1
|
Wang S, Chen H, Zhou Y, Chen J, Cao J. Safety assessment of ripretinib: a real-world adverse event analysis from the food and drug administration adverse event reporting system. Front Oncol 2025; 15:1542315. [PMID: 40231257 PMCID: PMC11994415 DOI: 10.3389/fonc.2025.1542315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 03/17/2025] [Indexed: 04/16/2025] Open
Abstract
Background Ripretinib has been approved for the treatment of gastrointestinal stromal tumors (GIST). As a novel therapy, several adverse reactions remain unidentified, necessitating a thorough safety evaluation. This study analyzes real-world data from the US Food and Drug Administration Adverse Event Reporting System (FAERS) to investigate adverse events (AEs) associated with ripretinib. Methods Adverse event reports (AERs) related to ripretinib were extracted from FAERS ASCII data spanning from the second quarter of 2020 to the second quarter of 2024. Following standardization, various disproportionality analyses, including the reporting odds ratio (ROR), proportional reporting ratio (PRR), bayesian confidence propagation neural network (BCPNN), and empirical bayes geometric mean (EBGM), were employed to identify potential safety signals linked to ripretinib. The data provided by medical professionals underwent sensitivity analysis to assess the robustness of the results. Results A total of 3,105 ripretinib-related AERs were identified, categorized into 22 system organ classes (SOCs) and 84 preferred terms (PTs). Common AEs, such as alopecia, constipation, and muscle spasms, were consistent with the drug label and clinical trial findings. Notably, the risk of skin cancer associated with ripretinib was further elucidated. Additionally, new signals, including liver abscess and prostatomegaly, were detected. Despite their lower frequency, these signals demonstrated significant strength. A substantial proportion of adverse reactions (n = 322, 39.80%) occurred within the first month of treatment, although a smaller fraction emerged after one year. The sensitivity analysis revealed that most PTs related to skin and subcutaneous tissue maintained high signal values, with 8 cases of skin squamous cell carcinoma-related AEs still reported. Conclusion The findings of this study align with established drug guidance and uncover new adverse event signals for ripretinib, thereby enhancing clinical monitoring and facilitating risk identification.
Collapse
Affiliation(s)
- Sentai Wang
- Department of General Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Hewen Chen
- Department of Neurosurgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Yuying Zhou
- Department of Thyroid Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Jianfeng Chen
- Department of General Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Jiwei Cao
- Department of General Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| |
Collapse
|
2
|
Hossain M, Habib I, Singha K, Kumar A. FDA-approved heterocyclic molecules for cancer treatment: Synthesis, dosage, mechanism of action and their adverse effect. Heliyon 2024; 10:e23172. [PMID: 38163206 PMCID: PMC10755292 DOI: 10.1016/j.heliyon.2023.e23172] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/21/2023] [Accepted: 11/28/2023] [Indexed: 01/03/2024] Open
Abstract
As the incorporation of heterocycles increases the physical characteristics and biological activity of pharmacological molecules, heterocyclic scaffolds are commonly discovered as common cores in a wide spectrum of biologically active drugs. In the contemporary context, many heterocycles have arisen, playing vital roles in diverse pharmaceutical compounds that benefit humanity. Over 85 % of FDA-approved medication molecules contain heterocycles, and most importantly, numerous heterocyclic medicinal molecules indicate potential benefits against a range: of malignancies. The unique flexibility and dynamic core scaffold of these compounds have aided anticancer research. These medications are used to treat cancer patients by targeting particular genes, enzymes, and receptors. Aside from the drugs that are now on the market, numerous forms are being researched for their potential anti-cancer activity. Here in this review, we classified some molecules and biologically active heterocycles containing anticancer medicinal moieties approved by the FDA between 2019 and 2021 based on their use in various forms of cancer. We will focus on those that are suitable for cancer treatment, as well as the essential biochemical mechanisms of action, biological targets, synthetic methods, and inherent limiting considerations in their use.
Collapse
Affiliation(s)
- Mossaraf Hossain
- Synthetic Organic Research Laboratory, UGC-HRDC (Chemistry), University of North Bengal, Darjeeling, 734013, India
| | - Imran Habib
- Synthetic Organic Research Laboratory, UGC-HRDC (Chemistry), University of North Bengal, Darjeeling, 734013, India
| | - Koustav Singha
- Synthetic Organic Research Laboratory, UGC-HRDC (Chemistry), University of North Bengal, Darjeeling, 734013, India
| | - Anoop Kumar
- Department of Biotechnology, University of North Bengal, Darjeeling, 734013, India
| |
Collapse
|
3
|
Liu J, Li J, Zhu Y, Jing R, Ding S, Zhang J, Zhao L, Chen Y, Shen J. Advances in Drug Therapy for Gastrointestinal Stromal Tumour. Curr Med Chem 2024; 31:3057-3073. [PMID: 37151058 DOI: 10.2174/0929867330666230505163151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 02/05/2023] [Accepted: 03/03/2023] [Indexed: 05/09/2023]
Abstract
INTRODUCTION Gastrointestinal stromal tumour (GIST) is a common gastrointestinal sarcoma located in the stromal cells of the digestive tract, and molecular studies have revealed the pathogenesis of mutations in KIT and PDGFRA genes. Since imatinib opened the era of targeted therapy for GIST, tyrosine kinase inhibitors (TKIs) that can treat GIST have been developed successively. However, the lack of new drugs with satisfactory therapeutic standards has made addressing resistance a significant challenge for TKIs in the face of the resistance to first-line and second-line drugs. Therefore, we need to find as many drugs and new treatments that block mutated genes as possible. METHODS We conducted a comprehensive collection of literature using databases, integrated and analysed the selected literature based on keywords and the comprehensive nature of the articles, and finally wrote articles based on the content of the studies. RESULTS In this article, we first briefly explained the relationship between GIST and KIT/ PDGFRα and then introduced the related drug treatment. The research progress of TKIs was analyzed according to the resistance of the drugs. CONCLUSION This article describes the research progress of some TKIs and briefly introduces the currently approved TKIs and some drugs under investigation that may have better therapeutic effects, hoping to provide clues to the research of new drugs.
Collapse
Affiliation(s)
- Ju Liu
- College of Pharmacy, Liaoning University, Shenyang, Liaoning 110036, P.R. China
- API Engineering Technology Research Center of Liaoning Province, Shenyang, Liaoning 110036, P.R. China
- Small Molecular Targeted Drug R&D Engineering Research Center of Liaoning Province, Shenyang, Liaoning 110036, P.R. China
| | - Jiawei Li
- College of Pharmacy, Liaoning University, Shenyang, Liaoning 110036, P.R. China
| | - Yan Zhu
- College of Pharmacy, Liaoning University, Shenyang, Liaoning 110036, P.R. China
| | - Rui Jing
- College of Pharmacy, Liaoning University, Shenyang, Liaoning 110036, P.R. China
| | - Shi Ding
- College of Pharmacy, Liaoning University, Shenyang, Liaoning 110036, P.R. China
- API Engineering Technology Research Center of Liaoning Province, Shenyang, Liaoning 110036, P.R. China
- Small Molecular Targeted Drug R&D Engineering Research Center of Liaoning Province, Shenyang, Liaoning 110036, P. R. China
| | - Jifang Zhang
- College of Pharmacy, Liaoning University, Shenyang, Liaoning 110036, P.R. China
| | - Leyan Zhao
- College of Pharmacy, Liaoning University, Shenyang, Liaoning 110036, P.R. China
| | - Ye Chen
- College of Pharmacy, Liaoning University, Shenyang, Liaoning 110036, P.R. China
- API Engineering Technology Research Center of Liaoning Province, Shenyang, Liaoning 110036, P.R. China
- Small Molecular Targeted Drug R&D Engineering Research Center of Liaoning Province, Shenyang, Liaoning 110036, P.R. China
| | - Jiwei Shen
- College of Pharmacy, Liaoning University, Shenyang, Liaoning 110036, P.R. China
- API Engineering Technology Research Center of Liaoning Province, Shenyang, Liaoning 110036, P.R. China
- Small Molecular Targeted Drug R&D Engineering Research Center of Liaoning Province, Shenyang, Liaoning 110036, P.R. China
| |
Collapse
|
4
|
Costa A, Scalzulli E, Carmosino I, Capriata M, Ielo C, Masucci C, Passucci M, Martelli M, Breccia M. Systemic mastocytosis: 2023 update on diagnosis and management in adults. Expert Opin Emerg Drugs 2023; 28:153-165. [PMID: 37256917 DOI: 10.1080/14728214.2023.2221028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/27/2023] [Accepted: 05/30/2023] [Indexed: 06/02/2023]
Abstract
INTRODUCTION Systemic mastocytosis (SM) is a complex and heterogeneous disease, characterized by the clonal accumulation of mast cells in one or more organs. In 2022 both the World Health Organization (WHO) and the International Consensus Classification (ICC) modified the diagnostic and classification criteria of SM. Moreover, the identification of new clinical and molecular variables has improved prognostic tools and led to increasingly individualized therapeutic strategies. AREAS COVERED The aim of this review is to present the updates introduced by the International Consensus Classification in diagnostic criteria of SM. In addition, we report the latest data available from the most important clinical trials in patients both with non-advanced and advanced disease, including elenestinib and bezuclastinib. EXPERT OPINION Diagnosis and classification of SM has evolved over years. The most recent WHO and ICC classification improved SM diagnostic work-up, providing clinicians with a clear and simplified diagnostic scheme. New approved targeted therapies such as midostaurin and avapritinib modified the treatment paradigm in patients in advanced stage, and next-generation inhibitors actually investigated in clinical trials are expected in the next future.
Collapse
Affiliation(s)
- Alessandro Costa
- Hematology Unit, Businco Hospital, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Emilia Scalzulli
- Hematology, Department of Translational and Precision Medicine, Az. Policlinico Umberto I-Sapienza University, Rome, Italy
| | - Ida Carmosino
- Hematology, Department of Translational and Precision Medicine, Az. Policlinico Umberto I-Sapienza University, Rome, Italy
| | - Marcello Capriata
- Hematology, Department of Translational and Precision Medicine, Az. Policlinico Umberto I-Sapienza University, Rome, Italy
| | - Claudia Ielo
- Hematology, Department of Translational and Precision Medicine, Az. Policlinico Umberto I-Sapienza University, Rome, Italy
| | - Chiara Masucci
- Hematology, Department of Translational and Precision Medicine, Az. Policlinico Umberto I-Sapienza University, Rome, Italy
| | - Mauro Passucci
- Hematology, Department of Translational and Precision Medicine, Az. Policlinico Umberto I-Sapienza University, Rome, Italy
| | - Maurizio Martelli
- Hematology, Department of Translational and Precision Medicine, Az. Policlinico Umberto I-Sapienza University, Rome, Italy
| | - Massimo Breccia
- Hematology, Department of Translational and Precision Medicine, Az. Policlinico Umberto I-Sapienza University, Rome, Italy
| |
Collapse
|
5
|
Saheb Kashaf S, Godley LA, Chadha A, Waldinger JB. Systemic mastocytosis, in the context of a deleterious germline SDHC variant, treated with ripretinib. JAAD Case Rep 2023; 37:119-122. [PMID: 37405177 PMCID: PMC10315773 DOI: 10.1016/j.jdcr.2023.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2023] Open
Affiliation(s)
- Sara Saheb Kashaf
- Pritzker School of Medicine, the University of Chicago, Chicago, Illinois
| | - Lucy A. Godley
- Section of Hematology/Oncology, Department of Medicine and Human Genetics, the University of Chicago, Chicago, Illinois
| | - Angad Chadha
- Section of Dermatology, Department of Medicine, the University of Chicago, Chicago, Illinois
| | - Jason B. Waldinger
- Pritzker School of Medicine, the University of Chicago, Chicago, Illinois
- Division of Dermatology, Department of Medicine, NorthShore University & Health System, Evanston, Illinois
| |
Collapse
|
6
|
Sargsyan A, Kucharczyk MA, Jones RL, Constantinidou A. Ripretinib for the treatment of adult patients with advanced gastrointestinal stromal tumors. Expert Rev Gastroenterol Hepatol 2023; 17:119-127. [PMID: 36644853 DOI: 10.1080/17474124.2023.2167711] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
INTRODUCTION Gastrointestinal stromal tumor (GIST) is the most common mesenchymal tumor of the gastrointestinal tract. Imatinib mesylate revolutionized the management of advanced/metastatic GIST, and remains the standard first-line therapy in this setting. Upon development of secondary resistance, sunitinib and regorafenib are used as subsequent treatments, although clinical benefit is often non-durable. Ripretinib is a type II kinase inhibitor targeting KIT and PDGFRA mutations and resistance through switching active I and inactive II forms. AREAS COVERED This drug profile article provides an overview of the current state of the art treatment algorithm for advanced/metastatic GIST, focusing on the role of ripretinib in the fourth-line setting as defined by currently available clinical trials evidence. The mechanism of action, the safety profile, efficacy, and clinical application of ripretinib are presented. In addition, the Phase I study (NCT02571036) through which the optimal dose was established and the Phase III trials that assessed the efficacy and safety of ripretinib as fourth- (INVICTUS) and second-line treatment (INTRIGUE) are presented. EXPERT OPINION Ripretinib is a safe and an effective therapy for the fourth-line setting in advanced/metastatic GIST. Future studies should evaluate combination schedules and the identification of markers predictive of benefit from ripretinib.
Collapse
Affiliation(s)
- Amalya Sargsyan
- Medical School, University of Cyprus, Nicosia, Cyprus.,Department of Medical Oncology, Bank of Cyprus Oncology Centre, Nicosia, Cyprus
| | | | - Robin L Jones
- NHS Trust, Royal Marsden Hospital, London, UK.,Division of Clinical Studies, The Institute of Cancer Research, London, UK
| | - Anastasia Constantinidou
- Medical School, University of Cyprus, Nicosia, Cyprus.,Department of Medical Oncology, Bank of Cyprus Oncology Centre, Nicosia, Cyprus
| |
Collapse
|
7
|
Degenfeld-Schonburg L, Gamperl S, Stefanzl G, Schruef AK, Sadovnik I, Bauer K, Smiljkovic D, Eisenwort G, Peter B, Greiner G, Hadzijusufovic E, Schwaab J, Sperr WR, Hoermann G, Kopanja S, Szépfalusi Z, Hoetzenecker K, Jaksch P, Reiter A, Arock M, Valent P. Antineoplastic efficacy profiles of avapritinib and nintedanib in KIT D816V + systemic mastocytosis: a preclinical study. Am J Cancer Res 2023; 13:355-378. [PMID: 36895976 PMCID: PMC9989615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 10/30/2022] [Indexed: 03/11/2023] Open
Abstract
Systemic mastocytosis (SM) is a hematopoietic neoplasm with a complex pathology and a variable clinical course. Clinical symptoms result from organ infiltration by mast cells (MC) and the effects of pro-inflammatory mediators released during MC activation. In SM, growth and survival of MC are triggered by various oncogenic mutant-forms of the tyrosine kinase KIT. The most prevalent variant, D816V, confers resistance against various KIT-targeting drugs, including imatinib. We examined the effects of two novel promising KIT D816V-targeting drugs, avapritinib and nintedanib, on growth, survival, and activation of neoplastic MC and compared their activity profiles with that of midostaurin. Avapritinib was found to suppress growth of HMC-1.1 cells (KIT V560G) and HMC-1.2 cells (KIT V560G + KIT D816V) with comparable IC50 values (0.1-0.25 µM). In addition, avapritinib was found to inhibit the proliferation of ROSAKIT WT cells, (IC50: 0.1-0.25 µM), ROSAKIT D816V cells (IC50: 1-5 µM), and ROSAKIT K509I cells (IC50: 0.1-0.25 µM). Nintedanib exerted even stronger growth-inhibitory effects in these cells (IC50 in HMC-1.1: 0.001-0.01 µM; HMC-1.2: 0.25-0.5 µM; ROSAKIT WT: 0.01-0.1 µM; ROSAKIT D816V: 0.5-1 µM; ROSAKIT K509I: 0.01-0.1 µM). Avapritinib and nintedanib also suppressed the growth of primary neoplastic cells in most patients with SM examined (avapritinib IC50: 0.5-5 µM; nintedanib IC50: 0.1-5 µM). Growth-inhibitory effects of avapritinib and nintedanib were accompanied by signs of apoptosis and decreased surface expression of the transferrin receptor CD71 in neoplastic MC. Finally, we were able to show that avapritinib counteracts IgE-dependent histamine secretion in basophils and MC in patients with SM. These effects of avapritinib may explain the rapid clinical improvement seen during treatment with this KIT inhibitor in patients with SM. In conclusion, avapritinib and nintedanib are new potent inhibitors of growth and survival of neoplastic MC expressing various KIT mutant forms, including D816V, V560G, and K509I, which favors the clinical development and application of these new drugs in advanced SM. Avapritinib is of particular interest as it also blocks mediator secretion in neoplastic MC.
Collapse
Affiliation(s)
- Lina Degenfeld-Schonburg
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna Austria
| | - Susanne Gamperl
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna Austria
| | - Gabriele Stefanzl
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna Austria.,Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna Austria
| | - Anna-Katharina Schruef
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna Austria
| | - Irina Sadovnik
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna Austria
| | - Karin Bauer
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna Austria
| | - Dubravka Smiljkovic
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna Austria
| | - Gregor Eisenwort
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna Austria.,Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna Austria
| | - Barbara Peter
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna Austria.,Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna Austria
| | - Georg Greiner
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna Austria.,Ihr Labor, Medical Diagnostic Laboratories Vienna, Austria
| | - Emir Hadzijusufovic
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna Austria.,Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna Austria.,Department/Hospital for Companion Animals and Horses, University Hospital for Small Animals, Internal Medicine Small Animals, University of Veterinary Medicine Vienna Austria
| | - Juliana Schwaab
- Department of Hematology and Oncology, University Medical Centre Mannheim and Medical Faculty Mannheim, Heidelberg University Germany
| | - Wolfgang R Sperr
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna Austria.,Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna Austria
| | - Gregor Hoermann
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna Austria.,MLL Munich Leukemia Laboratory Munich, Germany
| | - Sonja Kopanja
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Pulmonology, Allergy and Endocrinology, Medical University of Vienna Austria
| | - Zsolt Szépfalusi
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Pulmonology, Allergy and Endocrinology, Medical University of Vienna Austria
| | - Konrad Hoetzenecker
- Department of Surgery, Division of Thoracic Surgery, Medical University of Vienna Austria
| | - Peter Jaksch
- Department of Surgery, Division of Thoracic Surgery, Medical University of Vienna Austria
| | - Andreas Reiter
- Department of Hematology and Oncology, University Medical Centre Mannheim and Medical Faculty Mannheim, Heidelberg University Germany
| | - Michel Arock
- Department of Hematological Biology, Pitié-Salpêtrière Hospital, Pierre et Marie Curie University (UPMC) Paris, France
| | - Peter Valent
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna Austria.,Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna Austria
| |
Collapse
|
8
|
Schneeweiss-Gleixner M, Filik Y, Stefanzl G, Berger D, Sadovnik I, Bauer K, Smiljkovic D, Eisenwort G, Witzeneder N, Greiner G, Hoermann G, Schiefer AI, Schwaab J, Jawhar M, Reiter A, Sperr WR, Arock M, Valent P, Gleixner KV. CDK4/CDK6 Inhibitors Synergize with Midostaurin, Avapritinib, and Nintedanib in Inducing Growth Inhibition in KIT D816V + Neoplastic Mast Cells. Cancers (Basel) 2022; 14:3070. [PMID: 35804842 PMCID: PMC9264943 DOI: 10.3390/cancers14133070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 05/23/2022] [Accepted: 06/06/2022] [Indexed: 11/18/2022] Open
Abstract
In most patients with advanced systemic mastocytosis (AdvSM), neoplastic mast cells (MC) express KIT D816V. However, despite their disease-modifying potential, KIT D816V-targeting drugs, including midostaurin and avapritinib, may not produce long-term remissions in all patients. Cyclin-dependent kinase (CDK) 4 and CDK6 are promising targets in oncology. We found that shRNA-mediated knockdown of CDK4 and CDK6 results in growth arrest in the KIT D816V+ MC line HMC-1.2. The CDK4/CDK6 inhibitors palbociclib, ribociclib, and abemaciclib suppressed the proliferation in primary neoplastic MC as well as in all HMC-1 and ROSA cell subclones that were examined. Abemaciclib was also found to block growth in the drug-resistant MC line MCPV-1, whereas no effects were seen with palbociclib and ribociclib. Anti-proliferative drug effects on MC were accompanied by cell cycle arrest. Furthermore, CDK4/CDK6 inhibitors were found to synergize with the KIT-targeting drugs midostaurin, avapritinib, and nintedanib in inducing growth inhibition and apoptosis in neoplastic MCs. Finally, we found that CDK4/CDK6 inhibitors induce apoptosis in CD34+/CD38- stem cells in AdvSM. Together, CDK4/CDK6 inhibition is a potent approach to suppress the growth of neoplastic cells in AdvSM. Whether CDK4/CDK6 inhibitors can improve clinical outcomes in patients with AdvSM remains to be determined in clinical trials.
Collapse
Affiliation(s)
- Mathias Schneeweiss-Gleixner
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, 1090 Vienna, Austria; (M.S.-G.); (Y.F.); (I.S.); (K.B.); (D.S.); (G.E.); (N.W.); (G.G.); (G.H.); (W.R.S.); (P.V.)
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, 1090 Vienna, Austria; (G.S.); (D.B.)
- Department of Medicine III, Division of Gastroenterology and Hepatology, Medical University of Vienna, 1090 Vienna, Austria
| | - Yüksel Filik
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, 1090 Vienna, Austria; (M.S.-G.); (Y.F.); (I.S.); (K.B.); (D.S.); (G.E.); (N.W.); (G.G.); (G.H.); (W.R.S.); (P.V.)
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, 1090 Vienna, Austria; (G.S.); (D.B.)
| | - Gabriele Stefanzl
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, 1090 Vienna, Austria; (G.S.); (D.B.)
| | - Daniela Berger
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, 1090 Vienna, Austria; (G.S.); (D.B.)
| | - Irina Sadovnik
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, 1090 Vienna, Austria; (M.S.-G.); (Y.F.); (I.S.); (K.B.); (D.S.); (G.E.); (N.W.); (G.G.); (G.H.); (W.R.S.); (P.V.)
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, 1090 Vienna, Austria; (G.S.); (D.B.)
| | - Karin Bauer
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, 1090 Vienna, Austria; (M.S.-G.); (Y.F.); (I.S.); (K.B.); (D.S.); (G.E.); (N.W.); (G.G.); (G.H.); (W.R.S.); (P.V.)
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, 1090 Vienna, Austria; (G.S.); (D.B.)
| | - Dubravka Smiljkovic
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, 1090 Vienna, Austria; (M.S.-G.); (Y.F.); (I.S.); (K.B.); (D.S.); (G.E.); (N.W.); (G.G.); (G.H.); (W.R.S.); (P.V.)
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, 1090 Vienna, Austria; (G.S.); (D.B.)
| | - Gregor Eisenwort
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, 1090 Vienna, Austria; (M.S.-G.); (Y.F.); (I.S.); (K.B.); (D.S.); (G.E.); (N.W.); (G.G.); (G.H.); (W.R.S.); (P.V.)
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, 1090 Vienna, Austria; (G.S.); (D.B.)
| | - Nadine Witzeneder
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, 1090 Vienna, Austria; (M.S.-G.); (Y.F.); (I.S.); (K.B.); (D.S.); (G.E.); (N.W.); (G.G.); (G.H.); (W.R.S.); (P.V.)
| | - Georg Greiner
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, 1090 Vienna, Austria; (M.S.-G.); (Y.F.); (I.S.); (K.B.); (D.S.); (G.E.); (N.W.); (G.G.); (G.H.); (W.R.S.); (P.V.)
- Department of Laboratory Medicine, Medical University of Vienna, 1090 Vienna, Austria
- Ihr Labor, Medical Diagnostic Laboratories Vienna, 1220 Vienna, Austria
| | - Gregor Hoermann
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, 1090 Vienna, Austria; (M.S.-G.); (Y.F.); (I.S.); (K.B.); (D.S.); (G.E.); (N.W.); (G.G.); (G.H.); (W.R.S.); (P.V.)
- MLL Munich Leukemia Laboratory, 81377 Munich, Germany
| | - Ana-Iris Schiefer
- Department of Pathology, Medical University of Vienna, 1090 Vienna, Austria;
| | - Juliana Schwaab
- Department of Hematology and Oncology, University Medical Center Mannheim and Medical Faculty Mannheim, Heidelberg University, 69120 Heidelberg, Germany; (J.S.); (M.J.); (A.R.)
| | - Mohamad Jawhar
- Department of Hematology and Oncology, University Medical Center Mannheim and Medical Faculty Mannheim, Heidelberg University, 69120 Heidelberg, Germany; (J.S.); (M.J.); (A.R.)
| | - Andreas Reiter
- Department of Hematology and Oncology, University Medical Center Mannheim and Medical Faculty Mannheim, Heidelberg University, 69120 Heidelberg, Germany; (J.S.); (M.J.); (A.R.)
| | - Wolfgang R. Sperr
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, 1090 Vienna, Austria; (M.S.-G.); (Y.F.); (I.S.); (K.B.); (D.S.); (G.E.); (N.W.); (G.G.); (G.H.); (W.R.S.); (P.V.)
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, 1090 Vienna, Austria; (G.S.); (D.B.)
| | - Michel Arock
- Department of Hematological Biology, Pitié-Salpêtrière Hospital, Pierre et Marie Curie University (UPMC), 75013 Paris, France;
| | - Peter Valent
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, 1090 Vienna, Austria; (M.S.-G.); (Y.F.); (I.S.); (K.B.); (D.S.); (G.E.); (N.W.); (G.G.); (G.H.); (W.R.S.); (P.V.)
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, 1090 Vienna, Austria; (G.S.); (D.B.)
| | - Karoline V. Gleixner
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, 1090 Vienna, Austria; (M.S.-G.); (Y.F.); (I.S.); (K.B.); (D.S.); (G.E.); (N.W.); (G.G.); (G.H.); (W.R.S.); (P.V.)
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, 1090 Vienna, Austria; (G.S.); (D.B.)
| |
Collapse
|
9
|
Valent P, Akin C, Hartmann K, Reiter A, Gotlib J, Sotlar K, Sperr WR, Degenfeld-Schonburg L, Smiljkovic D, Triggiani M, Horny HP, Arock M, Galli SJ, Metcalfe DD. Drug-Induced Mast Cell Eradication: A Novel Approach to Treat Mast Cell Activation Disorders? J Allergy Clin Immunol 2022; 149:1866-1874. [PMID: 35421448 DOI: 10.1016/j.jaci.2022.04.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/28/2022] [Accepted: 04/06/2022] [Indexed: 11/26/2022]
Abstract
Mast cell activation is a key event in allergic reactions, other inflammatory states, and mast cell activation syndromes. Mast cell-stabilizing agents, mediator-targeting drugs and drugs interfering with mediator effects are often prescribed in these patients. However, the clinical efficacy of these drugs varies, depending on the numbers of involved mast cells and the underlying pathology. One straightforward approach would be to eradicate the primary target cell. However, to date, no mast cell-eradicating treatment approach has been developed for patients suffering from mast cell activation disorders. Nevertheless, recent data suggest that long-term treatment with agents that effectively inhibit KIT-function results in the virtual eradication of tissue mast cells and a sustained decrease in serum tryptase levels. In many of these patients, mast cell depletion is associated with a substantial improvement in mediator-induced symptoms. In patients with an underlying KIT D816V+ mastocytosis, such mast cell eradication requires an effective inhibitor of KIT D816V, such as avapritinib. However, the use of KIT inhibitors must be balanced against potential side effects. We here discuss mast cell-eradicating strategies in various disease models, the feasibility of this approach, available clinical data, and future prospects for the use of KIT-targeting drugs in mast cell activation disorders.
Collapse
Affiliation(s)
- Peter Valent
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Austria; Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Austria.
| | - Cem Akin
- Division of Allergy and Clinical Immunology, University of Michigan, Ann Arbor, MI, USA
| | - Karin Hartmann
- Division of Allergy, Department of Dermatology, University Hospital Basel and University of Basel, Switzerland; Department of Biomedicine, University Hospital Basel and University of Basel, Switzerland
| | - Andreas Reiter
- Department of Hematology and Oncology, University Hospital Mannheim, Germany
| | - Jason Gotlib
- Stanford Cancer Institute/Stanford University School of Medicine/Stanford Cancer Institute, Stanford, CA, USA
| | - Karl Sotlar
- Institute of Pathology, Paracelsus Medical University Salzburg, Austria
| | - Wolfgang R Sperr
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Austria; Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Austria
| | - Lina Degenfeld-Schonburg
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Austria; Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Austria
| | - Dubravka Smiljkovic
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Austria; Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Austria
| | - Massimo Triggiani
- Division of Allergy and Clinical Immunology, University of Salerno, Italy
| | - Hans-Peter Horny
- Institute of Pathology, Ludwig-Maximilian-University, Munich, Germany
| | - Michel Arock
- Department of Hematological Biology, Pitié-Salpêtrière Charles-Foix Hospital, AP-HP Sorbonne University, Paris, France
| | - Stephen J Galli
- Department of Pathology, Department of Microbiology and Immunology, and the Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, CA, USA
| | - Dean D Metcalfe
- Mast Cell Biology Section, Laboratory of Allergic Diseases, NIAID, NIH, Bethesda, MD, USA
| |
Collapse
|
10
|
Graham RLJ, McMullen AA, Moore G, Dempsey-Hibbert NC, Myers B, Graham C. SWATH-MS identification of CXCL7, LBP, TGFβ1 and PDGFRβ as novel biomarkers in human systemic mastocytosis. Sci Rep 2022; 12:5087. [PMID: 35332176 PMCID: PMC8948255 DOI: 10.1038/s41598-022-08345-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 03/07/2022] [Indexed: 12/11/2022] Open
Abstract
Mastocytosis is a rare myeloproliferative disease, characterised by accumulation of neoplastic mast cells in one or several organs. It presents as cutaneous or systemic. Patients with advanced systemic mastocytosis have a median survival of 3.5 years. The aetiology of mastocytosis is poorly understood, patients present with a broad spectrum of varying clinical symptoms that lack specificity to point clearly to a definitive diagnosis. Discovery of novel blood borne biomarkers would provide a tractable method for rapid identification of mastocytosis and its sub-types. Moving towards this goal, we carried out a clinical biomarker study on blood from twenty individuals (systemic mastocytosis: n = 12, controls: n = 8), which were subjected to global proteome investigation using the novel technology SWATH-MS. This identified several putative biomarkers for systemic mastocytosis. Orthogonal validation of these putative biomarkers was achieved using ELISAs. Utilising this workflow, we identified and validated CXCL7, LBP, TGFβ1 and PDGF receptor-β as novel biomarkers for systemic mastocytosis. We demonstrate that CXCL7 correlates with neutrophil count offering a new insight into the increased prevalence of anaphylaxis in mastocytosis patients. Additionally, demonstrating the utility of SWATH-MS for the discovery of novel biomarkers in the systemic mastocytosis diagnostic sphere.
Collapse
Affiliation(s)
- R L J Graham
- School of Biological Sciences, Queens University Belfast, Chlorine Gardens, Belfast, BT9 5DL, UK
| | - A A McMullen
- Department of Life Sciences, Manchester Metropolitan University, Manchester, M1 5GD, UK
| | - G Moore
- School of Biological Sciences, Queens University Belfast, Chlorine Gardens, Belfast, BT9 5DL, UK
| | - N C Dempsey-Hibbert
- Department of Life Sciences, Manchester Metropolitan University, Manchester, M1 5GD, UK
| | - B Myers
- University Hospitals of Leicester NHS Trust, Leicester, LE3 9QP, UK
| | - C Graham
- School of Biological Sciences, Queens University Belfast, Chlorine Gardens, Belfast, BT9 5DL, UK.
| |
Collapse
|
11
|
Bauer S, George S, von Mehren M, Heinrich MC. Early and Next-Generation KIT/PDGFRA Kinase Inhibitors and the Future of Treatment for Advanced Gastrointestinal Stromal Tumor. Front Oncol 2021; 11:672500. [PMID: 34322383 PMCID: PMC8313277 DOI: 10.3389/fonc.2021.672500] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 06/22/2021] [Indexed: 12/21/2022] Open
Abstract
The majority of gastrointestinal stromal tumors (GIST) harbor an activating mutation in either the KIT or PDGFRA receptor tyrosine kinases. Approval of imatinib, a KIT/PDGFRA tyrosine kinase inhibitor (TKI), meaningfully improved the treatment of advanced GIST. Other TKIs subsequently gained approval: sunitinib as a second-line therapy and regorafenib as a third-line therapy. However, resistance to each agent occurs in almost all patients over time, typically due to secondary kinase mutations. A major limitation of these 3 approved therapies is that they target the inactive conformation of KIT/PDGFRA; thus, their efficacy is blunted against secondary mutations in the kinase activation loop. Neither sunitinib nor regorafenib inhibit the full spectrum of KIT resistance mutations, and resistance is further complicated by extensive clonal heterogeneity, even within single patients. To combat these limitations, next-generation TKIs were developed and clinically tested, leading to 2 new USA FDA drug approvals in 2020. Ripretinib, a broad-spectrum KIT/PDGFRA inhibitor, was recently approved for the treatment of adult patients with advanced GIST who have received prior treatment with 3 or more kinase inhibitors, including imatinib. Avapritinib, a type I kinase inhibitor that targets active conformation, was approved for the treatment of adults with unresectable or metastatic GIST harboring a PDGFRA exon 18 mutation, including PDGFRA D842V mutations. In this review, we will discuss how resistance mutations have driven the need for newer treatment options for GIST and compare the original GIST TKIs with the next-generation KIT/PDGFRA kinase inhibitors, ripretinib and avapritinib, with a focus on their mechanisms of action.
Collapse
Affiliation(s)
- Sebastian Bauer
- Department of Medical Oncology, West German Cancer Center, Essen University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Suzanne George
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
| | - Margaret von Mehren
- Department of Hematology and Medical Oncology, Fox Chase Cancer Center, Philadelphia, PA, United States
| | - Michael C. Heinrich
- Department of Medicine, Portland VA Health Care System and OHSU Knight Cancer Institute, Oregon Health and Science University, Portland, OR, United States
| |
Collapse
|
12
|
Giannetti MP. Treatment of systemic mastocytosis: Novel and emerging therapies. Ann Allergy Asthma Immunol 2021; 127:412-419. [PMID: 34216794 DOI: 10.1016/j.anai.2021.06.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/03/2021] [Accepted: 06/28/2021] [Indexed: 01/08/2023]
Abstract
OBJECTIVE Systemic mastocytosis (SM) is a myeloproliferative disorder characterized by symptoms of mast cell (MC) activation and/or organ dysfunction related to MC tissue accumulation. Treatment of this condition is evolving as our understanding of the pathophysiology of the disease advances. This article aims to highlight novel and experimental therapies for SM. DATA SOURCES PubMed literature search and ClinicalTrials.gov. STUDY SELECTIONS Peer-reviewed studies involving therapies for SM were included. There was a particular focus on preclinical and clinical trial studies. RESULTS SM presents with a wide range of symptoms including symptoms of MC activation such as anaphylaxis, urticaria, diarrhea, and organ failure secondary to aggressive tissue infiltration. The treatment of the disease is dependent on the variant; patients with aggressive disease warrant advanced therapies and higher tolerance of adverse effects. As our understanding of the disease has advanced, several novel therapeutic options have emerged. These include tyrosine kinase inhibitors directed at the KIT protein and targeted monoclonal antibodies, which decrease MC activation or reduce mast cell burden. There are a variety of new medications under development that will revolutionize the treatment for patients with SM. CONCLUSION Current treatment options for SM have inherent limitations and, in many cases, unacceptable adverse effects. As our molecular understanding of the disease advances, novel, and experimental therapies are changing treatment paradigms of the disease.
Collapse
Affiliation(s)
- Matthew P Giannetti
- Division of Allergy and Clinical Immunology, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts; Harvard Medical School, Harvard University, Boston, Massachusetts.
| |
Collapse
|
13
|
Abstract
Ripretinib (QINLOCK™) is a novel type II tyrosine switch control inhibitor being developed by Deciphera Pharmaceuticals for the treatment of KIT proto-oncogene receptor tyrosine kinase (KIT)-driven and/or platelet derived growth factor receptor A (PDGFRA)-driven cancers, including gastrointestinal stromal tumour (GIST). Ripretinib inhibits KIT and PDGFRA kinase, including wild-type, primary and secondary mutations, as well as other kinases, such as PDGFRB, TIE2, VEGFR2 and BRAF. In May 2020, oral ripretinib received its first approval in the USA for the treatment of adult patients with advanced GIST who have received prior treatment with ≥ 3 kinase inhibitors, including imatinib. The US FDA, Health Canada and the Australian Therapeutic Goods Administration collaborated on the review of the ripretinib new drug application in this indication as part of Project Orbis; regulatory review in Australia and Canada is ongoing. Clinical development for GIST, solid tumours and systemic mastocytosis is underway in several countries worldwide. This article summarizes the milestones in the development of ripretinib leading to this first approval for the treatment of advanced GIST.
Collapse
|
14
|
Nintedanib targets KIT D816V neoplastic cells derived from induced pluripotent stem cells of systemic mastocytosis. Blood 2021; 137:2070-2084. [PMID: 33512435 DOI: 10.1182/blood.2019004509] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 12/08/2020] [Indexed: 01/10/2023] Open
Abstract
The KIT D816V mutation is found in >80% of patients with systemic mastocytosis (SM) and is key to neoplastic mast cell (MC) expansion and accumulation in affected organs. Therefore, KIT D816V represents a prime therapeutic target for SM. Here, we generated a panel of patient-specific KIT D816V induced pluripotent stem cells (iPSCs) from patients with aggressive SM and mast cell leukemia to develop a patient-specific SM disease model for mechanistic and drug-discovery studies. KIT D816V iPSCs differentiated into neoplastic hematopoietic progenitor cells and MCs with patient-specific phenotypic features, thereby reflecting the heterogeneity of the disease. CRISPR/Cas9n-engineered KIT D816V human embryonic stem cells (ESCs), when differentiated into hematopoietic cells, recapitulated the phenotype observed for KIT D816V iPSC hematopoiesis. KIT D816V causes constitutive activation of the KIT tyrosine kinase receptor, and we exploited our iPSCs and ESCs to investigate new tyrosine kinase inhibitors targeting KIT D816V. Our study identified nintedanib, a US Food and Drug Administration-approved angiokinase inhibitor that targets vascular endothelial growth factor receptor, platelet-derived growth factor receptor, and fibroblast growth factor receptor, as a novel KIT D816V inhibitor. Nintedanib selectively reduced the viability of iPSC-derived KIT D816V hematopoietic progenitor cells and MCs in the nanomolar range. Nintedanib was also active on primary samples of KIT D816V SM patients. Molecular docking studies show that nintedanib binds to the adenosine triphosphate binding pocket of inactive KIT D816V. Our results suggest nintedanib as a new drug candidate for KIT D816V-targeted therapy of advanced SM.
Collapse
|
15
|
Mohammadi M, Gelderblom H. Systemic therapy of advanced/metastatic gastrointestinal stromal tumors: an update on progress beyond imatinib, sunitinib, and regorafenib. Expert Opin Investig Drugs 2020; 30:143-152. [PMID: 33252274 DOI: 10.1080/13543784.2021.1857363] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Introduction: Discovery of oncogenic mutations in the KIT and PDGFRA tyrosine kinase receptor was a crucial step for the development of tyrosine kinase inhibitors (TKIs). Since then, GIST became a model for the development of molecular-targeted therapy, which led to dramatically improved median overall survival of advanced GIST. Still, further progress is needed after third-line or for TKI resistant mutations. Areas covered: In this review, after a brief introduction on imatinib, sunitinib, and regorafenib, an overview of TKIs that was evaluated beyond these drugs is provided, with a main focus on the novel approved TKIs. Expert opinion: Combination therapies have thus far not fulfilled their promise in GIST, nor did immunotherapy. Increased understanding of GIST and advances in the development of molecular-targeted drugs led to the introduction of ripretinib and avapritinib. Furthermore, NTRK inhibitors became available for ultrarare NTRK fusions. Solutions for NF1 and BRAF mutated and SDH-deficient GIST are still to be awaited. This all underlines the need for adequate molecular profiling of high-risk GISTs before treatment is started. Possibly by using circulating tumor DNA in the future, targeting resistance mutations with specific drugs along the course of the disease would be easier, avoiding multiple tumor biopsies.
Collapse
Affiliation(s)
- Mahmoud Mohammadi
- Department of Medical Oncology, Leiden University Medical Center , Leiden, The Netherlands
| | - Hans Gelderblom
- Department of Medical Oncology, Leiden University Medical Center , Leiden, The Netherlands
| |
Collapse
|
16
|
New developments in diagnosis, prognostication, and treatment of advanced systemic mastocytosis. Blood 2020; 135:1365-1376. [DOI: 10.1182/blood.2019000932] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 12/30/2019] [Indexed: 12/26/2022] Open
Abstract
AbstractSystemic mastocytosis (SM) has greatly benefited from the broad application of precision medicine techniques to hematolymphoid neoplasms. Sensitive detection of the recurrent KIT D816V mutation and use of next-generation sequencing (NGS) panels to profile the genetic landscape of SM variants have been critical adjuncts to the diagnosis and subclassification of SM, and development of clinical-molecular prognostic scoring systems. Multilineage KIT involvement and multimutated clones are characteristic of advanced SM (advSM), especially SM with an associated hematologic neoplasm (AHN). A major challenge is how to integrate conventional markers of mast cell disease burden (percentage of bone marrow mast cell infiltration and serum tryptase levels) with molecular data (serial monitoring of both KIT D816V variant allele frequency and NGS panels) to lend more diagnostic and prognostic clarity to the heterogeneous clinical presentations and natural histories of advSM. The approval of the multikinase/KIT inhibitor midostaurin has validated the paradigm of KIT inhibition in advSM, and the efficacy and safety of second-generation agents, such as the switch-control inhibitor ripretinib (DCC-2618) and the D816V-selective inhibitor avapritinib (BLU-285) are being further defined in ongoing clinical trials. Looking forward, perhaps the most fruitful marriage of the advances in molecular genetics and treatment will be the design of adaptive basket trials that combine histopathology and genetic profiling to individualize treatment approaches for patients with diverse AHNs and relapsed/refractory SM.
Collapse
|
17
|
Piris-Villaespesa M, Alvarez-Twose I. Systemic Mastocytosis: Following the Tyrosine Kinase Inhibition Roadmap. Front Pharmacol 2020; 11:443. [PMID: 32346366 PMCID: PMC7171446 DOI: 10.3389/fphar.2020.00443] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Accepted: 03/20/2020] [Indexed: 12/16/2022] Open
Abstract
Systemic mastocytosis is a rare and heterogeneous disease characterized by mast cell proliferation and activation. KIT is a transmembrane tyrosine kinase which plays a key role in mast cell growth, differentiation and survival. After interaction with its ligand, the stem cell factor, KIT dimerizes activating downstream pathways involving multiple tyrosine kinases (PI3K, JAK/STAT, RAS/ERK). Activating mutations in KIT are detected in most cases of systemic mastocytosis, being the most common KIT D816V. Therefore, since the emergence of tyrosine kinase inhibitors, KIT inhibition has been an attractive approach when facing mastocytosis treatment. Initial reports showed that only the rare KIT D816V negative cases were responsive to tyrosine kinase inhibitors. However, the development of new tyrosine kinase inhibitors such as midostaurin or avapritinib with activity against mast cells carrying the D816V KIT mutation, has changed the landscape of this disease.
Collapse
Affiliation(s)
- Miguel Piris-Villaespesa
- Servicio de Hematología y Hemoterapia and IRYCIS, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Ivan Alvarez-Twose
- Instituto de Estudios de Mastocitosis de Castilla La Mancha (CLMast) and CIBERONC, Hospital Virgen del Valle, Toledo, Spain
| |
Collapse
|
18
|
Pilla Reddy V, Anjum R, Grondine M, Smith A, Bhavsar D, Barry E, Guichard SM, Shao W, Kettle JG, Brown C, Banks E, Jones RDO. The Pharmacokinetic-Pharmacodynamic (PKPD) Relationships of AZD3229, a Novel and Selective Inhibitor of KIT, in a Range of Mouse Xenograft Models of GIST. Clin Cancer Res 2020; 26:3751-3759. [PMID: 32220888 DOI: 10.1158/1078-0432.ccr-19-2848] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 01/15/2020] [Accepted: 03/23/2020] [Indexed: 11/16/2022]
Abstract
PURPOSE The emergence of secondary mutations is a cause of resistance to current KIT inhibitors used in the treatment of patients with gastrointestinal stromal tumors (GIST). AZD3229 is a selective inhibitor of wild-type KIT and a wide spectrum of primary and secondary mutations seen in patients with GIST. The objective of this analysis is to establish the pharmacokinetic-pharmacodynamic (PKPD) relationship of AZD3229 in a range of mouse GIST tumor models harboring primary and secondary KIT mutations, and to benchmark AZD3229 against other KIT inhibitors. EXPERIMENTAL DESIGN A PKPD model was developed for AZD3229 linking plasma concentrations to inhibition of phosphorylated KIT using data generated from several in vivo preclinical tumor models, and in vitro data generated in a panel of Ba/F3 cell lines. RESULTS AZD3229 drives inhibition of phosphorylated KIT in an exposure-dependent manner, and optimal efficacy is observed when >90% inhibition of KIT phosphorylation is sustained over the dosing interval. Integrating the predicted human pharmacokinetics into the mouse PKPD model predicts that an oral twice daily human dose greater than 34 mg is required to ensure adequate coverage across the mutations investigated. Benchmarking shows that compared with standard-of-care KIT inhibitors, AZD3229 has the potential to deliver the required target coverage across a wider spectrum of primary or secondary mutations. CONCLUSIONS We demonstrate that AZD3229 warrants clinical investigation as a new treatment for patients with GIST based on its ability to inhibit both ATP-binding and A-loop mutations of KIT at clinically relevant exposures.
Collapse
Affiliation(s)
| | - Rana Anjum
- Research and Early Development, Oncology R&D, AstraZeneca, Boston, Massachusetts
| | - Michael Grondine
- Research and Early Development, Oncology R&D, AstraZeneca, Boston, Massachusetts
| | - Aaron Smith
- Research and Early Development, Oncology R&D, AstraZeneca, United Kingdom
| | - Deepa Bhavsar
- Research and Early Development, Oncology R&D, AstraZeneca, Boston, Massachusetts
| | - Evan Barry
- Research and Early Development, Oncology R&D, AstraZeneca, Boston, Massachusetts
| | - Sylvie M Guichard
- Research and Early Development, Oncology R&D, AstraZeneca, Boston, Massachusetts
| | - Wenlin Shao
- Research and Early Development, Oncology R&D, AstraZeneca, Boston, Massachusetts
| | - Jason G Kettle
- Research and Early Development, Oncology R&D, AstraZeneca, United Kingdom
| | - Crystal Brown
- Research and Early Development, Oncology R&D, AstraZeneca, Boston, Massachusetts
| | - Erica Banks
- Research and Early Development, Oncology R&D, AstraZeneca, Boston, Massachusetts
| | - Rhys D O Jones
- Research and Early Development, Oncology R&D, AstraZeneca, United Kingdom.
| |
Collapse
|
19
|
Abstract
PURPOSE OF REVIEW The aim of this study was to provide an update on the most recent developments regarding systemic treatments in the various molecular subtypes of gastrointestinal stromal tumour (GIST). RECENT FINDINGS Several novel direct inhibitors of KIT and PDGFRA have entered the advanced clinical development in later treatment lines based on promising early clinical trial experience. Both avapritinib and ripretinib are more potent and more specific against various KIT and PDGFRA mutations. For patients with PDGFRA D842V mutations, the next generation of drugs may become the first active treatment options.Comprehensive molecular testing of KIT/PDGFRA-wildtype GIST may unmask clinically relevant targets, including NTRK fusions. SUMMARY The treatment landscape in GIST is expected to undergo a profound transformation with more potent drugs currently in late-stage clinical development.
Collapse
|
20
|
Nemunaitis J, Bauer S, Blay JY, Choucair K, Gelderblom H, George S, Schöffski P, Mehren MV, Zalcberg J, Achour H, Ruiz-Soto R, Heinrich MC. Intrigue: Phase III study of ripretinib versus sunitinib in advanced gastrointestinal stromal tumor after imatinib. Future Oncol 2020; 16:4251-4264. [PMID: 31755321 DOI: 10.2217/fon-2019-0633] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Ripretinib (DCC-2618) is a novel, type II tyrosine switch control inhibitor designed to broadly inhibit activating and drug-resistant mutations in KIT and PDGFRA. Ripretinib has emerged as a promising investigational agent for the treatment of gastrointestinal stromal tumor owing to targeted inhibition of secondary resistance mutations that may develop following treatment with prior line(s) of tyrosine kinase inhibitors. Here we describe the rationale and design of intrigue (NCT03673501), a global, randomized (1:1), open-label, Phase III study comparing the safety and efficacy of ripretinib versus sunitinib in patients with advanced gastrointestinal stromal tumor following imatinib. The primary end point is progression-free survival and key secondary objectives include objective response rate and overall survival. Clinical Trial Registration: NCT03673501.
Collapse
Affiliation(s)
- John Nemunaitis
- The University of Toledo College of Medicine & Life Sciences, Toledo, OH 43606, USA
- ProMedica Health System, Toledo, OH 43606, USA
| | - Sebastian Bauer
- West German Cancer Center, Deparment of Medical Oncology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Jean-Yves Blay
- Centre Léon Bérard, Unicancer, LYRICAN and Université Claude Bernard Lyon 1, Lyon, France
| | - Khalil Choucair
- The University of Toledo College of Medicine & Life Sciences, Toledo, OH 43606, USA
| | | | - Suzanne George
- Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Patrick Schöffski
- University Hospitals Leuven, Department of General Medical Oncology, Leuven Cancer Institute, Leuven, Belgium
| | | | - John Zalcberg
- Department of Epidemiology & Preventive Medicine, School of Public Health & Preventive Medicine, Monash University & Department of Medical Oncology Alfred Health, Melbourne, Australia
| | - Haroun Achour
- Deciphera Pharmaceuticals, LLC, Waltham, MA 02451, USA
| | | | - Michael C Heinrich
- Portland VA Health Care System & OHSU Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
| |
Collapse
|
21
|
Rossignol J, Polivka L, Maouche-Chrétien L, Frenzel L, Dubreuil P, Hermine O. Recent advances in the understanding and therapeutic management of mastocytosis. F1000Res 2019; 8:F1000 Faculty Rev-1961. [PMID: 31824655 PMCID: PMC6880274 DOI: 10.12688/f1000research.19463.1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/13/2019] [Indexed: 12/20/2022] Open
Abstract
Mastocytosis is a rare disease due to the abnormal accumulation of mast cells in various tissues. Its clinical presentation is heterogeneous depending on mast cell infiltration and mediators release. In some cases, it is associated with hematological malignancies. Prognosis varies from very good with a life expectancy similar to the general population in indolent forms of the disease to a survival time of just a few months in mast cell leukemia. Although in most cases a somatic KIT D816V mutation is found in tumor mast cells, the physiopathology of the disease is not yet fully understood. Additional germline and somatic mutations may explain this heterogeneity. Treatments aim at blocking effect of mast cell mediators, reducing mast cell activation and tumor burden. New drugs mainly directed against the tyrosine kinase activity of KIT have dramatically changed the quality of life and prognosis of mast cell diseases. Present and future therapeutic strategies are discussed in this review.
Collapse
Affiliation(s)
- Julien Rossignol
- French Reference Center for Mastocytosis (CEREMAST), Necker Children's Hospital, APHP, Paris, France
| | - Laura Polivka
- Department of Hematology, Gustave Roussy Institute, Paris-Saclay University, Villejuif, France
| | | | - Laurent Frenzel
- Department of Dermatology, Necker Children's Hospital, APHP, Paris, France
| | - Patrice Dubreuil
- Department of Hematology, Necker Children's Hospital, APHP, Paris, France
| | - Olivier Hermine
- Centre de Recherche en Cancérologie de Marseille, Inserm U1068, Marseille, France
| |
Collapse
|
22
|
Wu Y, Wang B, Wang J, Qi S, Zou F, Qi Z, Liu F, Liu Q, Chen C, Hu C, Hu Z, Wang A, Wang L, Wang W, Ren T, Cai Y, Bai M, Liu Q, Liu J. Discovery of 2-(4-Chloro-3-(trifluoromethyl)phenyl)-N-(4-((6,7-dimethoxyquinolin-4-yl)oxy)phenyl)acetamide (CHMFL-KIT-64) as a Novel Orally Available Potent Inhibitor against Broad-Spectrum Mutants of c-KIT Kinase for Gastrointestinal Stromal Tumors. J Med Chem 2019; 62:6083-6101. [DOI: 10.1021/acs.jmedchem.9b00280] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Yun Wu
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
| | - Beilei Wang
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
- University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Junjie Wang
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
- University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Shuang Qi
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
| | - Fengming Zou
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
- Precision Medicine Research Laboratory of Anhui Province, Hefei, Anhui 230088, P. R. China
- Precision Targeted Therapy Discovery Center, Institute of Technology Innovation, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230088, P. R. China
| | - Ziping Qi
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
- Precision Medicine Research Laboratory of Anhui Province, Hefei, Anhui 230088, P. R. China
- Precision Targeted Therapy Discovery Center, Institute of Technology Innovation, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230088, P. R. China
| | - Feiyang Liu
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
- Precision Medicine Research Laboratory of Anhui Province, Hefei, Anhui 230088, P. R. China
- Precision Targeted Therapy Discovery Center, Institute of Technology Innovation, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230088, P. R. China
| | - Qingwang Liu
- Precision Medicine Research Laboratory of Anhui Province, Hefei, Anhui 230088, P. R. China
- Precision Targeted Therapy Discovery Center, Institute of Technology Innovation, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230088, P. R. China
| | - Cheng Chen
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
- University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Chen Hu
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
| | - Zhenquan Hu
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
| | - Aoli Wang
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
- Precision Medicine Research Laboratory of Anhui Province, Hefei, Anhui 230088, P. R. China
- Precision Targeted Therapy Discovery Center, Institute of Technology Innovation, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230088, P. R. China
| | - Li Wang
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
- University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Wenchao Wang
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
- Precision Medicine Research Laboratory of Anhui Province, Hefei, Anhui 230088, P. R. China
- Precision Targeted Therapy Discovery Center, Institute of Technology Innovation, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230088, P. R. China
| | - Tao Ren
- Precision Medicine Research Laboratory of Anhui Province, Hefei, Anhui 230088, P. R. China
- Precision Targeted Therapy Discovery Center, Institute of Technology Innovation, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230088, P. R. China
- Precedo Pharmaceuticals Inc, Hefei, Anhui 230088, P. R. China
| | - Yujiao Cai
- Department of General Surgery, Second Hospital Affiliated to Army Medical University, Xinqiao Road, Chongqing 400037, P. R. China
| | - Mingfeng Bai
- Molecular Imaging Laboratory, Department of Radiology, University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, United States
| | - Qingsong Liu
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
- University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
- Precision Medicine Research Laboratory of Anhui Province, Hefei, Anhui 230088, P. R. China
- Precision Targeted Therapy Discovery Center, Institute of Technology Innovation, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230088, P. R. China
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, P. R. China
| | - Jing Liu
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
- Precision Medicine Research Laboratory of Anhui Province, Hefei, Anhui 230088, P. R. China
- Precision Targeted Therapy Discovery Center, Institute of Technology Innovation, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230088, P. R. China
| |
Collapse
|
23
|
|
24
|
Rodon Ahnert J, Gray N, Mok T, Gainor J. What It Takes to Improve a First-Generation Inhibitor to a Second- or Third-Generation Small Molecule. Am Soc Clin Oncol Educ Book 2019; 39:196-205. [PMID: 31099659 DOI: 10.1200/edbk_242209] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Since the first generation of small molecules was included in the armamentarium of treatment of solid tumors (imatinib, erlotinib, etc.), there has been an expansion of anticancer small molecules, mostly kinase inhibitors, in development. Some of these drugs may not be a real breakthrough but may be similar in pharmacologic properties and marginal benefit over previously existing agents for the same indication (i.e., me-too drugs). Other drugs, however, have been specifically designed to solve an unmet medical need. Overcoming the problems of the blood-brain barrier and brain metastasis, emerging resistance mutations (such as gatekeeper mutations), or increasing selectivity/potency can be addressed with modern drug design. In this article, we discuss the advancements in the field of drug discovery, drug development, and clinical development that have enabled solving some of these issues. The evolution of the different generations of EGFR and anaplastic lymphoma kinase inhibitors exemplifies recent advancements in pharmacology that are driving the field of anticancer small molecules as a whole.
Collapse
Affiliation(s)
| | | | - Tony Mok
- 3 Chinese University of Hong Kong, Hong Kong, China
| | | |
Collapse
|
25
|
Criscuolo M, Fianchi L, Maraglino AME, Pagano L. Mastocytosis: One Word for Different Diseases. Oncol Ther 2018; 6:129-140. [PMID: 32700030 PMCID: PMC7360005 DOI: 10.1007/s40487-018-0086-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Indexed: 11/30/2022] Open
Abstract
Mastocytosis is a neoplastic disease originating from tissue infiltration by transformed mast cells. The diagnosis requires a high grade of suspicion due to the large variety of presenting symptoms. The World Health Organization classification recognizes localized (cutaneous) and systemic forms of the disease, with these forms showing different degrees of aggressiveness. Mastocytosis is often a multiorgan disease, and its correct management requires a multidisciplinary team of experienced consultants to provide overall patient care. Bone marrow evaluation by molecular analyses, skeleton X-ray and abdominal scan together with allergologic and dermatologic evaluation constitute the essential diagnostic work-up for adult patients with mastocytosis. As clinical situations vary, treatment options range from the use of drugs to treat the symptoms, such as anti-H1 receptors and steroids, to UV irradiation, which is overwhelmingly used in patients with cutaneous mastocytosis (CM) or indolent systemic mastocytosis, to cytoreductive treatment to control life-threatening symptoms or organ damage in the more aggressive forms of the disease. Prognosis also widely differs among patients diagnosed with mastocytosis, with the spectrum ranging from an almost normal life expectancy for those with CM and to less than 1-year median overall survival for those with mast cell leukemia.
Collapse
Affiliation(s)
- Marianna Criscuolo
- Dipartimento di Scienze Radiologiche Radioterapiche ed Ematologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.
| | - Luana Fianchi
- Dipartimento di Scienze Radiologiche Radioterapiche ed Ematologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Alessio M E Maraglino
- Dipartimento di Scienze Radiologiche Radioterapiche ed Ematologiche, Fondazione Policlinico A. Gemelli IRCCS-Università Cattolica del Sacro Cuore, Rome, Italy
| | - Livio Pagano
- Dipartimento di Scienze Radiologiche Radioterapiche ed Ematologiche, Fondazione Policlinico A. Gemelli IRCCS-Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
26
|
Shomali W, Gotlib J. The new tool " KIT" in advanced systemic mastocytosis. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2018; 2018:127-136. [PMID: 30504301 PMCID: PMC6245986 DOI: 10.1182/asheducation-2018.1.127] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Mastocytosis is a rare disease characterized by KIT-driven expansion and accumulation of neoplastic mast cells in various tissues. Although mediator symptoms related to mast cell activation can impose a symptom burden in cutaneous disease and across the spectrum of systemic mastocytosis subtypes, the presence of an associated hematologic neoplasm and/or organ damage denotes advanced disease and the potential for increased morbidity and mortality. In addition to the revised 2016 World Health Organization classification of mastocytosis, a new diagnostic and treatment toolkit, tethered to enhanced molecular characterization and monitoring, is poised to transform the management of patients with advanced systemic mastocytosis (advSM). Although the efficacy of midostaurin and novel selective KIT D816V inhibitors, such as avapritinib (BLU-285), have validated KIT as a therapeutic target, the clinical and biologic heterogeneity of advSM requires that we reimagine the blueprint for tackling these diseases and use tools that move beyond KIT-centric approaches.
Collapse
Affiliation(s)
- William Shomali
- Divisions of Hematology and
- Medical Oncology, Stanford University School of Medicine/Stanford Cancer Institute, Stanford, CA
| | | |
Collapse
|
27
|
Arock M, Wedeh G, Hoermann G, Bibi S, Akin C, Peter B, Gleixner KV, Hartmann K, Butterfield JH, Metcalfe DD, Valent P. Preclinical human models and emerging therapeutics for advanced systemic mastocytosis. Haematologica 2018; 103:1760-1771. [PMID: 29976735 PMCID: PMC6278969 DOI: 10.3324/haematol.2018.195867] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 06/27/2018] [Indexed: 12/19/2022] Open
Abstract
Mastocytosis is a term used to denote a group of rare diseases characterized by an abnormal accumulation of neoplastic mast cells in various tissues and organs. In most patients with systemic mastocytosis, the neoplastic cells carry activating mutations in KIT Progress in mastocytosis research has long been hindered by the lack of suitable in vitro models, such as permanent human mast cell lines. In fact, only a few human mast cell lines are available to date: HMC-1, LAD1/2, LUVA, ROSA and MCPV-1. The HMC-1 and LAD1/2 cell lines were derived from patients with mast cell leukemia. By contrast, the more recently established LUVA, ROSA and MCPV-1 cell lines were derived from CD34+ cells of non-mastocytosis donors. While some of these cell lines (LAD1/2, LUVA, ROSAKIT WT and MCPV-1) do not harbor KIT mutations, HMC-1 and ROSAKIT D816V cells exhibit activating KIT mutations found in mastocytosis and have thus been used to study disease pathogenesis. In addition, these cell lines are increasingly employed to validate new therapeutic targets and to screen for effects of new targeted drugs. Recently, the ROSAKIT D816V subclone has been successfully used to generate a unique in vivo model of advanced mastocytosis by injection into immunocompromised mice. Such a model may allow in vivo validation of data obtained in vitro with targeted drugs directed against mastocytosis. In this review, we discuss the major characteristics of all available human mast cell lines, with particular emphasis on the use of HMC-1 and ROSAKIT D816V cells in preclinical therapeutic research in mastocytosis.
Collapse
Affiliation(s)
- Michel Arock
- LBPA CNRS UMR8113, Ecole Normale Supérieure Paris-Saclay, Cachan, France .,Laboratory of Hematology, Pitié-Salpêtrière Hospital, Paris, France
| | - Ghaith Wedeh
- LBPA CNRS UMR8113, Ecole Normale Supérieure Paris-Saclay, Cachan, France
| | - Gregor Hoermann
- Department of Laboratory Medicine, Medical University of Vienna, Austria.,Ludwig Boltzmann Cluster Oncology, Medical University of Vienna, Austria
| | - Siham Bibi
- LBPA CNRS UMR8113, Ecole Normale Supérieure Paris-Saclay, Cachan, France
| | - Cem Akin
- Michigan Medicine Allergy Clinic, University of Michigan, Ann Arbor, MI, USA
| | - Barbara Peter
- Ludwig Boltzmann Cluster Oncology, Medical University of Vienna, Austria.,Department of Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Austria
| | - Karoline V Gleixner
- Ludwig Boltzmann Cluster Oncology, Medical University of Vienna, Austria.,Department of Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Austria
| | - Karin Hartmann
- Department of Dermatology, University of Luebeck, Germany
| | | | - Dean D Metcalfe
- Laboratory of Allergic Diseases, NIAID, NIH, Bethesda, MD, USA
| | - Peter Valent
- Ludwig Boltzmann Cluster Oncology, Medical University of Vienna, Austria.,Department of Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Austria
| |
Collapse
|
28
|
Abrams T, Connor A, Fanton C, Cohen SB, Huber T, Miller K, Hong EE, Niu X, Kline J, Ison-Dugenny M, Harris S, Walker D, Krauser K, Galimi F, Wang Z, Ghoddusi M, Mansfield K, Lee-Hoeflich ST, Holash J, Pryer N, Kluwe W, Ettenberg SA, Sellers WR, Lees E, Kwon P, Abraham JA, Schleyer SC. Preclinical Antitumor Activity of a Novel Anti-c-KIT Antibody-Drug Conjugate against Mutant and Wild-type c-KIT-Positive Solid Tumors. Clin Cancer Res 2018; 24:4297-4308. [PMID: 29764854 DOI: 10.1158/1078-0432.ccr-17-3795] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 04/13/2018] [Accepted: 05/10/2018] [Indexed: 11/16/2022]
Abstract
Purpose: c-KIT overexpression is well recognized in cancers such as gastrointestinal stromal tumors (GIST), small cell lung cancer (SCLC), melanoma, non-small cell lung cancer (NSCLC), and acute myelogenous leukemia (AML). Treatment with the small-molecule inhibitors imatinib, sunitinib, and regorafenib resulted in resistance (c-KIT mutant tumors) or limited activity (c-KIT wild-type tumors). We selected an anti-c-KIT ADC approach to evaluate the anticancer activity in multiple disease models.Experimental Design: A humanized anti-c-KIT antibody LMJ729 was conjugated to the microtubule destabilizing maytansinoid, DM1, via a noncleavable linker (SMCC). The activity of the resulting ADC, LOP628, was evaluated in vitro against GIST, SCLC, and AML models and in vivo against GIST and SCLC models.Results: LOP628 exhibited potent antiproliferative activity on c-KIT-positive cell lines, whereas LMJ729 displayed little to no effect. At exposures predicted to be clinically achievable, LOP628 demonstrated single administration regressions or stasis in GIST and SCLC xenograft models in mice. LOP628 also displayed superior efficacy in an imatinib-resistant GIST model. Further, LOP628 was well tolerated in monkeys with an adequate therapeutic index several fold above efficacious exposures. Safety findings were consistent with the pharmacodynamic effect of neutropenia due to c-KIT-directed targeting. Additional toxicities were considered off-target and were consistent with DM1, such as effects in the liver and hematopoietic/lymphatic system.Conclusions: The preclinical findings suggest that the c-KIT-directed ADC may be a promising therapeutic for the treatment of mutant and wild-type c-KIT-positive cancers and supported the clinical evaluation of LOP628 in GIST, AML, and SCLC patients. Clin Cancer Res; 24(17); 4297-308. ©2018 AACR.
Collapse
Affiliation(s)
- Tinya Abrams
- Novartis Institutes of Biomedical Research, Emeryville, California.
| | - Anu Connor
- Novartis Institutes of Biomedical Research, Cambridge, Massachusetts
| | - Christie Fanton
- Novartis Institutes of Biomedical Research, Emeryville, California
| | - Steven B Cohen
- Genomics Institute of the Novartis Institute Foundation, San Diego, California
| | - Thomas Huber
- Novartis Institutes of Biomedical Research, Campus Klybeckstrasse, Basel, Switzerland
| | - Kathy Miller
- Novartis Institutes of Biomedical Research, Emeryville, California
| | | | - Xiaohong Niu
- Novartis Institutes of Biomedical Research, Emeryville, California
| | - Janine Kline
- Novartis Institutes of Biomedical Research, Emeryville, California
| | | | - Sarah Harris
- Genomics Institute of the Novartis Institute Foundation, San Diego, California
| | - Dana Walker
- Novartis Institutes of Biomedical Research, Cambridge, Massachusetts
| | - Klaus Krauser
- Genomics Institute of the Novartis Institute Foundation, San Diego, California
| | - Francesco Galimi
- Genomics Institute of the Novartis Institute Foundation, San Diego, California
| | - Zhen Wang
- Novartis Institutes of Biomedical Research, Emeryville, California
| | - Majid Ghoddusi
- Novartis Institutes of Biomedical Research, Emeryville, California
| | - Keith Mansfield
- Novartis Institutes of Biomedical Research, Cambridge, Massachusetts
| | | | - Jocelyn Holash
- Novartis Institutes of Biomedical Research, Emeryville, California
| | - Nancy Pryer
- Novartis Institutes of Biomedical Research, Emeryville, California
| | - William Kluwe
- Novartis Pharmaceuticals Corporation, East Hanover, New Jersey
| | - Seth A Ettenberg
- Novartis Institutes of Biomedical Research, Cambridge, Massachusetts
| | - William R Sellers
- Novartis Institutes of Biomedical Research, Cambridge, Massachusetts
| | - Emma Lees
- Novartis Institutes of Biomedical Research, Emeryville, California
| | - Paul Kwon
- Novartis Institutes of Biomedical Research, Emeryville, California
| | - Judith A Abraham
- Novartis Institutes of Biomedical Research, Emeryville, California
| | - Siew C Schleyer
- Novartis Institutes of Biomedical Research, Emeryville, California
| |
Collapse
|