1
|
Poonsombudlert K, Yodsuwan R, Mott S, Crawford K, Hornberg S, Snow AN, Sutamtewagul G, Magalhaes-Silverman M, Dhakal P. Effect of NPM1 Mutation Subtype and Co-Mutation Patterns on the Outcomes of Acute Myeloid Leukemia. Eur J Haematol 2025. [PMID: 40103515 DOI: 10.1111/ejh.14415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 03/08/2025] [Accepted: 03/11/2025] [Indexed: 03/20/2025]
Abstract
INTRODUCTION NPM1 mutated AML without FLT3-ITD is considered "favorable" per the recent ELN 2022 criteria. However, our center has been challenged with treatment-refractory patients, prompting a search for additional prognostic factors. METHODS We reviewed records of NPM1 AML patients from 2015 to 2024. Factors associated with event-free survival (EFS) and overall survival (OS) were evaluated using Cox regression. RESULTS Among 141 patients with NPM1 AML, subtype A was the most common (N = 99), followed by subtype D (N = 10), subtype B (N = 6), subtype G/I/J/K/R (N = 3/5/3/2/1) and other subtypes (N = 12). Ninety patients received chemotherapy (chemo), 41 received hypomethylating agent +/- venetoclax (HMA/ven) and 10 did not receive specific anti-AML therapy. At 12 months, EFS for subtypes A, D, B, G/I/J/K/R, and other subtypes were 49%, 58%, 50%, 49%, and 31%, and OS were 71%, 79%, 50%, 44%, and 56%, respectively. Fifty patients had allogeneic stem cell transplants: 33 in CR1 and 17 in CR2+. EFS at 12 months post-HSCT was 72%. On multivariable analysis, co-mutation with KRAS (HR: 2.69, 95% CI: 1.20-6.00) or TET2 (HR: 1.99, 95% CI: 1.22-3.26) was associated with worse EFS. For each 50 k/mm3 increase in WBC at diagnosis, the risk of relapse or death increased by 21%. For OS, co-mutation with IDH1/IDH2 (HR: 0.40, 95% CI: 0.21-0.74) was associated with better OS, whereas co-mutation with SRSF2 (HR: 2.70, 95% CI: 1.35-5.40) was associated with worse OS. CONCLUSION We did not find a statistically significant difference in EFS and OS among the NPM1 subtypes. However, our results showed that the prognoses of NPM1 AML can be influenced by other co-occurring mutations. A larger study is needed to confirm our findings.
Collapse
Affiliation(s)
- Kittika Poonsombudlert
- University of Iowa Health Care, Holden Comprehensive Cancer Center, Iowa City, Iowa, USA
| | - Ratdanai Yodsuwan
- University of Iowa Health Care, Holden Comprehensive Cancer Center, Iowa City, Iowa, USA
| | - Sarah Mott
- University of Iowa Health Care, Holden Comprehensive Cancer Center, Iowa City, Iowa, USA
| | - Kathryn Crawford
- University of Iowa Health Care, Holden Comprehensive Cancer Center, Iowa City, Iowa, USA
| | - Sarah Hornberg
- University of Iowa Health Care, Holden Comprehensive Cancer Center, Iowa City, Iowa, USA
| | - Anthony N Snow
- University of Iowa Health Care, Holden Comprehensive Cancer Center, Iowa City, Iowa, USA
| | - Grerk Sutamtewagul
- University of Iowa Health Care, Holden Comprehensive Cancer Center, Iowa City, Iowa, USA
| | | | - Prajwal Dhakal
- University of Iowa Health Care, Holden Comprehensive Cancer Center, Iowa City, Iowa, USA
| |
Collapse
|
2
|
Shi Y, Chen X, Jin H, Zhu L, Hong M, Zhu Y, Wu Y, Qiu H, Wang Y, Sun Q, Jin H, Li J, Qian S, Qiao C. Clinical prognostic value of different NPM1 mutations in acute myeloid leukemia patients. Ann Hematol 2024; 103:2323-2335. [PMID: 38722387 DOI: 10.1007/s00277-024-05786-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 04/29/2024] [Indexed: 05/24/2024]
Abstract
BACKGROUND Acute myeloid leukemia (AML) patients with various nucleophosmin 1 (NPM1) mutations are controversial in the prognosis. This study aimed to investigate the prognosis of patients according to types of NPM1 mutations (NPM1mut). METHODS Bone marrow samples of 528 patients newly diagnosed with AML, were collected for morphology, immunology, cytogenetics, and molecular biology examinations. Gene mutations were detected by next-generation sequencing (NGS) technology. RESULTS About 25.2% of cases exhibited NPM1mut. 83.5% of cases were type A, while type B and D were respectively account for 2.3% and 3.0%. Furthermore, 15 cases of rare types were identified, of which 2 cases have not been reported. Clinical characteristics were similar between patients with A-type NPM1 mutations (NPM1A - type mut) and non-A-type NPM1 mutations (NPM1non - A-type mut). Event-free survival (EFS) was significantly different between patients with low NPM1non - A-type mut variant allele frequency (VAF) and low NPM1A - type mut VAF (median EFS = 3.9 vs. 8.5 months, P = 0.020). The median overall survival (OS) of the NPM1non - A-type mutFLT3-ITDmut group, the NPM1A - type mutFLT3-ITDmut group, the NPM1non - A-type mutFLT3-ITDwt group, and the NPM1A - type mutFLT3-ITDwt group were 3.9, 10.7, 17.3 and 18.8 months, while the median EFS of the corresponding groups was 1.4, 5.0, 7.6 and 9.2 months (P < 0.0001 and P = 0.004, respectively). CONCLUSIONS No significant difference was observed in OS and EFS between patients with NPM1A - type mut and NPM1non - A-type mut. However, types of NPM1 mutations and the status of FLT3-ITD mutations may jointly have an impact on the prognosis of AML patients.
Collapse
Affiliation(s)
- Yu Shi
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
- Key Laboratory of Hematology, Nanjing Medical University, Nanjing, China
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, China
| | - Xiao Chen
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
- Key Laboratory of Hematology, Nanjing Medical University, Nanjing, China
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, China
| | - Huimin Jin
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
- Key Laboratory of Hematology, Nanjing Medical University, Nanjing, China
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, China
| | - Liying Zhu
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
- Key Laboratory of Hematology, Nanjing Medical University, Nanjing, China
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, China
| | - Ming Hong
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
- Key Laboratory of Hematology, Nanjing Medical University, Nanjing, China
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, China
| | - Yu Zhu
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
- Key Laboratory of Hematology, Nanjing Medical University, Nanjing, China
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, China
| | - Yujie Wu
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
- Key Laboratory of Hematology, Nanjing Medical University, Nanjing, China
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, China
| | - Hairong Qiu
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
- Key Laboratory of Hematology, Nanjing Medical University, Nanjing, China
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, China
| | - Yan Wang
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
- Key Laboratory of Hematology, Nanjing Medical University, Nanjing, China
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, China
| | - Qian Sun
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
- Key Laboratory of Hematology, Nanjing Medical University, Nanjing, China
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, China
| | - Hui Jin
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
- Key Laboratory of Hematology, Nanjing Medical University, Nanjing, China
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, China
| | - Jianyong Li
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
- Key Laboratory of Hematology, Nanjing Medical University, Nanjing, China
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, China
| | - Sixuan Qian
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China.
- Key Laboratory of Hematology, Nanjing Medical University, Nanjing, China.
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, China.
| | - Chun Qiao
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China.
- Key Laboratory of Hematology, Nanjing Medical University, Nanjing, China.
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, China.
| |
Collapse
|
3
|
Yao Y, Lin X, Wang C, Gu Y, Jin J, Zhu Y, Wang H. Identification of a novel NPM1 mutation in acute myeloid leukemia. Exp Hematol Oncol 2023; 12:87. [PMID: 37794441 PMCID: PMC10548603 DOI: 10.1186/s40164-023-00449-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 09/23/2023] [Indexed: 10/06/2023] Open
Abstract
Nucleophosmin (NPM1) is a widely expressed nucleocytoplasmic shuttling protein with prominent nucleolar localization. It is estimated that 25-35% of adult patients with acute myeloid leukemia (AML) carry NPM1 mutations. The classic NPM1 type A mutation occurs in exon 12, which accounts for 75-80% of adult patients with NPM1-mutated AML. It produces an additional leucine and valine-rich nuclear export signal (NES) at the C-terminus, and causes aberrant cytoplasmic dislocation of NPM1 protein. Notably, emerging evidence indicates that besides the classic type A mutation, rare mutants occurring in other exons may also lead to the imbalance of the nucleocytoplasmic shuttle of NPM1. Identification of novel non-type A mutants is crucial for the diagnosis, prognosis, risk stratification and disease monitoring of potential target populations. Here we reported a novel NPM1 mutation in exon 5 identified from a de novo AML patient. Similar to the classic type A mutation, the exon 5 mutation had the NPM1 mutant bound to exportin-1 and directed the mutant into the cytoplasm by generating an additional NES sequence, resulting in aberrant cytoplasmic dislocation of NPM1 protein, which could be reversed by exportin-1 inhibitor leptomycin B. Our findings strongly support that besides the exon 12 mutation, the exon 5 mutant is another NPM1 "born to be exported" mutant critical for leukemogenesis. Therefore, similar to the classic type A mutation, the identification of our novel NPM1 mutation is beneficial for clinical laboratory diagnosis, genetic risk assessment and MRD monitoring.
Collapse
Affiliation(s)
- Yiyi Yao
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, 79, Qingchun Road, Hangzhou, 310003 People’s Republic of China
- Zhejiang Provincial Key Laboratory of Hematopoietic Malignancy, Zhejiang University, Hangzhou, 310000 Zhejiang People’s Republic of China
- Zhejiang Provincial Clinical Research Center for Hematological Disorders, Hangzhou, 310000 Zhejiang People’s Republic of China
- Zhejiang University Cancer Center, Hangzhou, 310000 Zhejiang People’s Republic of China
| | - Xiangjie Lin
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, 79, Qingchun Road, Hangzhou, 310003 People’s Republic of China
- Zhejiang Provincial Key Laboratory of Hematopoietic Malignancy, Zhejiang University, Hangzhou, 310000 Zhejiang People’s Republic of China
- Zhejiang Provincial Clinical Research Center for Hematological Disorders, Hangzhou, 310000 Zhejiang People’s Republic of China
- Zhejiang University Cancer Center, Hangzhou, 310000 Zhejiang People’s Republic of China
| | - Chen Wang
- Institute of Genetics, Zhejiang University and Department of Genetics, Zhejiang University, School of Medicine, Hangzhou, 310058 Zhejiang People’s Republic of China
| | - Ying Gu
- Institute of Genetics, Zhejiang University and Department of Genetics, Zhejiang University, School of Medicine, Hangzhou, 310058 Zhejiang People’s Republic of China
| | - Jie Jin
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, 79, Qingchun Road, Hangzhou, 310003 People’s Republic of China
- Zhejiang Provincial Key Laboratory of Hematopoietic Malignancy, Zhejiang University, Hangzhou, 310000 Zhejiang People’s Republic of China
- Zhejiang Provincial Clinical Research Center for Hematological Disorders, Hangzhou, 310000 Zhejiang People’s Republic of China
- Zhejiang University Cancer Center, Hangzhou, 310000 Zhejiang People’s Republic of China
| | - Yinghui Zhu
- Research Center for Translational Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092 China
| | - Huafeng Wang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, 79, Qingchun Road, Hangzhou, 310003 People’s Republic of China
- Zhejiang Provincial Key Laboratory of Hematopoietic Malignancy, Zhejiang University, Hangzhou, 310000 Zhejiang People’s Republic of China
- Zhejiang Provincial Clinical Research Center for Hematological Disorders, Hangzhou, 310000 Zhejiang People’s Republic of China
- Zhejiang University Cancer Center, Hangzhou, 310000 Zhejiang People’s Republic of China
| |
Collapse
|
4
|
Xue J, Chu P, Gao W, Wang F, Gao Y, Liu S, Kang Z, Yan J, Wang H. XPO1 is a new target of homoharringtonine (HHT): Making NPMc + AML cells much more sensitive to HHT treatment. Biochem Biophys Res Commun 2023; 675:155-161. [PMID: 37473530 DOI: 10.1016/j.bbrc.2023.07.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/04/2023] [Accepted: 07/13/2023] [Indexed: 07/22/2023]
Abstract
Acute myeloid leukemia (AML) is a heterogeneous disease and about one third of AML patients carry nucleophosmin (NPM1) mutation. Because 95% mutations give NPM1 an additional nuclear export signaling (NES) and dislocate NPM1 in cytoplasm (NPMc+), relocating NPM1 in nucleus provide an innovative strategy for treating this type of AML. The nuclear export of NPM1 depends on the nuclear protein export receptor XPO1, which recognizes the NES sequence on NPM1. Homoharringtonine (HHT) is a first-line chemotherapy drug of AML, yet the exact mechanism of its anti-AML activity is elusive. In this study, we found that HHT can directly target XPO1 to its NES-binding cleft, bind to Cys528 of XPO1, and inhibits its nuclear transport function. In addition, HHT can block NPMc+ proteins nuclear export and thus make NPMc+ AML cells much more sensitive to HHT treatment. Furthermore, the sensitivity of NPMc+ AML cells to HHT is a universal phenomenon irrespective of the different genetic lesions of AML. Taken together, our findings suggest that XPO1 is a new target of HHT and provide a novel strategy for NPMc+ AML treatment.
Collapse
Affiliation(s)
- Jingjing Xue
- Liaoning Key Laboratory of Hematopoietic Stem Cell Transplantation and Translational Medicine, Second Hospital of Dalian Medical University, Dalian, China; Department of Hematology, Liaoning Medical Center for Hematopoietic Stem Cell Transplantation, Second Hospital of Dalian Medical University, Dalian, China
| | - Peng Chu
- College of Pharmacy, Dalian Medical University, Dalian, China
| | - Wenjuan Gao
- Department of Biotechnology, Dalian Medical University, Dalian, China
| | - Furong Wang
- Liaoning Key Laboratory of Hematopoietic Stem Cell Transplantation and Translational Medicine, Second Hospital of Dalian Medical University, Dalian, China
| | - Yuan Gao
- Department of Hematology, Liaoning Medical Center for Hematopoietic Stem Cell Transplantation, Second Hospital of Dalian Medical University, Dalian, China
| | - Shuqing Liu
- Department of Biotechnology, Dalian Medical University, Dalian, China
| | - Zhijie Kang
- Department of Hematology, Liaoning Medical Center for Hematopoietic Stem Cell Transplantation, Second Hospital of Dalian Medical University, Dalian, China.
| | - Jinsong Yan
- Liaoning Key Laboratory of Hematopoietic Stem Cell Transplantation and Translational Medicine, Second Hospital of Dalian Medical University, Dalian, China; Department of Hematology, Liaoning Medical Center for Hematopoietic Stem Cell Transplantation, Second Hospital of Dalian Medical University, Dalian, China.
| | - Haina Wang
- Liaoning Key Laboratory of Hematopoietic Stem Cell Transplantation and Translational Medicine, Second Hospital of Dalian Medical University, Dalian, China; Department of Hematology, Liaoning Medical Center for Hematopoietic Stem Cell Transplantation, Second Hospital of Dalian Medical University, Dalian, China.
| |
Collapse
|
5
|
Chin L, Wong CYG, Gill H. Targeting and Monitoring Acute Myeloid Leukaemia with Nucleophosmin-1 ( NPM1) Mutation. Int J Mol Sci 2023; 24:3161. [PMID: 36834572 PMCID: PMC9958584 DOI: 10.3390/ijms24043161] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/08/2023] Open
Abstract
Mutations in NPM1, also known as nucleophosmin-1, B23, NO38, or numatrin, are seen in approximately one-third of patients with acute myeloid leukaemia (AML). A plethora of treatment strategies have been studied to determine the best possible approach to curing NPM1-mutated AML. Here, we introduce the structure and function of NPM1 and describe the application of minimal residual disease (MRD) monitoring using molecular methods by means of quantitative polymerase chain reaction (qPCR), droplet digital PCR (ddPCR), next-generation sequencing (NGS), and cytometry by time of flight (CyTOF) to target NPM1-mutated AML. Current drugs, now regarded as the standard of care for AML, as well as potential drugs still under development, will also be explored. This review will focus on the role of targeting aberrant NPM1 pathways such as BCL-2 and SYK; as well as epigenetic regulators (RNA polymerase), DNA intercalators (topoisomerase II), menin inhibitors, and hypomethylating agents. Aside from medication, the effects of stress on AML presentation have been reported, and some possible mechanisms outlined. Moreover, targeted strategies will be briefly discussed, not only for the prevention of abnormal trafficking and localisation of cytoplasmic NPM1 but also for the elimination of mutant NPM1 proteins. Lastly, the advancement of immunotherapy such as targeting CD33, CD123, and PD-1 will be mentioned.
Collapse
Affiliation(s)
| | | | - Harinder Gill
- Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
6
|
Lisi V, Blanchard È, Vladovsky M, Audemard É, Ferghaly A, Lemieux S, Hébert J, Sauvageau G, Lavallée VP. Unified gene expression signature of novel NPM1 exon 5 mutations in acute myeloid leukemia. Blood Adv 2022; 6:5160-5164. [PMID: 35849707 PMCID: PMC9631620 DOI: 10.1182/bloodadvances.2022007300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 07/03/2022] [Indexed: 11/20/2022] Open
Affiliation(s)
- Véronique Lisi
- The Leucegene Project, Université de Montréal, Montréal, QC, Canada
- Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, QC, Canada
| | - Ève Blanchard
- The Leucegene Project, Université de Montréal, Montréal, QC, Canada
- Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, QC, Canada
| | - Michael Vladovsky
- The Leucegene Project, Université de Montréal, Montréal, QC, Canada
- Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, QC, Canada
| | - Éric Audemard
- The Leucegene Project, Université de Montréal, Montréal, QC, Canada
| | - Albert Ferghaly
- The Leucegene Project, Université de Montréal, Montréal, QC, Canada
| | - Sébastien Lemieux
- The Leucegene Project, Université de Montréal, Montréal, QC, Canada
- Department of Computer Science and Operations Research, Université de Montréal, Montréal, QC, Canada
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
| | - Josée Hébert
- The Leucegene Project, Université de Montréal, Montréal, QC, Canada
- Institut Universitaire d’Hémato-oncologie et de Thérapie Cellulaire, Centre Intégré Universitaire de Santé et de Services Sociaux de l’Est de l’Île de Montréal, Montréal, QC, Canada
- Quebec Leukemia Cell Bank, Centre de Recherche de l’Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada
- Department of Medicine, Université de Montréal, Montréal, QC, Canada
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
| | - Guy Sauvageau
- The Leucegene Project, Université de Montréal, Montréal, QC, Canada
- Institut Universitaire d’Hémato-oncologie et de Thérapie Cellulaire, Centre Intégré Universitaire de Santé et de Services Sociaux de l’Est de l’Île de Montréal, Montréal, QC, Canada
- Quebec Leukemia Cell Bank, Centre de Recherche de l’Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada
- Department of Medicine, Université de Montréal, Montréal, QC, Canada
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
| | - Vincent-Philippe Lavallée
- The Leucegene Project, Université de Montréal, Montréal, QC, Canada
- Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, QC, Canada
- Department of Pediatrics, Université de Montréal, Montréal, QC, Canada
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
- Hematology and Oncology Division, Centre Hospitalier Universitaire Sainte-Justine, Montréal, QC, Canada
| |
Collapse
|
7
|
Xiao Q, Lei L, Ren J, Peng M, Jing Y, Jiang X, Huang J, Tao Y, Lin C, Yang J, Sun M, Tang L, Wei X, Yang Z, Zhang L. Mutant NPM1-Regulated FTO-Mediated m 6A Demethylation Promotes Leukemic Cell Survival via PDGFRB/ERK Signaling Axis. Front Oncol 2022; 12:817584. [PMID: 35211409 PMCID: PMC8862181 DOI: 10.3389/fonc.2022.817584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/17/2022] [Indexed: 12/12/2022] Open
Abstract
Acute myeloid leukemia (AML) with nucleophosmin 1 (NPM1) mutations exhibits distinct biological and clinical features, accounting for approximately one-third of AML. Recently, the N6-methyladenosine (m6A) RNA modification has emerged as a new epigenetic modification to contribute to tumorigenesis and development. However, there is limited knowledge on the role of m6A modifications in NPM1-mutated AML. In this study, the decreased m6A level was first detected and high expression of fat mass and obesity-associated protein (FTO) was responsible for the m6A suppression in NPM1-mutated AML. FTO upregulation was partially induced by NPM1 mutation type A (NPM1-mA) through impeding the proteasome pathway. Importantly, FTO promoted leukemic cell survival by facilitating cell cycle and inhibiting cell apoptosis. Mechanistic investigations demonstrated that FTO depended on its m6A RNA demethylase activity to activate PDGFRB/ERK signaling axis. Our findings indicate that FTO-mediated m6A demethylation plays an oncogenic role in NPM1-mutated AML and provide a new layer of epigenetic insight for future treatments of this distinctly leukemic entity.
Collapse
Affiliation(s)
- Qiaoling Xiao
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Li Lei
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Jun Ren
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Meixi Peng
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Yipei Jing
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Xueke Jiang
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Junpeng Huang
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Yonghong Tao
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Can Lin
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Jing Yang
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Minghui Sun
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Lisha Tang
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Xingyu Wei
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Zailin Yang
- Hematology Oncology Center, Chongqing University Cancer Hospital, Chongqing, China
| | - Ling Zhang
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| |
Collapse
|
8
|
La Manna S, Florio D, Di Natale C, Napolitano F, Malfitano AM, Netti PA, De Benedictis I, Marasco D. Conformational consequences of NPM1 rare mutations: An aggregation perspective in Acute Myeloid Leukemia. Bioorg Chem 2021; 113:104997. [PMID: 34044346 DOI: 10.1016/j.bioorg.2021.104997] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 05/03/2021] [Accepted: 05/13/2021] [Indexed: 10/21/2022]
Abstract
Often proteins association is a physiological process used by cells to regulate their growth and to adapt to different stress conditions, including mutations. In the case of a subtype of Acute Myeloid Leukemia (AML), mutations of nucleophosmin 1 (NPM1) protein cause its aberrant cytoplasmatic mislocalization (NPMc+). We recently pointed out an amyloidogenic propensity of protein regions including the most common mutations of NPMc+ located in the C-terminal domain (CTD): they were able to form, in vitro, amyloid cytotoxic aggregates with fibrillar morphology. Herein, we analyzed the conformational characteristics of several peptides including rare AML mutations of NPMc+. By means of different spectroscopic, microscopic and cellular assays we evaluated the importance of amino acid composition, among rare AML mutations, to determine amyloidogenic propensity. This study could add a piece of knowledge to the structural consequences of mutations in cytoplasmatic NPM1c+.
Collapse
Affiliation(s)
- Sara La Manna
- Department of Pharmacy, University of Naples "Federico II", 80134 Naples, Italy
| | - Daniele Florio
- Department of Pharmacy, University of Naples "Federico II", 80134 Naples, Italy
| | - Concetta Di Natale
- Interdisciplinary Research Centre on Biomaterials (CRIB), Department of Ingegneria Chimica dei Materiali e della Produzione Industriale (DICMAPI), University of Naples "Federico II", 8012 Naples, Italy
| | - Fabiana Napolitano
- Department of Translational Medical Science, University of Naples "Federico II", 80131 Naples, Italy
| | - Anna Maria Malfitano
- Department of Translational Medical Science, University of Naples "Federico II", 80131 Naples, Italy
| | - Paolo A Netti
- Interdisciplinary Research Centre on Biomaterials (CRIB), Department of Ingegneria Chimica dei Materiali e della Produzione Industriale (DICMAPI), University of Naples "Federico II", 8012 Naples, Italy
| | | | - Daniela Marasco
- Department of Pharmacy, University of Naples "Federico II", 80134 Naples, Italy.
| |
Collapse
|
9
|
Karimi Dermani F, Gholamzadeh Khoei S, Afshar S, Amini R. The potential role of nucleophosmin (NPM1) in the development of cancer. J Cell Physiol 2021; 236:7832-7852. [PMID: 33959979 DOI: 10.1002/jcp.30406] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 04/07/2021] [Accepted: 04/12/2021] [Indexed: 12/18/2022]
Abstract
Nucleophosmin (NPM1) is a well-known nucleocytoplasmic shuttling protein that performs several cellular functions such as ribosome biogenesis, chromatin remodeling, genomic stability, cell cycle progression, and apoptosis. NPM1 has been identified to be necessary for normal cellular functions, and its altered regulation by overexpression, mutation, translocation, loss of function, or sporadic deletion can lead to cancer and tumorigenesis. In this review, we focus on the gene and protein structure of NPM1 and its physiological roles. Finally, we discuss the association of NPM1 with various types of cancer including solid tumors and leukemia.
Collapse
Affiliation(s)
- Fateme Karimi Dermani
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.,Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Saeideh Gholamzadeh Khoei
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.,Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Saeid Afshar
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Razieh Amini
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
10
|
Tang Y, Tao Y, Wang L, Yang L, Jing Y, Jiang X, Lei L, Yang Z, Wang X, Peng M, Xiao Q, Ren J, Zhang L. NPM1 mutant maintains ULK1 protein stability via TRAF6‐dependent ubiquitination to promote autophagic cell survival in leukemia. FASEB J 2020; 35:e21192. [DOI: 10.1096/fj.201903183rrr] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 09/06/2020] [Accepted: 10/29/2020] [Indexed: 01/08/2023]
Affiliation(s)
- Yuting Tang
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education School of Laboratory Medicine Chongqing Medical University Chongqing China
| | - Yao Tao
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education School of Laboratory Medicine Chongqing Medical University Chongqing China
| | - Lu Wang
- Department of Clinical Laboratory University‐Town HospitalChongqing Medical University Chongqing China
| | - Liyuan Yang
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education School of Laboratory Medicine Chongqing Medical University Chongqing China
| | - Yipei Jing
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education School of Laboratory Medicine Chongqing Medical University Chongqing China
| | - Xueke Jiang
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education School of Laboratory Medicine Chongqing Medical University Chongqing China
| | - Li Lei
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education School of Laboratory Medicine Chongqing Medical University Chongqing China
| | - Zailin Yang
- Department of Clinical Laboratory The Third Affiliated Hospital of Chongqing Medical University Chongqing China
| | - Xin Wang
- Department of Hematology The First Affiliated Hospital of Chongqing Medical University Chongqing China
| | - Meixi Peng
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education School of Laboratory Medicine Chongqing Medical University Chongqing China
| | - Qiaoling Xiao
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education School of Laboratory Medicine Chongqing Medical University Chongqing China
| | - Jun Ren
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education School of Laboratory Medicine Chongqing Medical University Chongqing China
| | - Ling Zhang
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education School of Laboratory Medicine Chongqing Medical University Chongqing China
| |
Collapse
|
11
|
Yang L, Wang L, Yang Z, Jin H, Zou Q, Zhan Q, Tang Y, Tao Y, Lei L, Jing Y, Jiang X, Zhang L. Up-regulation of EMT-related gene VCAN by NPM1 mutant-driven TGF-β/cPML signalling promotes leukemia cell invasion. J Cancer 2019; 10:6570-6583. [PMID: 31777586 PMCID: PMC6856892 DOI: 10.7150/jca.30223] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 09/14/2019] [Indexed: 12/14/2022] Open
Abstract
Acute myeloid leukemia (AML) with mutated nucleophosmin (NPM1) is acknowledged as a distinct leukemia entity in the 2016 updated World Health Organization (WHO) classification. NPM1-mutated AML patients are correlated with higher extramedullary involvement. Epithelial-mesenchymal transition (EMT) is one of the key steps which cause distant metastasis in tumor. However, whether EMT-related programs contribute to cell invasion in NPM1-mutated AML remains unclear. In this study, we identified the EMT-related gene versican (VCAN) in NPM1-mutated AML across three patient datasets. Further experiments validated the elevated VCAN expression in NPM1-mutated AML primary blasts and OCI-AML3 cells with NPM1 mutation. Mechanistic studies revealed that increased VCAN expression was at least partially regulated by NPM1 mutant via TGF-β/cPML/Smad signalling. Functional evaluations showed that silencing VCAN by shRNA significantly suppressed cell migration and invasion capacity, whereas increased VCAN by overexpressing NPM1-mA enhanced migration and invasion ability of leukemia cells. Finally, we found that high expression of VCAN was associated with poor prognosis in AML patients. These findings provide insights into the involvement of EMT-related gene VCAN in the pathogenesis of NPM1-mutated leukemia, which suggests that VCAN is an attractive target for novel diagnostic and therapeutic strategies in NPM1-mutated AML.
Collapse
Affiliation(s)
- Liyuan Yang
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Lu Wang
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Zailin Yang
- Center for Hematology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Hongjun Jin
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Qin Zou
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Qian Zhan
- The Center for Clinical Molecular Medical detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuting Tang
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Yao Tao
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Li Lei
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Yipei Jing
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Xueke Jiang
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Ling Zhang
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| |
Collapse
|
12
|
Brodská B, Šašinková M, Kuželová K. Nucleophosmin in leukemia: Consequences of anchor loss. Int J Biochem Cell Biol 2019; 111:52-62. [PMID: 31009764 DOI: 10.1016/j.biocel.2019.04.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/17/2019] [Accepted: 04/18/2019] [Indexed: 12/17/2022]
Abstract
Nucleophosmin (NPM), one of the most abundant nucleolar proteins, has crucial functions in ribosome biogenesis, cell cycle control, and DNA-damage repair. In human cells, NPM occurs mainly in oligomers. It functions as a chaperone, undergoes numerous interactions and forms part of many protein complexes. Although NPM role in carcinogenesis is not fully elucidated, a variety of tumor suppressor as well as oncogenic activities were described. NPM is overexpressed, fused with other proteins, or mutated in various tumor types. In the acute myeloid leukemia (AML), characteristic mutations in NPM1 gene, leading to modification of NPM C-terminus, are the most frequent genetic aberration. Although multiple mutation types of NPM are found in AML, they are all characterized by aberrant cytoplasmic localization of the mutated protein. In this review, current knowledge of the structure and function of NPM is presented in relation to its interaction network, in particular to the interaction with other nucleolar proteins and with proteins active in apoptosis. Possible molecular mechanisms of NPM mutation-driven leukemogenesis and NPM therapeutic targeting are discussed. Finally, recent findings concerning the immunogenicity of the mutated NPM and specific immunological features of AML patients with NPM mutation are summarized.
Collapse
Affiliation(s)
- Barbora Brodská
- Institute of Hematology and Blood Transfusion, U Nemocnice 1, 128 20 Prague 2, Czech Republic
| | - Markéta Šašinková
- Institute of Hematology and Blood Transfusion, U Nemocnice 1, 128 20 Prague 2, Czech Republic
| | - Kateřina Kuželová
- Institute of Hematology and Blood Transfusion, U Nemocnice 1, 128 20 Prague 2, Czech Republic.
| |
Collapse
|