenboezem RM, van Herk S, Saad M, Walter W, Haferlach T, Seillier L, Saez-Rodriguez J, Dugourd AJF, Lehmann KV, Ben-Neriah Y, Gleitz HFE, Schneider RK. Collaborative effect of Csnk1a1 haploinsufficiency and mutant p53 in Myc induction can promote leukemic transformation. Blood Adv 2024; 8:766-779. [PMID: 38147624 PMCID: PMC10847877 DOI: 10.1182/bloodadvances.2022008926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/21/2023] [Accepted: 12/09/2023] [Indexed: 12/28/2023] Open
Abstract
ABSTRACT It is still not fully understood how genetic haploinsufficiency in del(5q) myelodysplastic syndrome (MDS) contributes to malignant transformation of hematopoietic stem cells. We asked how compound haploinsufficiency for Csnk1a1 and Egr1 in the common deleted region on chromosome 5 affects hematopoietic stem cells. Additionally, Trp53 was disrupted as the most frequently comutated gene in del(5q) MDS using CRISPR/Cas9 editing in hematopoietic progenitors of wild-type (WT), Csnk1a1-/+, Egr1-/+, Csnk1a1/Egr1-/+ mice. A transplantable acute leukemia only developed in the Csnk1a1-/+Trp53-edited recipient. Isolated blasts were indefinitely cultured ex vivo and gave rise to leukemia after transplantation, providing a tool to study disease mechanisms or perform drug screenings. In a small-scale drug screening, the collaborative effect of Csnk1a1 haploinsufficiency and Trp53 sensitized blasts to the CSNK1 inhibitor A51 relative to WT or Csnk1a1 haploinsufficient cells. In vivo, A51 treatment significantly reduced blast counts in Csnk1a1 haploinsufficient/Trp53 acute leukemias and restored hematopoiesis in the bone marrow. Transcriptomics on blasts and their normal counterparts showed that the derived leukemia was driven by MAPK and Myc upregulation downstream of Csnk1a1 haploinsufficiency cooperating with a downregulated p53 axis. A collaborative effect of Csnk1a1 haploinsufficiency and p53 loss on MAPK and Myc upregulation was confirmed on the protein level. Downregulation of Myc protein expression correlated with efficient elimination of blasts in A51 treatment. The "Myc signature" closely resembled the transcriptional profile of patients with del(5q) MDS with TP53 mutation.
Collapse
Affiliation(s)
- Stijn N. R. Fuchs
- Department of Developmental Biology, Erasmus Medical Center, Rotterdam, the Netherlands
- Oncode Institute, Erasmus Medical Center Cancer Institute, Rotterdam, the Netherlands
| | - Ursula S. A. Stalmann
- Department of Developmental Biology, Erasmus Medical Center, Rotterdam, the Netherlands
- Oncode Institute, Erasmus Medical Center Cancer Institute, Rotterdam, the Netherlands
| | - Inge A. M. Snoeren
- Department of Developmental Biology, Erasmus Medical Center, Rotterdam, the Netherlands
- Oncode Institute, Erasmus Medical Center Cancer Institute, Rotterdam, the Netherlands
| | - Eric Bindels
- Department of Hematology, Erasmus Medical Center Cancer Institute, Rotterdam, the Netherlands
| | - Stephani Schmitz
- Department of Developmental Biology, Erasmus Medical Center, Rotterdam, the Netherlands
- Oncode Institute, Erasmus Medical Center Cancer Institute, Rotterdam, the Netherlands
| | - Bella Banjanin
- Department of Developmental Biology, Erasmus Medical Center, Rotterdam, the Netherlands
- Oncode Institute, Erasmus Medical Center Cancer Institute, Rotterdam, the Netherlands
| | - Remco M. Hoogenboezem
- Department of Hematology, Erasmus Medical Center Cancer Institute, Rotterdam, the Netherlands
| | - Stanley van Herk
- Department of Hematology, Erasmus Medical Center Cancer Institute, Rotterdam, the Netherlands
| | - Mohamed Saad
- Department of Cell and Tumor Biology, Faculty of Medicine, Rheinisch-Westfälische Technische Hochschule Aachen University, Aachen, Germany
| | | | | | - Lancelot Seillier
- Cancer Research Center Cologne Essen, University Hospital Cologne, Cologne, Germany
- Joint Research Center for Computational Biomedicine, University Hospital Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany
| | - Julio Saez-Rodriguez
- Heidelberg University, Faculty of Medicine, and Heidelberg University Hospital, Institute for Computational Biomedicine, Bioquant, Heidelberg, Germany
| | - Aurélien J. F. Dugourd
- Heidelberg University, Faculty of Medicine, and Heidelberg University Hospital, Institute for Computational Biomedicine, Bioquant, Heidelberg, Germany
| | - Kjong-Van Lehmann
- Cancer Research Center Cologne Essen, University Hospital Cologne, Cologne, Germany
- Joint Research Center for Computational Biomedicine, University Hospital Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany
| | - Yinon Ben-Neriah
- The Lautenberg Center for Immunology and Cancer Research, Institute of Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Hélène F. E. Gleitz
- Department of Developmental Biology, Erasmus Medical Center, Rotterdam, the Netherlands
- Oncode Institute, Erasmus Medical Center Cancer Institute, Rotterdam, the Netherlands
| | - Rebekka K. Schneider
- Department of Developmental Biology, Erasmus Medical Center, Rotterdam, the Netherlands
- Oncode Institute, Erasmus Medical Center Cancer Institute, Rotterdam, the Netherlands
- Department of Cell and Tumor Biology, Faculty of Medicine, Rheinisch-Westfälische Technische Hochschule Aachen University, Aachen, Germany
| |
Collapse
|
8
|
Loghavi S, Kanagal-Shamanna R, Khoury JD, Medeiros LJ, Naresh KN, Nejati R, Patnaik MM. Fifth Edition of the World Health Classification of Tumors of the Hematopoietic and Lymphoid Tissue: Myeloid Neoplasms. Mod Pathol 2024; 37:100397. [PMID: 38043791 DOI: 10.1016/j.modpat.2023.100397] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/14/2023] [Accepted: 11/21/2023] [Indexed: 12/05/2023]
Abstract
In this manuscript, we review myeloid neoplasms in the fifth edition of the World Health Organization classification of hematolymphoid tumors (WHO-HEM5), focusing on changes from the revised fourth edition (WHO-HEM4R). Disease types and subtypes have expanded compared with WHO-HEM4R, mainly because of the expansion in genomic knowledge of these diseases. The revised classification is based on a multidisciplinary approach including input from a large body of pathologists, clinicians, and geneticists. The revised classification follows a hierarchical structure allowing usage of family (class)-level definitions where the defining diagnostic criteria are partially met or a complete investigational workup has not been possible. Overall, the WHO-HEM5 revisions to the classification of myeloid neoplasms include major updates and revisions with increased emphasis on genetic and molecular drivers of disease. The most notable changes have been applied to the sections of acute myeloid leukemia and myelodysplastic neoplasms (previously referred to as myelodysplastic syndrome) with incorporation of novel, disease-defining genetic changes. In this review we focus on highlighting the updates in the classification of myeloid neoplasms, providing a comparison with WHO-HEM4R, and offering guidance on how the new classification can be applied to the diagnosis of myeloid neoplasms in routine practice.
Collapse
Affiliation(s)
- Sanam Loghavi
- Department of Hematopathology, MD Anderson Cancer Center, Houston, Texas.
| | | | - Joseph D Khoury
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, Nebraska
| | - L Jeffrey Medeiros
- Department of Hematopathology, MD Anderson Cancer Center, Houston, Texas
| | - Kikkeri N Naresh
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, DC; Section of Pathology, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, DC
| | - Reza Nejati
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Mrinal M Patnaik
- Division of Hematology, Department of Medicine, Mayo Clinic, Minnesota
| |
Collapse
|
9
|
Moura PL, Mortera-Blanco T, Hofman IJ, Todisco G, Kretzschmar WW, Björklund AC, Creignou M, Hagemann-Jensen M, Ziegenhain C, Cabrerizo Granados D, Barbosa I, Walldin G, Jansson M, Ashley N, Mead AJ, Lundin V, Dimitriou M, Yoshizato T, Woll PS, Ogawa S, Sandberg R, Jacobsen SEW, Hellström-Lindberg E. Erythroid Differentiation Enhances RNA Mis-Splicing in SF3B1-Mutant Myelodysplastic Syndromes with Ring Sideroblasts. Cancer Res 2024; 84:211-225. [PMID: 37921711 PMCID: PMC10790130 DOI: 10.1158/0008-5472.can-23-3038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/28/2023] [Accepted: 10/31/2023] [Indexed: 11/04/2023]
Abstract
Myelodysplastic syndromes with ring sideroblasts (MDS-RS) commonly develop from hematopoietic stem cells (HSC) bearing mutations in the splicing factor SF3B1 (SF3B1mt). Direct studies into MDS-RS pathobiology have been limited by a lack of model systems that fully recapitulate erythroid biology and RS development and the inability to isolate viable human RS. Here, we combined successful direct RS isolation from patient samples, high-throughput multiomics analysis of cells encompassing the SF3B1mt stem-erythroid continuum, and functional assays to investigate the impact of SF3B1mt on erythropoiesis and RS accumulation. The isolated RS differentiated, egressed into the blood, escaped traditional nonsense-mediated decay (NMD) mechanisms, and leveraged stress-survival pathways that hinder wild-type hematopoiesis through pathogenic GDF15 overexpression. Importantly, RS constituted a contaminant of magnetically enriched CD34+ cells, skewing bulk transcriptomic data. Mis-splicing in SF3B1mt cells was intensified by erythroid differentiation through accelerated RNA splicing and decreased NMD activity, and SF3B1mt led to truncations in several MDS-implicated genes. Finally, RNA mis-splicing induced an uncoupling of RNA and protein expression, leading to critical abnormalities in proapoptotic p53 pathway genes. Overall, this characterization of erythropoiesis in SF3B1mt RS provides a resource for studying MDS-RS and uncovers insights into the unexpectedly active biology of the "dead-end" RS. SIGNIFICANCE Ring sideroblast isolation combined with state-of-the-art multiomics identifies survival mechanisms underlying SF3B1-mutant erythropoiesis and establishes an active role for erythroid differentiation and ring sideroblasts themselves in SF3B1-mutant myelodysplastic syndrome pathogenesis.
Collapse
Affiliation(s)
- Pedro L. Moura
- Department of Medicine Huddinge, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Teresa Mortera-Blanco
- Department of Medicine Huddinge, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Isabel J. Hofman
- Department of Medicine Huddinge, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Gabriele Todisco
- Department of Medicine Huddinge, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Huddinge, Sweden
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Warren W. Kretzschmar
- Department of Medicine Huddinge, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Huddinge, Sweden
- Department of Cell and Molecular Biology (CMB), Karolinska Institutet, Stockholm, Sweden
| | - Ann-Charlotte Björklund
- Department of Medicine Huddinge, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Maria Creignou
- Department of Medicine Huddinge, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Huddinge, Sweden
- Department of Medicine, Division of Hematology, Karolinska University Hospital, Huddinge, Sweden
| | - Michael Hagemann-Jensen
- Department of Cell and Molecular Biology (CMB), Karolinska Institutet, Stockholm, Sweden
- Xpress Genomics AB, Stockholm, Sweden
| | - Christoph Ziegenhain
- Department of Cell and Molecular Biology (CMB), Karolinska Institutet, Stockholm, Sweden
- Xpress Genomics AB, Stockholm, Sweden
| | - David Cabrerizo Granados
- Department of Medicine Huddinge, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Indira Barbosa
- Department of Medicine Huddinge, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Gunilla Walldin
- Department of Medicine Huddinge, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Monika Jansson
- Department of Medicine Huddinge, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Neil Ashley
- Hematopoietic Stem Cell Laboratory, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Adam J. Mead
- Hematopoietic Stem Cell Laboratory, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Vanessa Lundin
- Department of Medicine Huddinge, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Marios Dimitriou
- Department of Medicine Huddinge, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Huddinge, Sweden
- Department of Cell and Molecular Biology (CMB), Karolinska Institutet, Stockholm, Sweden
| | - Tetsuichi Yoshizato
- Department of Medicine Huddinge, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Huddinge, Sweden
- Department of Cell and Molecular Biology (CMB), Karolinska Institutet, Stockholm, Sweden
| | - Petter S. Woll
- Department of Medicine Huddinge, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Huddinge, Sweden
- Department of Cell and Molecular Biology (CMB), Karolinska Institutet, Stockholm, Sweden
| | - Seishi Ogawa
- Department of Medicine Huddinge, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Huddinge, Sweden
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan
| | - Rickard Sandberg
- Department of Cell and Molecular Biology (CMB), Karolinska Institutet, Stockholm, Sweden
- Xpress Genomics AB, Stockholm, Sweden
| | - Sten Eirik W. Jacobsen
- Department of Medicine Huddinge, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Huddinge, Sweden
- Department of Cell and Molecular Biology (CMB), Karolinska Institutet, Stockholm, Sweden
- Department of Medicine, Division of Hematology, Karolinska University Hospital, Huddinge, Sweden
- Hematopoietic Stem Cell Laboratory, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Eva Hellström-Lindberg
- Department of Medicine Huddinge, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Huddinge, Sweden
- Department of Medicine, Division of Hematology, Karolinska University Hospital, Huddinge, Sweden
| |
Collapse
|
10
|
Gajzer DC, Yeung CCS. Significance of SF3B1 Mutations in Myeloid Neoplasms. Clin Lab Med 2023; 43:597-606. [PMID: 37865505 DOI: 10.1016/j.cll.2023.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2023]
Abstract
Myelodysplastic neoplasm with low blasts and SF3B1 mutation (MDS-LB-SF3B1) has undergone significant classification changes in the past year with the publication of the 5th edition of the World Health Organization Classification of Tumors of Haematopoietic and Lymphoid Tissues and the International Consensus Classification. This article reviews the basic biology of SF3B1, iron metabolism, and dysfunction that leads to the formation of ring sideroblasts. It highlights neoplastic and non-neoplastic considerations to the differential diagnoses. Finally, a review on the evolution of the prognostic scoring system and treatment regimens that are available to patients with a diagnosis of MDS is presented.
Collapse
Affiliation(s)
| | - Cecilia C S Yeung
- University of Washington, Seattle, WA, USA; Fred Hutch Cancer Center, Seattle, WA, USA.
| |
Collapse
|
11
|
Mori M, Kubota Y, Durmaz A, Gurnari C, Goodings C, Adema V, Ponvilawan B, Bahaj WS, Kewan T, LaFramboise T, Meggendorfer M, Haferlach C, Barnard J, Wlodarski M, Visconte V, Haferlach T, Maciejewski JP. Genomics of deletion 7 and 7q in myeloid neoplasm: from pathogenic culprits to potential synthetic lethal therapeutic targets. Leukemia 2023; 37:2082-2093. [PMID: 37634012 PMCID: PMC10539177 DOI: 10.1038/s41375-023-02003-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/27/2023] [Accepted: 08/08/2023] [Indexed: 08/28/2023]
Abstract
Complete or partial deletions of chromosome 7 (-7/del7q) belong to the most frequent chromosomal abnormalities in myeloid neoplasm (MN) and are associated with a poor prognosis. The disease biology of -7/del7q and the genes responsible for the leukemogenic properties have not been completely elucidated. Chromosomal deletions may create clonal vulnerabilities due to haploinsufficient (HI) genes contained in the deleted regions. Therefore, HI genes are potential targets of synthetic lethal strategies. Through the most comprehensive multimodal analysis of more than 600 -7/del7q MN samples, we elucidated the disease biology and qualified a list of most consistently deleted and HI genes. Among them, 27 potentially synthetic lethal target genes were identified with the following properties: (i) unaffected genes by hemizygous/homozygous LOF mutations; (ii) prenatal lethality in knockout mice; and (iii) vulnerability of leukemia cells by CRISPR and shRNA knockout screens. In -7/del7q cells, we also identified 26 up or down-regulated genes mapping on other chromosomes as downstream pathways or compensation mechanisms. Our findings shed light on the pathogenesis of -7/del7q MNs, while 27 potential synthetic lethal target genes and 26 differential expressed genes allow for a therapeutic window of -7/del7q.
Collapse
Affiliation(s)
- Minako Mori
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
- Department of Hematology, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
| | - Yasuo Kubota
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Arda Durmaz
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Carmelo Gurnari
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
- Department of Biomedicine and Prevention, Ph.D. in Immunology, Molecular Medicine and Applied Biotechnology, University of Rome Tor Vergata, Rome, Italy
| | - Charnise Goodings
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Vera Adema
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ben Ponvilawan
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Waled S Bahaj
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Tariq Kewan
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Thomas LaFramboise
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | | | | | - John Barnard
- Department of Quantitative Health Sciences, Cleveland Clinic, Lerner Research Institute, Cleveland, OH, USA
| | - Marcin Wlodarski
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Valeria Visconte
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | | | - Jaroslaw P Maciejewski
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic Foundation, Cleveland, OH, USA.
| |
Collapse
|
12
|
Bahaj W, Kewan T, Gurnari C, Durmaz A, Ponvilawan B, Pandit I, Kubota Y, Ogbue OD, Zawit M, Madanat Y, Bat T, Balasubramanian SK, Awada H, Ahmed R, Mori M, Meggendorfer M, Haferlach T, Visconte V, Maciejewski JP. Novel scheme for defining the clinical implications of TP53 mutations in myeloid neoplasia. J Hematol Oncol 2023; 16:91. [PMID: 37537667 PMCID: PMC10401750 DOI: 10.1186/s13045-023-01480-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 07/14/2023] [Indexed: 08/05/2023] Open
Abstract
BACKGROUND TP53 mutations (TP53MT) occur in diverse genomic configurations. Particularly, biallelic inactivation is associated with poor overall survival in cancer. Lesions affecting only one allele might not be directly leukemogenic, questioning the presence of cryptic biallelic subclones in cases with dismal prognosis. METHODS We have collected clinical and molecular data of 7400 patients with myeloid neoplasms and applied a novel model by identifying an optimal VAF cutoff using a statistically robust strategy of sampling-based regression on survival data to accurately classify the TP53 allelic configuration and assess prognosis more precisely. RESULTS Overall, TP53MT were found in 1010 patients. Following the traditional criteria, 36% of the cases were classified as single hits, while 64% exhibited double hits genomic configuration. Using a newly developed molecular algorithm, we found that 579 (57%) patients had unequivocally biallelic, 239 (24%) likely contained biallelic, and 192 (19%) had most likely monoallelic TP53MT. Interestingly, our method was able to upstage 192 out of 352 (54.5%) traditionally single hit lesions into a probable biallelic category. Such classification was further substantiated by a survival-based model built after re-categorization. Among cases traditionally considered monoallelic, the overall survival of those with probable monoallelic mutations was similar to the one of wild-type patients and was better than that of patients with a biallelic configuration. As a result, patients with certain biallelic hits, regardless of the disease subtype (AML or MDS), had a similar prognosis. Similar results were observed when the model was applied to an external cohort. In addition, single-cell DNA studies unveiled the biallelic nature of previously considered monoallelic cases. CONCLUSION Our novel approach more accurately resolves TP53 genomic configuration and uncovers genetic mosaicism for the use in the clinical setting to improve prognostic evaluation.
Collapse
Affiliation(s)
- Waled Bahaj
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, 9620 Carnegie Ave N Building, Building NE6-250, Cleveland, OH, 44106, USA
- Division of Medical Oncology & Hematology, School of Medicine, University of Louisville, Louisville, KY, USA
| | - Tariq Kewan
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, 9620 Carnegie Ave N Building, Building NE6-250, Cleveland, OH, 44106, USA
- Division of Hematology & Oncology, Yale School of Medicine, New Haven, CT, USA
| | - Carmelo Gurnari
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, 9620 Carnegie Ave N Building, Building NE6-250, Cleveland, OH, 44106, USA
- Department of Biomedicine and Prevention, Ph.D. in Immunology, Molecular Medicine and Applied Biotechnology, University of Rome Tor Vergata, Rome, Italy
| | - Arda Durmaz
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, 9620 Carnegie Ave N Building, Building NE6-250, Cleveland, OH, 44106, USA
| | - Ben Ponvilawan
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, 9620 Carnegie Ave N Building, Building NE6-250, Cleveland, OH, 44106, USA
| | - Ishani Pandit
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, 9620 Carnegie Ave N Building, Building NE6-250, Cleveland, OH, 44106, USA
| | - Yasuo Kubota
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, 9620 Carnegie Ave N Building, Building NE6-250, Cleveland, OH, 44106, USA
| | - Olisaemeka D Ogbue
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, 9620 Carnegie Ave N Building, Building NE6-250, Cleveland, OH, 44106, USA
| | - Misam Zawit
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, 9620 Carnegie Ave N Building, Building NE6-250, Cleveland, OH, 44106, USA
| | - Yazan Madanat
- Department of Internal Medicine, Division of Hematology and Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Taha Bat
- Department of Internal Medicine, Division of Hematology and Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | - Hussein Awada
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, 9620 Carnegie Ave N Building, Building NE6-250, Cleveland, OH, 44106, USA
| | - Ramsha Ahmed
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, 9620 Carnegie Ave N Building, Building NE6-250, Cleveland, OH, 44106, USA
| | - Minako Mori
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, 9620 Carnegie Ave N Building, Building NE6-250, Cleveland, OH, 44106, USA
| | | | | | - Valeria Visconte
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, 9620 Carnegie Ave N Building, Building NE6-250, Cleveland, OH, 44106, USA.
| | - Jaroslaw P Maciejewski
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, 9620 Carnegie Ave N Building, Building NE6-250, Cleveland, OH, 44106, USA.
| |
Collapse
|
13
|
Chaudhuri D, Khan KI, Al Shouli R, Allakky A, Ferguson AA, Khan AI, Abuzainah B, Gutlapalli SD, Hamid P. Secondary Acute Myeloid Leukemia in Myelodysplastic Syndrome Patients Aged Over 60 Years. Cureus 2023; 15:e40124. [PMID: 37425516 PMCID: PMC10329419 DOI: 10.7759/cureus.40124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 06/07/2023] [Indexed: 07/11/2023] Open
Abstract
In myelodysplastic syndrome (MDS), neoplastic cells originate in hematopoietic stem cells of the bone marrow, causing dysplasia in multiple cell lines. This may ultimately lead to cytopenia and anemia. MDS generally occurs in patients aged over 60 years, and if left unchecked, it can lead to secondary acute myeloid leukemia (AML), which has a worse prognosis than de novo AML. Hence, it is important to find methods to treat and manage MDS and prevent secondary AML. This review tries to point out the best methods to find out the best possible treatment for MDS, which can lead to its remission or possibly cure and prevent it from progressing into AML. In order to do this, the pathogenesis of MDS is taken into account, and it is clear that the various molecular mutations that lead to the hematologic neoplasms directly affect the different chemotherapy agents that can be used. The different common mutations leading to MDS and secondary AML have been reviewed along with the drugs best inclined to target them. Some mutations lead to a worse prognosis than others, and ongoing mutations can lead to drug-resistant neoplasms. Thus, drugs targeting the mutations need to be used. The feasibility of an allogeneic stem cell transplant is also taken into account, as this can lead to a total cure of MDS. Methods of decreasing post-transplant recovery time and complications have been looked into, and more studies need to be done on the matter. Currently, it is clear that a more personalized approach to each individual case with its own set of drug combinations is the best approach to treating MDS and secondary leukemia and increasing the overall survival (OS).
Collapse
Affiliation(s)
- Dipabali Chaudhuri
- Research, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Kokab Irfan Khan
- Research, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Roba Al Shouli
- Pediatrics, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Akhil Allakky
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Asila A Ferguson
- Psychiatry, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Aujala Irfan Khan
- Research, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Baraa Abuzainah
- General Practice, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Sai Dheeraj Gutlapalli
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Pousette Hamid
- Neurology, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| |
Collapse
|
14
|
Kewan T, Durmaz A, Bahaj W, Gurnari C, Terkawi L, Awada H, Ogbue OD, Ahmed R, Pagliuca S, Awada H, Kubota Y, Mori M, Ponvilawan B, Al-Share B, Patel BJ, Carraway HE, Scott J, Balasubramanian SK, Bat T, Madanat Y, Sekeres MA, Haferlach T, Visconte V, Maciejewski JP. Molecular patterns identify distinct subclasses of myeloid neoplasia. Nat Commun 2023; 14:3136. [PMID: 37253784 PMCID: PMC10229666 DOI: 10.1038/s41467-023-38515-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 05/03/2023] [Indexed: 06/01/2023] Open
Abstract
Genomic mutations drive the pathogenesis of myelodysplastic syndromes and acute myeloid leukemia. While morphological and clinical features have dominated the classical criteria for diagnosis and classification, incorporation of molecular data can illuminate functional pathobiology. Here we show that unsupervised machine learning can identify functional objective molecular clusters, irrespective of anamnestic clinico-morphological features, despite the complexity of the molecular alterations in myeloid neoplasia. Our approach reflects disease evolution, informed classification, prognostication, and molecular interactions. We apply machine learning methods on 3588 patients with myelodysplastic syndromes and secondary acute myeloid leukemia to identify 14 molecularly distinct clusters. Remarkably, our model shows clinical implications in terms of overall survival and response to treatment even after adjusting to the molecular international prognostic scoring system (IPSS-M). In addition, the model is validated on an external cohort of 412 patients. Our subclassification model is available via a web-based open-access resource ( https://drmz.shinyapps.io/mds_latent ).
Collapse
Affiliation(s)
- Tariq Kewan
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA.
- Department of Hematology and Medical Oncology, Yale University, New Haven, CT, USA.
| | - Arda Durmaz
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
- Systems Biology and Bioinformatics Department, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Waled Bahaj
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Carmelo Gurnari
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
- Department of Biomedicine and Prevention, Ph.D. in Immunology, Molecular Medicine and Applied Biotechnology, University of Rome Tor Vergata, Rome, Italy
| | - Laila Terkawi
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Hussein Awada
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Olisaemeka D Ogbue
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Ramsha Ahmed
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Simona Pagliuca
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
- Department of Clinical Hematology, CHRU de Nancy, Nancy, France
| | - Hassan Awada
- Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Yasuo Kubota
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Minako Mori
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Ben Ponvilawan
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Bayan Al-Share
- Department of Hematology and Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
| | - Bhumika J Patel
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Hetty E Carraway
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Jacob Scott
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
- Systems Biology and Bioinformatics Department, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Suresh K Balasubramanian
- Department of Hematology and Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
| | - Taha Bat
- Department of Internal Medicine, Division of Hematology and Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yazan Madanat
- Department of Internal Medicine, Division of Hematology and Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Mikkael A Sekeres
- Division of Hematology, Sylvester Cancer Center, University of Miami, Miami, FL, USA
| | | | - Valeria Visconte
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA.
| | - Jaroslaw P Maciejewski
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
15
|
Bănescu C, Tripon F, Muntean C. The Genetic Landscape of Myelodysplastic Neoplasm Progression to Acute Myeloid Leukemia. Int J Mol Sci 2023; 24:5734. [PMID: 36982819 PMCID: PMC10058431 DOI: 10.3390/ijms24065734] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/12/2023] [Accepted: 03/15/2023] [Indexed: 03/19/2023] Open
Abstract
Myelodysplastic neoplasm (MDS) represents a heterogeneous group of myeloid disorders that originate from the hematopoietic stem and progenitor cells that lead to the development of clonal hematopoiesis. MDS was characterized by an increased risk of transformation into acute myeloid leukemia (AML). In recent years, with the aid of next-generation sequencing (NGS), an increasing number of molecular aberrations were discovered, such as recurrent mutations in FLT3, NPM1, DNMT3A, TP53, NRAS, and RUNX1 genes. During MDS progression to leukemia, the order of gene mutation acquisition is not random and is important when considering the prognostic impact. Moreover, the co-occurrence of certain gene mutations is not random; some of the combinations of gene mutations seem to have a high frequency (ASXL1 and U2AF1), while the co-occurrence of mutations in splicing factor genes is rarely observed. Recent progress in the understanding of molecular events has led to MDS transformation into AML and unraveling the genetic signature has paved the way for developing novel targeted and personalized treatments. This article reviews the genetic abnormalities that increase the risk of MDS transformation to AML, and the impact of genetic changes on evolution. Selected therapies for MDS and MDS progression to AML are also discussed.
Collapse
Affiliation(s)
- Claudia Bănescu
- Center for Advanced Medical and Pharmaceutical Research, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania
- Genetics Department, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania
| | - Florin Tripon
- Center for Advanced Medical and Pharmaceutical Research, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania
- Genetics Department, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania
| | - Carmen Muntean
- Pediatric Department, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania
| |
Collapse
|
16
|
Bahaj W, Kewan T, Gurnari C, Durmaz A, Ponvilawan B, Pandit I, Kubota Y, Ogbue OD, Zawit M, Madanat Y, Bat T, Balasubramanian SK, Awada H, Ahmed R, Mori M, Meggendorfer M, Haferlach T, Visconte V, Maciejewski JP. Novel Scheme for Defining the Clinical Implications of TP53 Mutations in Myeloid Neoplasia. RESEARCH SQUARE 2023:rs.3.rs-2656206. [PMID: 36945617 PMCID: PMC10029089 DOI: 10.21203/rs.3.rs-2656206/v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Background: TP53 mutations ( TP53 MT ) occur in diverse genomic configurations. Particularly, biallelic inactivation is associated with poor overall survival in cancer. Lesions affecting only one allele might not be directly leukemogenic, questioning the presence of cryptic biallelic subclones in cases with dismal prognosis. Methods: We have collected clinical and molecular data of 7400 patients with myeloid neoplasms and applied a novel model to properly resolve the allelic configuration of TP53 MT and assess prognosis more precisely. Results: Overall, TP53 MT were found in 1010 patients. Following the traditional criteria, 36% of cases were classified as single hits while 64% exhibited double hits genomic configuration. Using a newly developed molecular algorithm, we found that 579 (57%) patients had unequivocally biallelic, 239 (24%) likely contained biallelic, and 192 (19%) had most likely monoallelic TP53 MT . Such classification was further substantiated by a survival-based model built after re-categorization. Among cases traditionally considered monoallelic, the overall survival of those with probable monoallelic mutations was similar to the one of wild-type patients and was better than that of patients with a biallelic configuration. As a result, patients with certain biallelic hits, regardless of the disease subtype (AML or MDS), had a similar prognosis. Similar results were observed when the model was applied to an external cohort. These results were recapitulated by single-cell DNA studies, which unveiled the biallelic nature of previously considered monoallelic cases. Conclusion: Our novel approach more accurately resolves TP53 genomic configuration and uncovers genetic mosaicism for the use in the clinical setting to improve prognostic evaluation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Taha Bat
- University of Texas Southwestern Medical Center
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Huber S, Haferlach T, Meggendorfer M, Hutter S, Hoermann G, Baer C, Kern W, Haferlach C. SF3B1 mutated MDS: Blast count, genetic co-abnormalities and their impact on classification and prognosis. Leukemia 2022; 36:2894-2902. [PMID: 36261576 PMCID: PMC9712089 DOI: 10.1038/s41375-022-01728-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/06/2022] [Accepted: 10/10/2022] [Indexed: 11/09/2022]
Abstract
Recently, MDS with mutated SF3B1 and blast count <5% was proposed as distinct entity with favorable prognosis by the international working group for the prognosis of MDS (IWG-PM), the 5th edition of the WHO classification and the International Consensus Classification. To further characterize this entity with respect to the genomic landscape, AML transformation rate and clinical outcome, we analyzed 734 MDS patients by whole genome sequencing. SF3B1 mutations were identified in 31% (n = 231), most frequently accompanied by TET2 mutations (29%). 144/231 (62%) SF3B1mut samples fulfilled entity criteria proposed by IWG-PM (SF3B1ent). These cases were associated with longer survival, lower AML transformation rate, normal karyotypes and harbored less accompanying mutations compared to SF3B1mut samples not falling into the proposed SF3B1 entity (SF3B1nent). Of SF3B1mut cases 7% (15/231; SF3B1ent: 3/144 [2%]; SF3B1nent: 12/87 [14%]) progressed to AML compared to 15% SF3B1 wild-type patients (75/503). Of these 15 SF3B1mut cases, 10 (67%) showed RUNX1 mutations at MDS or AML stage. Multivariate analysis revealed that del(5q) and RUNX1 mutations were independent negative prognostic factors for overall survival, while blast count >5% was not. In conclusion, SF3B1mut MDS has a favorable prognosis independent of blast count if karyotype and RUNX1 mutations are considered.
Collapse
Affiliation(s)
- Sandra Huber
- MLL Munich Leukemia Laboratory, Max-Lebsche-Platz 31, 81377, Munich, Germany
| | - Torsten Haferlach
- MLL Munich Leukemia Laboratory, Max-Lebsche-Platz 31, 81377, Munich, Germany
| | - Manja Meggendorfer
- MLL Munich Leukemia Laboratory, Max-Lebsche-Platz 31, 81377, Munich, Germany
| | - Stephan Hutter
- MLL Munich Leukemia Laboratory, Max-Lebsche-Platz 31, 81377, Munich, Germany
| | - Gregor Hoermann
- MLL Munich Leukemia Laboratory, Max-Lebsche-Platz 31, 81377, Munich, Germany
| | - Constance Baer
- MLL Munich Leukemia Laboratory, Max-Lebsche-Platz 31, 81377, Munich, Germany
| | - Wolfgang Kern
- MLL Munich Leukemia Laboratory, Max-Lebsche-Platz 31, 81377, Munich, Germany
| | - Claudia Haferlach
- MLL Munich Leukemia Laboratory, Max-Lebsche-Platz 31, 81377, Munich, Germany.
| |
Collapse
|
18
|
Acha P, Mallo M, Solé F. Myelodysplastic Syndromes with Isolated del(5q): Value of Molecular Alterations for Diagnostic and Prognostic Assessment. Cancers (Basel) 2022; 14:5531. [PMID: 36428627 PMCID: PMC9688702 DOI: 10.3390/cancers14225531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/30/2022] [Accepted: 11/07/2022] [Indexed: 11/12/2022] Open
Abstract
Myelodysplastic syndromes (MDS) are a group of clonal hematological neoplasms characterized by ineffective hematopoiesis in one or more bone marrow cell lineages. Consequently, patients present with variable degrees of cytopenia and dysplasia. These characteristics constitute the basis for the World Health Organization (WHO) classification criteria of MDS, among other parameters, for the current prognostic scoring system. Although nearly half of newly diagnosed patients present a cytogenetic alteration, and almost 90% of them harbor at least one somatic mutation, MDS with isolated del(5q) constitutes the only subtype clearly defined by a cytogenetic alteration. The results of several clinical studies and the advances of new technologies have allowed a better understanding of the biological basis of this disease. Therefore, since the first report of the "5q- syndrome" in 1974, changes and refinements have been made in the definition and the characteristics of the patients with MDS and del(5q). Moreover, specific genetic alterations have been found to be associated with the prognosis and response to treatments. The aim of this review is to summarize the current knowledge of the molecular background of MDS with isolated del(5q), focusing on the clinical and prognostic relevance of cytogenetic alterations and somatic mutations.
Collapse
Affiliation(s)
- Pamela Acha
- MDS Group, Institut de Recerca Contra la Leucèmia Josep Carreras, ICO-Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, 08916 Badalona, Spain
| | - Mar Mallo
- MDS Group, Institut de Recerca Contra la Leucèmia Josep Carreras, ICO-Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, 08916 Badalona, Spain
- Microarrays Unit, Institut de Recerca Contra la Leucèmia Josep Carreras, ICO-Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, 08916 Badalona, Spain
| | - Francesc Solé
- MDS Group, Institut de Recerca Contra la Leucèmia Josep Carreras, ICO-Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, 08916 Badalona, Spain
- Microarrays Unit, Institut de Recerca Contra la Leucèmia Josep Carreras, ICO-Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, 08916 Badalona, Spain
| |
Collapse
|
19
|
Xie Z, Chen EC, Stahl M, Zeidan AM. Prognostication in myelodysplastic syndromes (neoplasms): Molecular risk stratification finally coming of age. Blood Rev 2022; 59:101033. [PMID: 36357283 DOI: 10.1016/j.blre.2022.101033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 11/06/2022]
Abstract
Accurate risk prognostication is central to the management of myelodysplastic syndromes, given the widely heterogeneous clinical outcomes of these bone marrow failure disorders. Over the past decade, the rapidly expanding compendium of molecular lesions in myelodysplastic syndrome (MDS) has offered unprecedented insight into MDS pathobiology. Recently, molecular prognostic models such as the Molecular International Prognostic Scoring System (IPSS-M) have leveraged the wellspring of genetic data to improve upon traditional risk models such as the Revised IPSS (IPSS-R), but also added substantial complexity. In this review, we highlight early MDS prognostic models, the significant advancements in MDS genomics since then, and the recent advent of molecular based prognostic models. We conclude by discussing important opportunities and challenges in the management of MDS as we arrive at the molecular frontier.
Collapse
|
20
|
Chan O, Ali NA, Sallman D, Padron E, Lancet J, Komrokji R. Therapeutic Outcomes and Prognostic Impact of Gene Mutations Including TP53 and SF3B1 in Patients with Del(5q) Myelodysplastic Syndromes (MDS). CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2022; 22:e467-e476. [PMID: 35101379 DOI: 10.1016/j.clml.2022.01.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/16/2021] [Accepted: 01/03/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Genetic alterations are increasingly being recognized to play an important role in both diagnosis and prognosis of MDS. In general, MDS patients with SF3B1 mutations (MT) are known to have favorable outcomes whereas those with TP53 mutations have dismal survivals. However, it is unclear if the impact of these mutations applies to all subtypes of MDS including del(5q) which is known for its response to lenalidomide and better prognosis. MATERIALS AND METHODS We retrospectively reviewed 132 del(5q) MDS patients who were treated at the Moffitt Cancer Center (2001-2019). RESULTS Among patients who received lenalidomide (n = 98), 50%, 42.9%, and 7.1% achieved hematologic improvement or better, no response, and disease progression/death with a median overall survival (mOS) of 93.2, 72.4, and 25.6 months, respectively (P < .0001). The mOS was 73.3 months but only 25.6 months after patients stopped lenalidomide. TP53 was the most common mutation accounting for 23.8% of the patients. Of the 63 patients with molecular data available, 23.8% harbored TP53 MT and 10% with SF3B1 MT. TP53 status did not impact OS (MT 86.4 vs. wild-type (WT) 73.3 months; P = .72) but those with SF3B1 mutations had a significantly shorter mOS compared to WT (23.9 vs. 83.5 months; P = .001). Multivariate analysis confirmed lenalidomide response and SF3B1 mutations are independently associated with outcomes. CONCLUSION Our findings indicate many del(5q) MDS patients will benefit from lenalidomide but survival after its failure is limited. Mutations known to have prognostic impact in MDS at large may not have the same implications in the del(5q) subset.
Collapse
Affiliation(s)
- Onyee Chan
- Department of Malignant Hematology, Moffitt Cancer Center, Tampa, FL
| | - Najla Al Ali
- Department of Malignant Hematology, Moffitt Cancer Center, Tampa, FL
| | - David Sallman
- Department of Malignant Hematology, Moffitt Cancer Center, Tampa, FL
| | - Eric Padron
- Department of Malignant Hematology, Moffitt Cancer Center, Tampa, FL
| | - Jeffrey Lancet
- Department of Malignant Hematology, Moffitt Cancer Center, Tampa, FL
| | - Rami Komrokji
- Department of Malignant Hematology, Moffitt Cancer Center, Tampa, FL.
| |
Collapse
|
21
|
Awada H, Durmaz A, Gurnari C, Kishtagari A, Meggendorfer M, Kerr CM, Kuzmanovic T, Durrani J, Shreve J, Nagata Y, Radivoyevitch T, Advani AS, Ravandi F, Carraway HE, Nazha A, Haferlach C, Saunthararajah Y, Scott J, Visconte V, Kantarjian H, Kadia T, Sekeres MA, Haferlach T, Maciejewski JP. Machine learning integrates genomic signatures for subclassification beyond primary and secondary acute myeloid leukemia. Blood 2021; 138:1885-1895. [PMID: 34075412 PMCID: PMC8767789 DOI: 10.1182/blood.2020010603] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 05/04/2021] [Indexed: 11/20/2022] Open
Abstract
Although genomic alterations drive the pathogenesis of acute myeloid leukemia (AML), traditional classifications are largely based on morphology, and prototypic genetic founder lesions define only a small proportion of AML patients. The historical subdivision of primary/de novo AML and secondary AML has shown to variably correlate with genetic patterns. The combinatorial complexity and heterogeneity of AML genomic architecture may have thus far precluded genomic-based subclassification to identify distinct molecularly defined subtypes more reflective of shared pathogenesis. We integrated cytogenetic and gene sequencing data from a multicenter cohort of 6788 AML patients that were analyzed using standard and machine learning methods to generate a novel AML molecular subclassification with biologic correlates corresponding to underlying pathogenesis. Standard supervised analyses resulted in modest cross-validation accuracy when attempting to use molecular patterns to predict traditional pathomorphologic AML classifications. We performed unsupervised analysis by applying the Bayesian latent class method that identified 4 unique genomic clusters of distinct prognoses. Invariant genomic features driving each cluster were extracted and resulted in 97% cross-validation accuracy when used for genomic subclassification. Subclasses of AML defined by molecular signatures overlapped current pathomorphologic and clinically defined AML subtypes. We internally and externally validated our results and share an open-access molecular classification scheme for AML patients. Although the heterogeneity inherent in the genomic changes across nearly 7000 AML patients was too vast for traditional prediction methods, machine learning methods allowed for the definition of novel genomic AML subclasses, indicating that traditional pathomorphologic definitions may be less reflective of overlapping pathogenesis.
Collapse
MESH Headings
- Bayes Theorem
- Cytogenetics
- Gene Expression Regulation, Leukemic
- Genomics
- Humans
- Leukemia, Myeloid, Acute/classification
- Leukemia, Myeloid, Acute/diagnosis
- Leukemia, Myeloid, Acute/genetics
- Machine Learning
- Mutation
- Neoplasms, Second Primary/classification
- Neoplasms, Second Primary/diagnosis
- Neoplasms, Second Primary/genetics
- Translocation, Genetic
Collapse
Affiliation(s)
- Hassan Awada
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH
| | - Arda Durmaz
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH
| | - Carmelo Gurnari
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH
| | - Ashwin Kishtagari
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH
| | | | - Cassandra M Kerr
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH
| | - Teodora Kuzmanovic
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH
| | - Jibran Durrani
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH
| | - Jacob Shreve
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH
| | - Yasunobu Nagata
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH
| | | | - Anjali S Advani
- Leukemia Program, Department of Hematology and Medical Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH
| | - Farhad Ravandi
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX; and
| | - Hetty E Carraway
- Leukemia Program, Department of Hematology and Medical Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH
| | - Aziz Nazha
- Leukemia Program, Department of Hematology and Medical Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH
- Center for Clinical Artificial Intelligence, Cleveland Clinic, Cleveland, OH
| | | | - Yogen Saunthararajah
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH
- Leukemia Program, Department of Hematology and Medical Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH
| | - Jacob Scott
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH
| | - Valeria Visconte
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH
| | - Hagop Kantarjian
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX; and
| | - Tapan Kadia
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX; and
| | - Mikkael A Sekeres
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH
- Leukemia Program, Department of Hematology and Medical Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH
| | | | - Jaroslaw P Maciejewski
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH
- Leukemia Program, Department of Hematology and Medical Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH
| |
Collapse
|
22
|
Wang SA, Ok CY, Kim AS, Lucas F, Morgan EA, Thakral B, Patel S, Nardi V, Patel KM, Weinberg OK, Hasserjian RP. Myelodysplastic syndromes with no somatic mutations detected by next-generation sequencing display similar features to myelodysplastic syndromes with detectable mutations. Am J Hematol 2021; 96:E420-E423. [PMID: 34416041 DOI: 10.1002/ajh.26325] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 08/02/2021] [Accepted: 08/09/2021] [Indexed: 11/10/2022]
Affiliation(s)
- Sa A. Wang
- Department of Hematopathology MD Anderson Cancer Center Houston Texas USA
| | - Chi Young Ok
- Department of Hematopathology MD Anderson Cancer Center Houston Texas USA
| | - Annette S. Kim
- Department of Pathology Brigham & Women's Hospital Boston Massachusetts USA
| | - Fabienne Lucas
- Department of Pathology Brigham & Women's Hospital Boston Massachusetts USA
| | | | - Beenu Thakral
- Department of Hematopathology MD Anderson Cancer Center Houston Texas USA
| | - Sanjay Patel
- Department of Pathology Weill‐Cornell Medical Center New York New York USA
| | - Valentina Nardi
- Department of Pathology Massachusetts General Hospital Boston Massachusetts USA
| | - Keyur M. Patel
- Department of Hematopathology MD Anderson Cancer Center Houston Texas USA
| | - Olga K. Weinberg
- Department of Pathology University of Texas Southwestern Medical Center Dallas Texas USA
| | | |
Collapse
|
23
|
Towards Understanding the Pathogenicity of DROSHA Mutations in Oncohematology. Cells 2021; 10:cells10092357. [PMID: 34572006 PMCID: PMC8471307 DOI: 10.3390/cells10092357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/01/2021] [Accepted: 09/06/2021] [Indexed: 11/16/2022] Open
Abstract
Myelodysplastic syndrome (MDS) refers to a heterogeneous group of closely related clonal hematopoietic disorders, which are characterized by accumulation of somatic mutations. The acquired mutation burden is suggested to define the pathway and consequent phenotype of the pathology. Recent studies have called attention to the role of miRNA biogenesis genes in MDS progression; in particular, the mutational pressure of the DROSHA gene was determined. Therefore, this highlights the importance of studying the impact of all collected missense mutations found within the DROSHA gene in oncohematology that might affect the functionality of the protein. In this study, the selected mutations were extensively examined by computational screening, and the most deleterious were subjected to a further molecular dynamic simulation in order to uncover the molecular mechanism of the structural damage to the protein altering its biological function. The most significant effect was found for variants I625K, L1047S, and H1170D, presumably affecting the endonuclease activity of DROSHA. Such alterations arisen during MDS progression should be taken into consideration as evoking certain clinical traits in the malignifying clonal evolution.
Collapse
|
24
|
Evaluating the Effect of 3'-UTR Variants in DICER1 and DROSHA on Their Tissue-Specific Expression by miRNA Target Prediction. Curr Issues Mol Biol 2021; 43:605-617. [PMID: 34287278 PMCID: PMC8929110 DOI: 10.3390/cimb43020044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 06/24/2021] [Accepted: 07/04/2021] [Indexed: 11/16/2022] Open
Abstract
Untranslated gene regions (UTRs) play an important role in controlling gene expression. 3'-UTRs are primarily targeted by microRNA (miRNA) molecules that form complex gene regulatory networks. Cancer genomes are replete with non-coding mutations, many of which are connected to changes in tumor gene expression that accompany the development of cancer and are associated with resistance to therapy. Therefore, variants that occurred in 3'-UTR under cancer progression should be analysed to predict their phenotypic effect on gene expression, e.g., by evaluating their impact on miRNA target sites. Here, we analyze 3'-UTR variants in DICER1 and DROSHA genes in the context of myelodysplastic syndrome (MDS) development. The key features of this analysis include an assessment of both "canonical" and "non-canonical" types of mRNA-miRNA binding and tissue-specific profiling of miRNA interactions with wild-type and mutated genes. As a result, we obtained a list of DICER1 and DROSHA variants likely altering the miRNA sites and, therefore, potentially leading to the observed tissue-specific gene downregulation. All identified variants have low population frequency consistent with their potential association with pathology progression.
Collapse
|
25
|
Chen-Liang TH. Prognosis in Myelodysplastic Syndromes: The Clinical Challenge of Genomic Integration. J Clin Med 2021; 10:2052. [PMID: 34064707 PMCID: PMC8151135 DOI: 10.3390/jcm10102052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/22/2021] [Accepted: 05/03/2021] [Indexed: 11/17/2022] Open
Abstract
Myelodysplastic syndromes (MDS) are a group of clonal hematopoietic neoplasms characterized by ineffective hematopoiesis and myelodysplasia with a variable spectrum of clinical-biological features that can be used to build a prognostic estimation. This review summarizes the current most widely used prognostic scoring systems and gives a general view of the prognostic impact of somatic mutations in MDS patients.
Collapse
Affiliation(s)
- Tzu-Hua Chen-Liang
- Hematology and Oncology Unit, University Hospital Morales Meseguer, Marques de los Velez s/n, 30008 Murcia, Spain
| |
Collapse
|
26
|
Chang YH. Myelodysplastic syndromes and overlap syndromes. Blood Res 2021; 56:S51-S64. [PMID: 33935036 PMCID: PMC8094000 DOI: 10.5045/br.2021.2021010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 12/11/2022] Open
Abstract
Myelodysplastic syndromes (MDS) are a heterogeneous group of clonal hematological neoplasms characterized by ineffective hematopoiesis, morphologic dysplasia, and cytopenia. MDS overlap syndromes include various disorders, such as myelodysplastic/myeloproliferative neoplasms and hypoplastic MDS with aplastic anemia characteristics. MDS overlap syndromes share the characteristics of other diseases, which make differential diagnoses challenging. Advances in genomic studies have led to the discovery of frequent mutations in MDS and overlap syndromes; however, most of the mutations are not specific for the diagnosis of these diseases. The molecular characteristics of the overlap syndromes usually do not show a just "in-between" form but rather heterogeneous features. Established diagnostic criteria for these diseases based on clinical, morphologic, and laboratory features are still useful when combined with genomic data. It is expected that further studies for MDS and overlap syndromes will place emphasis on the roles of mutations as therapeutic targets and prognostic indicators.
Collapse
Affiliation(s)
- Yoon Hwan Chang
- Department of Laboratory Medicine, Seoul National University Hospital, Seoul, Korea
| |
Collapse
|
27
|
Moiseev IS, Tcvetkov NY, Barkhatov IM, Barabanshikova MV, Bug DS, Petuhova NV, Tishkov AV, Bakin EA, Izmailova EA, Shakirova AI, Kulagin AD, Morozova EV. High mutation burden in the checkpoint and micro-RNA processing genes in myelodysplastic syndrome. PLoS One 2021; 16:e0248430. [PMID: 33730109 PMCID: PMC7968630 DOI: 10.1371/journal.pone.0248430] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 02/25/2021] [Indexed: 12/25/2022] Open
Abstract
A number of sequencing studies identified the prognostic impact of somatic mutations in myelodysplastic syndrome (MDS). However the majority of them focused on methylation regulation, apoptosis and proliferation genes. Despite the number of experimental studies published on the role of micro-RNA processing and checkpoint genes in the development of MDS, the clinical data about mutational landscape in these genes is limited. We performed a pilot study which evaluated mutational burden in these genes and their association with common MDS mutations. High prevalence of mutations was observed in the genes studied: 54% had mutations in DICER1, 46% had mutations in LAG3, 20% in CTLA4, 23% in B7-H3, 17% in DROSHA, 14% in PD-1 and 3% in PD-1L. Cluster analysis that included these mutations along with mutations in ASXL1, DNMT3A, EZH2, IDH1, RUNX1, SF3B1, SRSF2, TET2 and TP53 effectively predicted overall survival in the study group (HR 4.2, 95%CI 1.3-13.6, p = 0.016). The study results create the rational for incorporating micro-RNA processing and checkpoint genes in the sequencing panels for MDS and evaluate their role in the multicenter studies.
Collapse
Affiliation(s)
- Ivan Sergeevich Moiseev
- RM Gorbacheva Research Institute, Pavlov University, Saint-Petersburg, Russian Federation
- * E-mail:
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Kuykendall AT, Tokumori FC, Komrokji RS. Traipsing Through Muddy Waters: A Critical Review of the Myelodysplastic Syndrome/Myeloproliferative Neoplasm (MDS/MPN) Overlap Syndromes. Hematol Oncol Clin North Am 2021; 35:337-352. [PMID: 33641873 DOI: 10.1016/j.hoc.2020.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Myelodysplastic syndrome/Myeloproliferative neoplasms (MDS/MPNs) are molecularly complex, clinically heterogeneous diseases that exhibit proliferative and dysplastic features. Diagnostic criteria use clinical, pathologic, and genomic features to distinguish between disease entities, though considerable clinical and genetic overlap persists. MDS/MPNs are associated with a poor prognosis, save for MDS/MPN with ring sideroblasts and thrombocytosis, which can behave more indolently. The current treatment approach is risk-adapted and symptom-directed and largely extrapolated from experience in MDS or MPN. Gene sequencing has demonstrated frequent mutations involving signaling, epigenetic, and splicing pathways, which present numerous therapeutic opportunities for clinical investigation.
Collapse
Affiliation(s)
- Andrew T Kuykendall
- Moffitt Cancer Center, 12902 USF Magnolia Drive, CSB 7th Floor, Tampa, FL 33612, USA.
| | - Franco Castillo Tokumori
- University of South Florida, 17 Davis Boulevard, Suite 308, Tampa, FL 33606, USA. https://twitter.com/CTFrancoMD
| | - Rami S Komrokji
- Moffitt Cancer Center, 12902 USF Magnolia Drive, CSB 7th Floor, Tampa, FL 33612, USA. https://twitter.com/Ramikomrokji
| |
Collapse
|
29
|
Guan Y, Hasipek M, Tiwari AD, Maciejewski JP, Jha BK. TET-dioxygenase deficiency in oncogenesis and its targeting for tumor-selective therapeutics. Semin Hematol 2021; 58:27-34. [PMID: 33509440 PMCID: PMC7938524 DOI: 10.1053/j.seminhematol.2020.12.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/04/2020] [Accepted: 12/19/2020] [Indexed: 02/08/2023]
Abstract
TET2 is one of the most frequently mutated genes in myeloid neoplasms. TET2 loss-of-function perturbs myeloid differentiation and causes clonal expansion. Despite extensive knowledge regarding biochemical mechanisms underlying distorted myeloid differentiation, targeted therapies are lagging. Here we review known biochemical mechanisms and candidate therapies that emerge from this. Specifically, we discuss the potential utility of vitamin C to compensate for TET-dioxygenase deficiency, to thereby restore the biochemical function. An alternative approach exploits the TET-deficient state for synthetic lethality, exploiting the fact that a minimum level of TET-dioxygenase activity is required for cell survival, rendering TET2-mutant malignant cells selectively vulnerable to inhibitors of TET-function.
Collapse
Affiliation(s)
- Yihong Guan
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH
| | - Metis Hasipek
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH
| | - Anand D Tiwari
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH
| | - Jaroslaw P Maciejewski
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH
| | - Babal K Jha
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH.
| |
Collapse
|
30
|
Feld J, Belasen A, Navada SC. Myelodysplastic syndromes: a review of therapeutic progress over the past 10 years. Expert Rev Anticancer Ther 2020; 20:465-482. [PMID: 32479130 DOI: 10.1080/14737140.2020.1770088] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Myelodysplastic syndromes (MDS) represent a range of bone marrow disorders, with patients affected by cytopenias and risk of progression to AML. There are limited therapeutic options available for patients, including hypomethylating agents (azacitidine/decitabine), growth factor support, lenalidomide, and allogeneic stem cell transplant. AREAS COVERED This review provides an overview of the progress made over the past decade for emerging therapies for lower- and higher-risk MDS (MDS-HR). We also cover advances in prognostication, supportive care, and use of allogeneic SCT in MDS. EXPERT OPINION While there have been no FDA-approved therapies for MDS in the past decade, we anticipate the approval of luspatercept based on results from the MEDALIST trial for patients with lower-risk MDS (MDS-LR) and ringed sideroblasts who have failed or are ineligible for erythropoiesis stimulating agents (ESAs). With growing knowledge of the biologic and molecular mechanisms underlying MDS, it is anticipated that new therapies will be approved in the coming years.
Collapse
Affiliation(s)
- Jonathan Feld
- Tisch Cancer Institute, Division of Hematology/Oncology, Icahn School of Medicine , New York, USA
| | - Abigail Belasen
- Department of Medicine, Icahn School of Medicine , New York, USA
| | - Shyamala C Navada
- Tisch Cancer Institute, Division of Hematology/Oncology, Icahn School of Medicine , New York, USA
| |
Collapse
|
31
|
Cumbo C, Tota G, Anelli L, Zagaria A, Specchia G, Albano F. TP53 in Myelodysplastic Syndromes: Recent Biological and Clinical Findings. Int J Mol Sci 2020; 21:E3432. [PMID: 32414002 PMCID: PMC7279310 DOI: 10.3390/ijms21103432] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 05/09/2020] [Accepted: 05/11/2020] [Indexed: 12/15/2022] Open
Abstract
TP53 dysregulation plays a pivotal role in the molecular pathogenesis of myelodysplastic syndromes (MDS), identifying a subgroup of patients with peculiar features. In this review we report the recent biological and clinical findings of TP53-mutated MDS, focusing on the molecular pathways activation and on its impact on the cellular physiology. In MDS, TP53 mutational status is deeply associated with del(5q) syndrome and its dysregulation impacts on cell cycle, DNA repair and apoptosis inducing chromosomal instability and the clonal evolution of disease. TP53 defects influence adversely the MDS clinical outcome and the treatment response rate, thus new therapeutic approaches are being developed for these patients. TP53 allelic state characterization and the mutational burden evaluation can therefore predict prognosis and identify the subgroup of patients eligible for targeted therapy. For these reasons, in the era of precision medicine, the MDS diagnostic workup cannot do without the complete assessment of TP53 mutational profile.
Collapse
Affiliation(s)
| | | | | | | | | | - Francesco Albano
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, 70124 Bari, Italy; (C.C.); (G.T.); (L.A.); (A.Z.); (G.S.)
| |
Collapse
|
32
|
Kirito K. Myeloid neoplasm with isolated del(5q) and the MPLW515L mutation fulfills the WHO diagnostic criteria for ET. Int J Hematol 2020; 112:238-242. [PMID: 32246278 DOI: 10.1007/s12185-020-02872-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 03/26/2020] [Accepted: 03/26/2020] [Indexed: 11/24/2022]
Abstract
A 70-year-old male was referred to our hospital for marked thrombocytosis without anemia. The patient simultaneously presented with an MPL W515L mutation, one of the major driver mutations in essential thrombocythemia (ET), and deletion of 5q, a characteristic cytogenetic abnormality in myelodysplastic syndrome (MDS). Bone marrow examination showed a combination of both mature hyperlobulated megakaryocytes, as found in ET, and small hypolobulated megakaryocytes, typically found in MDS with del(5q). The present case is consistent with the recently proposed category of myeloid neoplasms with isolated del(5q) and an MPN driver mutation.
Collapse
Affiliation(s)
- Keita Kirito
- Department of Hematology and Oncology, University of Yamanashi, 1110, Shimokato, Chuo, Yamanashi-ken, 409-3898, Japan.
| |
Collapse
|
33
|
|
34
|
Sangiorgio VFI, Orazi A, Arber DA. Myelodysplastic/myeloproliferative neoplasms: are morphology and immunophenotyping still relevant? Best Pract Res Clin Haematol 2019; 33:101139. [PMID: 32460987 DOI: 10.1016/j.beha.2019.101139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 12/23/2019] [Indexed: 01/16/2023]
Abstract
The term myelodysplastic/myeloproliferative neoplasm (MDS/MPN) refers to a group of clonal hematopoietic neoplasms with overlapping clinical, morphologic and genetic myelodysplastic and myeloproliferative features observed at the time of first presentation. Impaired hematopoiesis morphologically associated with evidence of myelodysplasia manifests clinically with cytopenia/s. Simultaneously, myeloproliferation is seen within the bone marrow and leads to cytosis in the peripheral blood. The diagnostic category of MDS/MPN encompasses a heterogeneous group of diseases which share similarities among them, but at the same time have distinct clinical and pathologic features and eventually diverse prognosis; such differences justify their separation in a classification scheme. In the era of genetic and genomic tests, their distinction from conventional myelodysplastic syndromes or myeloproliferative neoplasms still relies on close clinocopathological correlation, with evaluation of both peripheral blood and bone marrow samples being essential in this sense. A multiparametric integration of clinicopathologic data and cytogenetics and molecular genetics results is the preferred diagnostic approach.
Collapse
Affiliation(s)
- V F I Sangiorgio
- Department of Cellular Pathology, The Royal London Hospital, London, UK
| | - A Orazi
- Department of Pathology, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX, USA
| | - D A Arber
- Department of Pathology, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
35
|
Palomo L, Ibáñez M, Abáigar M, Vázquez I, Álvarez S, Cabezón M, Tazón-Vega B, Rapado I, Fuster-Tormo F, Cervera J, Benito R, Larrayoz MJ, Cigudosa JC, Zamora L, Valcárcel D, Cedena MT, Acha P, Hernández-Sánchez JM, Fernández-Mercado M, Sanz G, Hernández-Rivas JM, Calasanz MJ, Solé F, Such E. Spanish Guidelines for the use of targeted deep sequencing in myelodysplastic syndromes and chronic myelomonocytic leukaemia. Br J Haematol 2019; 188:605-622. [PMID: 31621063 PMCID: PMC7064979 DOI: 10.1111/bjh.16175] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 07/04/2019] [Accepted: 07/06/2019] [Indexed: 12/20/2022]
Abstract
The landscape of medical sequencing has rapidly changed with the evolution of next generation sequencing (NGS). These technologies have contributed to the molecular characterization of the myelodysplastic syndromes (MDS) and chronic myelomonocytic leukaemia (CMML), through the identification of recurrent gene mutations, which are present in >80% of patients. These mutations contribute to a better classification and risk stratification of the patients. Currently, clinical laboratories include NGS genomic analyses in their routine clinical practice, in an effort to personalize the diagnosis, prognosis and treatment of MDS and CMML. NGS technologies have reduced the cost of large-scale sequencing, but there are additional challenges involving the clinical validation of these technologies, as continuous advances are constantly being made. In this context, it is of major importance to standardize the generation, analysis, clinical interpretation and reporting of NGS data. To that end, the Spanish MDS Group (GESMD) has expanded the present set of guidelines, aiming to establish common quality standards for the adequate implementation of NGS and clinical interpretation of the results, hoping that this effort will ultimately contribute to the benefit of patients with myeloid malignancies.
Collapse
Affiliation(s)
- Laura Palomo
- Josep Carreras Leukaemia Research Institute, ICO Badalona-Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Sadalona, Spain
| | - Mariam Ibáñez
- Department of Haematology, Hospital Universitari i Politècnic La Fe, València, Spain.,Centro de Investigacion Biomédica en Red de Cáncer (CIBERONC), Instituto Carlos III, Madrid, Spain.,Departamento de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad CEU Cardenal Herrera, València, Spain
| | - María Abáigar
- Institute of Biomedical Research of Salamanca (IBSAL), Cancer Research Centre (IBMCC-CIC; Univ. of Salamanca-CSIC), Salamanca, Spain
| | - Iria Vázquez
- Haematological Diseases Laboratory, CIMA LAB Diagnostics, University of Navarra, Pamplona, Spain.,Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Sara Álvarez
- NIMGenetics, Genómica y Medicina, S.L., Madrid, Spain
| | - Marta Cabezón
- Haematology Service, ICO Badalona-Hospital Germans Trias i Pujol, Josep Carreras Leukaemia Research Institute, Badalona, Spain
| | - Bárbara Tazón-Vega
- Department of Haematology, Vall d'Hebron Institute of Oncology, Vall d'Hebron University Hospital, Barcelona, Spain.,Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Inmaculada Rapado
- Haematology Department, Hospital Universitario 12 de Octubre, Madrid, Spain.,Haematological Malignancies Clinical Research Unit, CNIO, Madrid, Spain.,Centro de investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain
| | - Francisco Fuster-Tormo
- Josep Carreras Leukaemia Research Institute, ICO Badalona-Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Sadalona, Spain
| | - José Cervera
- Department of Haematology, Hospital Universitari i Politècnic La Fe, València, Spain.,Centro de Investigacion Biomédica en Red de Cáncer (CIBERONC), Instituto Carlos III, Madrid, Spain.,Genetics Unit, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Rocío Benito
- Institute of Biomedical Research of Salamanca (IBSAL), Cancer Research Centre (IBMCC-CIC; Univ. of Salamanca-CSIC), Salamanca, Spain
| | - María J Larrayoz
- Haematological Diseases Laboratory, CIMA LAB Diagnostics, University of Navarra, Pamplona, Spain.,Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | | | - Lurdes Zamora
- Haematology Service, ICO Badalona-Hospital Germans Trias i Pujol, Josep Carreras Leukaemia Research Institute, Badalona, Spain
| | - David Valcárcel
- Department of Haematology, Vall d'Hebron Institute of Oncology, Vall d'Hebron University Hospital, Barcelona, Spain.,Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - María T Cedena
- Haematology Department, Hospital Universitario 12 de Octubre, Madrid, Spain.,Haematological Malignancies Clinical Research Unit, CNIO, Madrid, Spain.,Centro de investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain
| | - Pamela Acha
- Josep Carreras Leukaemia Research Institute, ICO Badalona-Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Sadalona, Spain
| | - Jesús M Hernández-Sánchez
- Institute of Biomedical Research of Salamanca (IBSAL), Cancer Research Centre (IBMCC-CIC; Univ. of Salamanca-CSIC), Salamanca, Spain.,University of Salamanca (USAL), Salamanca, Spain
| | - Marta Fernández-Mercado
- Haematological Diseases Laboratory, CIMA LAB Diagnostics, University of Navarra, Pamplona, Spain.,Advanced Genomics Laboratory, Centre for Applied Medical Research (CIMA), University of Navarra, Haemato-Oncology, Pamplona, Spain.,Biomedical Engineering Department, School of Engineering, University of Navarra, San Sebastian, Spain
| | - Guillermo Sanz
- Department of Haematology, Hospital Universitari i Politècnic La Fe, València, Spain.,Centro de Investigacion Biomédica en Red de Cáncer (CIBERONC), Instituto Carlos III, Madrid, Spain
| | - Jesús M Hernández-Rivas
- Institute of Biomedical Research of Salamanca (IBSAL), Cancer Research Centre (IBMCC-CIC; Univ. of Salamanca-CSIC), Salamanca, Spain.,University of Salamanca (USAL), Salamanca, Spain.,Hospital Universitario de Salamanca, Salamanca, Spain
| | - María J Calasanz
- Haematological Diseases Laboratory, CIMA LAB Diagnostics, University of Navarra, Pamplona, Spain.,Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Francesc Solé
- Josep Carreras Leukaemia Research Institute, ICO Badalona-Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Sadalona, Spain
| | - Esperanza Such
- Department of Haematology, Hospital Universitari i Politècnic La Fe, València, Spain.,Centro de Investigacion Biomédica en Red de Cáncer (CIBERONC), Instituto Carlos III, Madrid, Spain.,Departamento de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad CEU Cardenal Herrera, València, Spain
| | | |
Collapse
|
36
|
Fenaux P, Platzbecker U, Ades L. How we manage adults with myelodysplastic syndrome. Br J Haematol 2019; 189:1016-1027. [PMID: 31568568 DOI: 10.1111/bjh.16206] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The prognosis in Myelodysplastic syndromes (MDS), although recently refined by molecular studies, remains largely based on conventional prognostic scores [International Prognostic Scoring System (IPSS), revised IPSS], classifying patients into "lower risk" MDS (LR-MDS) and "higher risk" MDS (HR-MDS). In LR-MDS, treatment mainly aims at improving cytopenias, principally anaemia, while in HR-MDS it aims at delaying disease progression and prolonging survival. In LR-MDS without deletion 5q, anaemia is generally treated first by erythropoietic stimulating factors, while second line treatments are currently not approved [lenalidomide, hypomethylating agents (HMA), luspatercept] or rarely indicated (antithymocyte globulin). Lenalidomide has major efficacy in LR-MDS with deletion 5q. Allogeneic stem cell transplantation (allo-SCT) is sometimes considered in LR-MDS, and iron chelation can be considered when multiple red blood cell transfusions are required. Allo-SCT is the only potentially curative treatment for HR-MDS; however, it is rarely applicable. It is generally preceded by intensive chemotherapy (IC) or HMA in patients with excess of marrow blasts (especially if >10%). In other patients, HMA can improve survival. The role of new drugs, including venetoclax or, in case of specific mutations, IDH1 or IDH2 inhibitors, is investigated. IC is mainly indicated as a bridge to allo-SCT, in the absence of unfavourable karyotype.
Collapse
Affiliation(s)
- Pierre Fenaux
- service d'hématologie séniors, hôpital St Louis, assistance publique - hôpitaux de Paris (APHP) and Université de Paris, Paris, France
| | - Uwe Platzbecker
- Medical Clinic and Polyclinic 1, Haematology and Cellular Therapy, University Hospital Leipzig, Leipzig, Germany
| | - Lionel Ades
- service d'hématologie séniors, hôpital St Louis, assistance publique - hôpitaux de Paris (APHP) and Université de Paris, Paris, France
| |
Collapse
|
37
|
Sangiorgio VFI, Geyer JT, Margolskee E, Al-Kawaaz M, Mathew S, Tam W, Orazi A. Myeloid neoplasms with isolated del(5q) and JAK2 V617F mutation: a "grey zone" combination of myelodysplastic and myeloproliferative features? Haematologica 2019; 105:e276-e279. [PMID: 31558664 DOI: 10.3324/haematol.2019.227686] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- Valentina F I Sangiorgio
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College/New York Presbyterian Hospital, New York, NY, USA .,University of Milan, Milan, Italy
| | - Julia T Geyer
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College/New York Presbyterian Hospital, New York, NY, USA
| | - Elizabeth Margolskee
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College/New York Presbyterian Hospital, New York, NY, USA
| | - Mustafa Al-Kawaaz
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College/New York Presbyterian Hospital, New York, NY, USA
| | - Susan Mathew
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College/New York Presbyterian Hospital, New York, NY, USA
| | - Wayne Tam
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College/New York Presbyterian Hospital, New York, NY, USA
| | - Attilio Orazi
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College/New York Presbyterian Hospital, New York, NY, USA
| |
Collapse
|
38
|
Kolesnikova M, Sen'kova A, Tairova S, Ovchinnikov V, Pospelova T, Zenkova M. Clinical and Prognostic Significance of Cell Sensitivity to Chemotherapy Detected in vitro on Treatment Response and Survival of Leukemia Patients. J Pers Med 2019; 9:jpm9020024. [PMID: 31067780 PMCID: PMC6617197 DOI: 10.3390/jpm9020024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 04/23/2019] [Accepted: 05/06/2019] [Indexed: 02/07/2023] Open
Abstract
Multidrug resistance (MDR) is a major challenge in leukemia treatment. The objective of this study was to identity predictors of MDR to allow for rapid and economical assessment of the efficacy of planned antitumor therapy for leukemia patients. The study included 113 patients with acute and chronic leukemias. Prior to antitumor therapy, we measured the sensitivity of tumor cells of patients to the panel of chemotherapeutic drugs, together with MDR1 mRNA and P-glycoprotein (P-gp) expression as one of the mechanisms of MDR, and compared these data with the response to therapy. The scales for leukemia patients according to therapy response, drug sensitivity of tumor cells, MDR1 mRNA and P-gp levels, and the presence of unfavorable immunological and cytogenetic markers were introduced for subsequent correlation analysis. We show that the drug resistance of tumor cells of leukemia patients estimated in vitro at diagnosis correlates with a poor response to chemotherapy and is usually combined with aberrant and immature immunological markers, cytogenetic abnormalities, and a high expression of MDR1 mRNA and P-gp. All together, these factors indicate unfavorable prognosis and low survival of leukemia patients. Thus, the sensitivity of tumor cells to chemotherapeutic drugs measured in vitro at diagnosis may have prognostic value for individual types of leukemia.
Collapse
Affiliation(s)
- Maria Kolesnikova
- Department of therapy, hematology and transfusiology, Novosibirsk State Medical University, Krasny Prospect 52, 630091 Novosibirsk, Russia.
| | - Aleksandra Sen'kova
- Laboratory of nucleic acids biochemistry, Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentieva ave. 8, 630090 Novosibirsk, Russia.
| | - Sofia Tairova
- Clinical and diagnostic laboratory, City Hematology Center, Polzunova Street 21, 630051 Novosibirsk, Russia.
| | - Viktor Ovchinnikov
- Clinical and diagnostic laboratory, City Hematology Center, Polzunova Street 21, 630051 Novosibirsk, Russia.
| | - Tatiana Pospelova
- Department of therapy, hematology and transfusiology, Novosibirsk State Medical University, Krasny Prospect 52, 630091 Novosibirsk, Russia.
| | - Marina Zenkova
- Laboratory of nucleic acids biochemistry, Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentieva ave. 8, 630090 Novosibirsk, Russia.
| |
Collapse
|
39
|
Abstract
BACKGROUND Gene mutations with important prognostic role have been identified in patients with myelodysplastic syndrome (MDS). We performed a meta-analysis to investigate the effects of RNA splicing machinery gene mutations on prognosis of MDS patients. METHODS We searched English database including PubMed, Embase, Cochrane Library for literatures published within recent 10 years on the effect of RNA splicing machinery genes in MDS. Revman version 5.2 software was used for all the statistical processing. We calculated risk ratio and 95% confidence interval (CI) of continuous variables, and find hazard ratio (HR) and 95% CI of time-to-event data. RESULTS We included 19 studies enrolling 4320 patients. There is a significant superior overall survival (OS) in splicing factor 3b, subunit 1 (SF3B1)-mutation group compared to unmutated group (HR = 0.58, 95% CI: 0.5-0.67, P < .00001); OS decreased significantly in serine/arginine-rich splicing factor 2/ U2 auxiliary factor protein 1 (SRSF2/U2AF1) mutation group compared to unmutated group, (HR = 1.62, 95% CI: 1.34-1.97, P < .00001 and HR = 1.61, 95% CI: 1.35-1.9, P < .00001, respectively). In terms of leukemia-free survival (LFS), the group with SF3B1 mutation had better outcome than unmutated group, HR = 0.63 (95% CI: 0.53-0.75, P < .00001). Other RNA splicing gene mutation group showed significant poor LFS than unmutated groups, (HR = 1.89, 95% CI: 1.6-2.23, P < .00001; HR = 2.77, 95% CI: 2.24-3.44, P < .00001; HR = 1.48, 95% CI: 1.08-2.03, P < .00001; for SRSF2, U2AF1, and zinc finger CCCH-type, RNA binding motif and serine/arginine rich 2 [ZRSR2], respectively). As for subgroup of low- or intermediate-1-IPSS risk MDS, SRSF2, and U2AF1 mutations were related to poor OS. (HR = 1.83, 95% CI: 1.43-2.35, P < .00001; HR = 2.11, 95% CI: 1.59-2.79, P < .00001 for SRSF2 and U2AF1, respectively). SRSF2 and U2AF1 mutations were strongly associated with male patients. SF3B1 mutation was strongly associated with disease staging. CONCLUSION This meta-analysis indicates a positive effect of SF3B1 and an adverse prognostic effect of SRSF2, U2AF1, and ZRSR2 mutations in patients with MDS. Mutations of RNA splicing genes have important effects on the prognosis of MDS.
Collapse
|
40
|
Santini V. Society of Hematologic Oncology (SOHO) State of the Art Updates and Next Questions: Myelodysplastic Syndromes. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2018; 18:495-500. [PMID: 29907542 DOI: 10.1016/j.clml.2018.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 05/17/2018] [Indexed: 10/16/2022]
Abstract
In the past few months, 2 main streams of research have dominated the panorama of myelodysplastic syndrome (MDS) investigations: deepening the insight into the pathogenic role, hierarchy, and prognostic effect of somatic mutations and, as a consequence, into the effect of inherited congenital predisposing conditions and the second, quite interlinked with the first, analyzing inflammation and innate immunity in patients with MDS. The research devoted to clarifying the mechanisms of action and mechanisms of resistance to hypomethylating agents has also advanced, mostly resulting from different approaches to the study of DNA methylation. Recent observations have reinforced support for targeted therapies for selected subgroups of MDS patients.
Collapse
Affiliation(s)
- Valeria Santini
- MDS Unit, Azienda Ospedaliero Universitaria Careggi, University of Florence, Florence, Italy.
| |
Collapse
|
41
|
Haferlach T. The Molecular Pathology of Myelodysplastic Syndrome. Pathobiology 2018; 86:24-29. [PMID: 29791902 DOI: 10.1159/000488712] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 03/22/2018] [Indexed: 01/09/2023] Open
Abstract
The diagnosis and classification of myelodysplastic syndromes (MDS) are based on cytomorphology and cytogenetics (WHO classification). Prognosis is best defined by the Revised International Prognostic Scoring System (IPSS-R). In recent years, an increasing number of molecular aberrations have been discovered. They are already included in the classification (e.g., SF3B1) and, more importantly, have emerged as valuable markers for better classification, particularly for defining risk groups. Mutations in genes such as SF3B1 and IDH1/2 have already had an impact on targeted treatment approaches in MDS.
Collapse
|