1
|
Tran TH, Tasian SK. How I treat Philadelphia chromosome-like acute lymphoblastic leukemia in children, adolescents, and young adults. Blood 2025; 145:20-34. [PMID: 38657263 DOI: 10.1182/blood.2023023153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/02/2024] [Accepted: 04/21/2024] [Indexed: 04/26/2024] Open
Abstract
ABSTRACT Philadelphia chromosome-like acute lymphoblastic leukemia (Ph-like ALL) represents a high-risk B-lineage ALL subtype characterized by adverse clinical features and poor relapse-free survival despite risk-adapted multiagent chemotherapy regimens. The advent of next-generation sequencing has unraveled the diversity of kinase-activating genetic drivers in Ph-like ALL that are potentially amenable to personalized molecularly-targeted therapies. Based upon robust preclinical data and promising case series of clinical activity of tyrosine kinase inhibitor (TKI)-based treatment in adults and children with relevant genetic Ph-like ALL subtypes, several clinical trials have investigated the efficacy of JAK- or ABL-directed TKIs in cytokine receptor-like factor 2 (CRLF2)/JAK pathway-mutant or ABL-class Ph-like ALL, respectively. The final results of these trials are pending, and standard-of-care therapeutic approaches for patients with Ph-like ALL have yet to be defined. In this How I Treat perspective, we review recent literature to guide current evidence-based treatment recommendations via illustrative clinical vignettes of children, adolescents, and young adults with newly diagnosed or relapsed/refractory Ph-like ALL, and we further highlight open and soon-to-open trials investigating immunotherapy and TKIs specifically for this high-risk patient population.
Collapse
Affiliation(s)
- Thai Hoa Tran
- Division of Pediatric Hematology-Oncology, Charles-Bruneau Cancer Center, Centre Hospitalier Universitaire Sainte-Justine, Montréal, QC, Canada
- Department of Pediatrics, Faculty of Medicine, University of Montréal, Montréal, QC, Canada
| | - Sarah K Tasian
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA
- Department of Pediatrics and Abramson Cancer Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| |
Collapse
|
2
|
Iacobucci I, Papayannidis C. SOHO State of the Art Updates and Next Questions | Approach to BCR::ABL1-Like Acute Lymphoblastic Leukemia. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2025; 25:13-22. [PMID: 39217000 DOI: 10.1016/j.clml.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024]
Abstract
Philadelphia-like (Ph-like) or BCR::ABL1-like acute lymphoblastic leukemia (ALL) is a common high-risk subtype of B-cell precursor ALL (B-ALL) characterized by a diverse range of genetic alterations that challenge diagnose and converge on distinct kinase and cytokine receptor-activated gene expression profiles, resembling those from BCR::ABL1-positive ALL from which its nomenclature. The presence of kinase-activating genetic drivers has prompted the investigation in preclinical models and clinical settings of the efficacy of tyrosine kinase inhibitor (TKI)-based treatments. This was further supported by an inadequate response to conventional chemotherapy, high rates of induction failure and persistent measurable residual disease (MRD) positivity, which translate in lower survival rates compared to other B-ALL subtypes. Therefore, innovative approaches are underway, including the integration of TKIs with frontline regimens and the early introduction of immunotherapy strategies (monoclonal antibodies, T-cell engagers, drug-conjugates, and CAR-T cells). Allogeneic hematopoietic cell transplantation (HSCT) is currently recommended for adult BCR::ABL1-like ALL patients in first complete remission. However, the incorporation of novel therapies, a more accurate diagnosis and a more sensitive MRD assessment may modify the risk stratification and the indication for transplant in these patients.
Collapse
Affiliation(s)
- Ilaria Iacobucci
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| | - Cristina Papayannidis
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia Seragnoli, Bologna, Italy
| |
Collapse
|
3
|
Lazarevic V, Lilljebjörn H, Olsson-Arvidsson L, Orsmark-Pietras C, Ågerstam H. TLE3 Is a Novel Fusion Partner of JAK2 in Myeloid/Lymphoid Neoplasm With Eosinophilia Responding to JAK2 Inhibition. Genes Chromosomes Cancer 2024; 63:e23261. [PMID: 39105620 DOI: 10.1002/gcc.23261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/18/2024] [Accepted: 07/18/2024] [Indexed: 08/07/2024] Open
Abstract
Chromosomal rearrangements involving Janus kinase 2 (JAK2) are rare but recurrent findings in lymphoid or myeloid neoplasia. Detection of JAK2 fusion genes is important as patients with aberrantly activated JAK2 may benefit from treatment with tyrosine kinase inhibitors such as ruxolitinib. Here, we report a novel fusion gene between the transcriptional co-repressor-encoding gene transducin-like enhancer of split 3 (TLE3) and JAK2 in a patient initially diagnosed with chronic eosinophilic leukemia with additional mutations in PTPN11 and NRAS. The patient was successfully treated with the JAK2 inhibitor ruxolitinib for 8 months before additional somatic mutations were acquired and the disease progressed into an acute lymphoblastic T-cell leukemia/lymphoma. The present case shows similarities to previously reported cases with PCM1::JAK2 and BCR::JAK2 with regard to disease phenotype and response to ruxolitinib, and importantly, provides an example that also patients harboring other JAK2 fusion genes may benefit from treatment with JAK2 inhibitors.
Collapse
Affiliation(s)
- Vladimir Lazarevic
- Department of Hematology, Oncology and Radiation Physics, Skåne University Hospital, Lund, Sweden
| | | | - Linda Olsson-Arvidsson
- Division of Clinical Genetics, Lund University, Lund, Sweden
- Department of Clinical Genetics, Pathology and Molecular Diagnostics, Office for Medical Services, Lund, Sweden
| | - Christina Orsmark-Pietras
- Division of Clinical Genetics, Lund University, Lund, Sweden
- Department of Clinical Genetics, Pathology and Molecular Diagnostics, Office for Medical Services, Lund, Sweden
| | - Helena Ågerstam
- Division of Clinical Genetics, Lund University, Lund, Sweden
- Department of Clinical Genetics, Pathology and Molecular Diagnostics, Office for Medical Services, Lund, Sweden
| |
Collapse
|
4
|
Kourti M, Aivaliotis M, Hatzipantelis E. Proteomics in Childhood Acute Lymphoblastic Leukemia: Challenges and Opportunities. Diagnostics (Basel) 2023; 13:2748. [PMID: 37685286 PMCID: PMC10487225 DOI: 10.3390/diagnostics13172748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/20/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
Acute lymphoblastic leukemia (ALL) is the most common cancer in children and one of the success stories in cancer therapeutics. Risk-directed therapy based on clinical, biologic and genetic features has played a significant role in this accomplishment. Despite the observed improvement in survival rates, leukemia remains one of the leading causes of cancer-related deaths. Implementation of next-generation genomic and transcriptomic sequencing tools has illustrated the genomic landscape of ALL. However, the underlying dynamic changes at protein level still remain a challenge. Proteomics is a cutting-edge technology aimed at deciphering the mechanisms, pathways, and the degree to which the proteome impacts leukemia subtypes. Advances in mass spectrometry enable high-throughput collection of global proteomic profiles, representing an opportunity to unveil new biological markers and druggable targets. The purpose of this narrative review article is to provide a comprehensive overview of studies that have utilized applications of proteomics in an attempt to gain insight into the pathogenesis and identification of biomarkers in childhood ALL.
Collapse
Affiliation(s)
- Maria Kourti
- Third Department of Pediatrics, School of Medicine, Aristotle University and Hippokration General Hospital, 54642 Thessaloniki, Greece
| | - Michalis Aivaliotis
- Laboratory of Biological Chemistry, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Emmanouel Hatzipantelis
- Children & Adolescent Hematology-Oncology Unit, Second Department of Pediatrics, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| |
Collapse
|
5
|
Płotka A, Przybyłowicz-Chalecka A, Korolczuk M, Kanduła Z, Ratajczak B, Kiernicka-Parulska J, Mierzwa A, Godziewska K, Jarmuż-Szymczak M, Gil L, Lewandowski K. BCR::ABL1-like acute lymphoblastic leukaemia: a single institution experience on identification of potentially therapeutic targetable cases. Mol Cytogenet 2023; 16:14. [PMID: 37400842 DOI: 10.1186/s13039-023-00645-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 06/19/2023] [Indexed: 07/05/2023] Open
Abstract
BACKGROUND BCR::ABL1-like acute lymphoblastic leukaemia (BCR::ABL1-like ALL) is characterized by inferior outcomes. Current efforts concentrate on the identification of molecular targets to improve the therapy results. The accessibility to next generation sequencing, a recommended diagnostic method, is limited. We present our experience in the BCR::ABL1-like ALL diagnostics, using a simplified algorithm. RESULTS Out of 102 B-ALL adult patients admitted to our Department in the years 2008-2022, 71 patients with available genetic material were included. The diagnostic algorithm comprised flow cytometry, fluorescent in-situ hybridization, karyotype analysis and molecular testing with high resolution melt analysis and Sanger Sequencing. We recognized recurring cytogenetic abnormalities in 32 patients. The remaining 39 patients were screened for BCR::ABL1-like features. Among them, we identified 6 patients with BCR::ABL1-like features (15.4%). Notably, we documented CRLF2-rearranged (CRLF2-r) BCR::ABL1-like ALL occurrence in a patient with long-term remission of previously CRLF2-r negative ALL. CONCLUSIONS An algorithm implementing widely available techniques enables the identification of BCR::ABL1-like ALL cases in settings with limited resources.
Collapse
Affiliation(s)
- Anna Płotka
- Department of Haematology and Bone Marrow Transplantation, Poznań University of Medical Sciences, Poznań, Poland.
| | - Anna Przybyłowicz-Chalecka
- Department of Haematology and Bone Marrow Transplantation, Poznań University of Medical Sciences, Poznań, Poland
| | - Maria Korolczuk
- Department of Haematology and Bone Marrow Transplantation, Poznań University of Medical Sciences, Poznań, Poland
| | - Zuzanna Kanduła
- Department of Haematology and Bone Marrow Transplantation, Poznań University of Medical Sciences, Poznań, Poland
| | - Błażej Ratajczak
- Department of Haematology and Bone Marrow Transplantation, Poznań University of Medical Sciences, Poznań, Poland
| | - Jolanta Kiernicka-Parulska
- Department of Haematology and Bone Marrow Transplantation, Poznań University of Medical Sciences, Poznań, Poland
| | - Anna Mierzwa
- Department of Haematology and Bone Marrow Transplantation, Poznań University of Medical Sciences, Poznań, Poland
| | - Katarzyna Godziewska
- Department of Haematology and Bone Marrow Transplantation, Poznań University of Medical Sciences, Poznań, Poland
| | - Małgorzata Jarmuż-Szymczak
- Department of Haematology and Bone Marrow Transplantation, Poznań University of Medical Sciences, Poznań, Poland
- Institute of Human Genetics, Polish Academy of Sciences, Poznań, Poland
| | - Lidia Gil
- Department of Haematology and Bone Marrow Transplantation, Poznań University of Medical Sciences, Poznań, Poland
| | - Krzysztof Lewandowski
- Department of Haematology and Bone Marrow Transplantation, Poznań University of Medical Sciences, Poznań, Poland
| |
Collapse
|
6
|
Alghandour R, Sakr DH, Shaaban Y. Philadelphia-like acute lymphoblastic leukemia: the journey from molecular background to the role of bone marrow transplant-review article. Ann Hematol 2023; 102:1287-1300. [PMID: 37129698 PMCID: PMC10181978 DOI: 10.1007/s00277-023-05241-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 04/20/2023] [Indexed: 05/03/2023]
Abstract
Philadelphia chromosome-like (Ph-like) ALL is a recent subtype of acute lymphoblastic leukemia. Although it does not express the BCR-ABL fusion gene, it has a behavior like true BCR/ABL1-positive cases. This subtype harbors different molecular alterations most commonly CRLF2 rearrangements. Most cases of Ph-like ALL are associated with high white blood cell count, high minimal residual disease level after induction therapy, and high relapse rate. Efforts should be encouraged for early recognition of Ph-like ALL to enhance therapeutic strategies. Recently, many trials are investigating the possibility of adding the tyrosine kinase inhibitor (TKI) to chemotherapy to improve clinical outcomes. The role and best timing of allogeneic bone marrow transplant in those cases are still unclear. Precision medicine should be implemented in the treatment of such cases. Here in this review, we summarize the available data on Ph-like ALL.
Collapse
Affiliation(s)
- Reham Alghandour
- Medical oncology Unit, Oncology Center Mansoura University, Faculty of Medicine, Mansoura University, Mansoura, Egypt.
| | - Doaa H Sakr
- Medical oncology Unit, Oncology Center Mansoura University, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Yasmin Shaaban
- Clinical Hematology Unit, Oncology Center Mansoura University, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
7
|
Grant AH, Rodriguez AC, Rodriguez Moncivais OJ, Sun S, Li L, Mohl JE, Leung MY, Kirken RA, Rodriguez G. JAK1 Pseudokinase V666G Mutant Dominantly Impairs JAK3 Phosphorylation and IL-2 Signaling. Int J Mol Sci 2023; 24:ijms24076805. [PMID: 37047778 PMCID: PMC10095075 DOI: 10.3390/ijms24076805] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/17/2023] [Accepted: 03/24/2023] [Indexed: 04/08/2023] Open
Abstract
Overactive Janus kinases (JAKs) are known to drive leukemia, making them well-suited targets for treatment. We sought to identify new JAK-activating mutations and instead found a JAK1-inactivating pseudokinase mutation, V666G. In contrast to other pseudokinase mutations that canonically lead to an active kinase, the JAK1 V666G mutation led to under-activation seen by reduced phosphorylation. To understand the functional role of JAK1 V666G in modifying kinase activity we investigated its influence on other JAK kinases and within the Interleukin-2 pathway. JAK1 V666G not only inhibited its own activity, but its presence could inhibit other JAK kinases. These findings provide new insights into the potential of JAK1 pseudokinase to modulate its own activity, as well as of other JAK kinases. Thus, the features of the JAK1 V666 region in modifying JAK kinases can be exploited to allosterically inhibit overactive JAKs.
Collapse
Affiliation(s)
- Alice H. Grant
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX 79968, USA
- Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Alejandro C. Rodriguez
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX 79968, USA
- Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Omar J. Rodriguez Moncivais
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX 79968, USA
- Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Shengjie Sun
- Department of Physics, The University of Texas at El Paso, El Paso, TX 79968, USA
- Computational Science Program, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Lin Li
- Department of Physics, The University of Texas at El Paso, El Paso, TX 79968, USA
- Computational Science Program, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Jonathon E. Mohl
- Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX 79968, USA
- Department of Mathematical Sciences, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Ming-Ying Leung
- Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX 79968, USA
- Computational Science Program, The University of Texas at El Paso, El Paso, TX 79968, USA
- Department of Mathematical Sciences, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Robert A. Kirken
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX 79968, USA
- Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Georgialina Rodriguez
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX 79968, USA
- Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX 79968, USA
| |
Collapse
|
8
|
Zhang L, Shah B, Zhang Y, Tashkandi H, Xiao W, Fernandez-Pol S, Vergara-Lluri M, Hussaini M, Song J, Lancet J, Moscinski L, Yun S, Lu CM, Medeiros LJ, Tang G. Clinicopathologic characteristics, genetic features, and treatment options for acute lymphoblastic leukemia with JAK2 rearrangement-A 10-case study and literature review. Hum Pathol 2023; 136:1-15. [PMID: 36958463 DOI: 10.1016/j.humpath.2023.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/28/2023] [Accepted: 03/06/2023] [Indexed: 03/25/2023]
Abstract
JAK2 rearrangement (JAK2-R) in acute lymphoblastic leukemia (ALL) is rare and often categorized as B-ALL with BCR::ABL1-like features based on the World Health Organization classification. We report 10 patients with JAK2-R ALL, 9 males and 1 female, with a median age 40.5 years. Eight patients presented with marked leukocytosis (median WBC, 63 × 10 9/L) and hypercellular (>95%) bone marrow with increased lymphoblasts (72%-95%). There was no evidence of bone marrow fibrosis or hypereosinophilia. Immunophenotypic analysis showed 9 B-cell and 1 T-cell neoplasms. Using fluorescence in situ hybridization (FISH) and RNA sequencing analysis, JAK2 partners were identified for 7 cases and included PCM1 (n=4), ETV6 (n=2) and BCR (n=1). All patients received upfront polychemotherapy. Additionally, 2 patients received ruxolitinib, 2 received allogeneic stem cell transplant, and 1 received CAR-T therapy. The 1- and 3-year overall survival rates were 55.6% and 22.2%, respectively. A literature review identified 24 B-ALL and 4 T-ALL cases with JAK2-R reported, including 16 males, 6 females and 6 gender not stated. Many JAK2 partner-genes were reported with the most common being PAX5 (n=7), ETV6 (n=4), BCR (n=3) and PCM1 (n=2). Survival data or 13 reported cases showed 1- and 3-year overall survival rates of 41.7% and 41.7%, respectively. In summary, JAK2-R ALL occurs more often in adult males, are mostly of B-cell lineage, and associated with an aggressive clinical course. Absence of eosinophilia and bone marrow fibrosis and no evidence of preexisting/concurrent JAK2-R myeloid neoplasms distinguish JAK2-R ALL from other myeloid/lymphoid neoplasms with eosinophilia and JAK2-R.
Collapse
Affiliation(s)
- Ling Zhang
- Department of Hematopathology and Laboratory Medicine, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Bijal Shah
- Department of Hematological Malignancy, H Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Yumeng Zhang
- Morsani College of Medicine, the University of South Florida and H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA.
| | - Hammad Tashkandi
- Department of Hematopathology and Laboratory Medicine, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Wenbin Xiao
- Department of Pathology, Memorial Sloane Kettering Cancer Center, New York, New York, USA
| | | | - Maria Vergara-Lluri
- Department of Pathology, Hematopathology Section, Keck School of Medicine of University of Southern California, Los Angeles, CA, USA
| | - Mohammad Hussaini
- Department of Hematopathology and Laboratory Medicine, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Jinming Song
- Department of Hematopathology and Laboratory Medicine, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Jeffrey Lancet
- Department of Hematological Malignancy, H Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Lynn Moscinski
- Department of Hematopathology and Laboratory Medicine, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Seongseok Yun
- Department of Hematological Malignancy, H Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Chuanyi M Lu
- Department of Laboratory Medicine, University of California at San Francisco and San Francisco VA Health Care System, San Francisco, CA, USA
| | - L Jeffrey Medeiros
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center Houston, TX, USA
| | - Guilin Tang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center Houston, TX, USA
| |
Collapse
|
9
|
Dargenio M, Bonifacio M, Chiaretti S, Vitale A, Fracchiolla NS, Papayannidis C, Giglio F, Salutari P, Audisio E, Scappini B, Zappasodi P, Defina M, Forghieri F, Scattolin AM, Todisco E, Lunghi M, Guolo F, Del Principe MI, Annunziata M, Lazzarotto D, Cedrone M, Pasciolla C, Imovilli A, Tanasi I, Trappolini S, Cerrano M, La Starza R, Krampera M, Di Renzo N, Candoni A, Pizzolo G, Ferrara F, Foà R. Incidence, treatment and outcome of central nervous system relapse in adult acute lymphoblastic leukaemia patients treated front-line with paediatric-inspired regimens: A retrospective multicentre Campus ALL study. Br J Haematol 2023; 200:440-450. [PMID: 36335916 PMCID: PMC10098932 DOI: 10.1111/bjh.18537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/16/2022] [Accepted: 10/17/2022] [Indexed: 11/08/2022]
Abstract
Within the Campus ALL network we analyzed the incidence, characteristics, treatment and outcome of a central nervous system (CNS) relapse in 1035 consecutive adult acute lymphoblastic leukemia (ALL) patients treated frontline with pediatric-inspired protocols between 2009 and 2020. Seventy-one patients (6.8%) experienced a CNS recurrence, more frequently in T- (28/278; 10%) than in B-ALL (43/757; 5.7%) (p = 0.017). An early CNS relapse-< 12 months from diagnosis-was observed in 41 patients. In multivariate analysis, risk factors for early CNS relapse included T-cell phenotype (p = <0.001), hyperleucocytosis >100 × 109 /L (p<0.001) and male gender (p = 0.015). Treatment was heterogeneous, including chemotherapy, radiotherapy, intrathecal therapy and novel agents. A complete remission (CR) was obtained in 39 patients (55%) with no differences among strategies. After CR, 26 patients underwent an allogenic transplant, with a significant overall survival benefit compared to non-transplanted patients (p = 0.012). After a median observation of 8 months from CNS relapse, 23 patients (32%) were alive. In multivariate analysis, the time to CNS relapse was the strongest predictor of a lower 2-year post-relapse survival (p<0.001). In conclusion, in adult ALL the outcome after a CNS relapse remains very poor. Effective CNS prophylaxis remains the best approach and allogenic transplant should be pursued when possible.
Collapse
Affiliation(s)
- Michelina Dargenio
- Ospedale Vito Fazzi, Unità Operativa di Ematologia e Trapianto, Lecce, Italy
| | - Massimiliano Bonifacio
- Dipartimento di Medicina, Sezione di Ematologia, Università e Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Sabina Chiaretti
- Divisione di Ematologia, Dipartimento di Medicina Traslazionale e di Precisione, Università Sapienza, Rome, Italy
| | - Antonella Vitale
- Divisione di Ematologia, Dipartimento di Medicina Traslazionale e di Precisione, Università Sapienza, Rome, Italy
| | | | - Cristina Papayannidis
- IRCCS Azienda Ospedaliero-Universitaria, Istituto di Ematologia "Seràgnoli", Bologna, Italy
| | - Fabio Giglio
- Ospedale San Raffaele, Unità Operativa di Ematologia, Milan, Italy
| | - Prassede Salutari
- Unità Operativa Complessa di Ematologia, Ospedale Civile Spirito Santo, Pescara, Italy
| | - Ernesta Audisio
- Dipartimento di Ematologia e Oncologia, AO Città della Salute e della Scienza, Torino, Italy
| | | | - Patrizia Zappasodi
- Unità Operativa di Ematologia, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Marzia Defina
- Unità Operativa Complessa di Ematologia, AOUS, Università di Siena, Siena, Italy
| | - Fabio Forghieri
- Unità Operativa Complessa di Ematologia, AOU Policlinico, Modena, Italy
| | | | - Elisabetta Todisco
- Unità Operativa Ematologia, Istituto Europeo di Oncologia (IEO), Milan, Italy
| | - Monia Lunghi
- Divisione di Ematologia, Dipartimento di Medicina Traslazionale, Università del Piemonte Orientale, Novara, Italy
| | - Fabio Guolo
- Clinica Ematologica, Dipartimento di Medicina Interna, Università degli Studi di Genova, Genoa, Italy.,Dipartimento di Oncologia e Ematologia, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | | | - Mario Annunziata
- Unità Operativa Complessa di Ematologia, AORN Cardarelli, Naples, Italy
| | - Davide Lazzarotto
- Clinica ematologica e centro trapianti, Azienda sanitaria universitaria Friuli Centrale, Udine, Italy
| | - Michele Cedrone
- Unità Operativa Complessa di Ematologia, Ospedale San Giovanni Addolorata, Rome, Italy
| | - Crescenza Pasciolla
- Unità Operativa di Ematologia, IRCCS Istituto Tumori Giovanni Paolo II, Bari, Italy
| | | | - Ilaria Tanasi
- Dipartimento di Medicina, Sezione di Ematologia, Università e Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | | | - Marco Cerrano
- Unità Operativa di Ematologia, Presidio Molinette-AOU Città della Salute e della Scienza, Torino, Italy
| | - Roberta La Starza
- Sezione di Ematologia e Trapianto, Università degli Studi di Perugia, A.O. Perugia, Italy
| | - Mauro Krampera
- Dipartimento di Medicina, Sezione di Ematologia, Università e Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Nicola Di Renzo
- Ospedale Vito Fazzi, Unità Operativa di Ematologia e Trapianto, Lecce, Italy
| | - Anna Candoni
- Unità Operativa Complessa di Ematologia, AORN Cardarelli, Naples, Italy
| | - Giovanni Pizzolo
- Dipartimento di Medicina, Sezione di Ematologia, Università e Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Felicetto Ferrara
- Dipartimento di Biomedicina e Prevenzione, Università degli studi Tor Vergata, Rome, Italy
| | - Robin Foà
- Divisione di Ematologia, Dipartimento di Medicina Traslazionale e di Precisione, Università Sapienza, Rome, Italy
| |
Collapse
|
10
|
Buono R, Alhaddad M, Fruman DA. Novel pharmacological and dietary approaches to target mTOR in B-cell acute lymphoblastic leukemia. Front Oncol 2023; 13:1162694. [PMID: 37124486 PMCID: PMC10140551 DOI: 10.3389/fonc.2023.1162694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 03/17/2023] [Indexed: 05/02/2023] Open
Abstract
High-risk subtypes of B-cell acute lymphoblastic leukemia (B-ALL) are frequently associated with aberrant activation of tyrosine kinases (TKs). These include Ph+ B-ALL driven by BCR-ABL, and Ph-like B-ALL that carries other chromosomal rearrangements and/or gene mutations that activate TK signaling. Currently, the tyrosine kinase inhibitor (TKI) dasatinib is added to chemotherapy as standard of care in Ph+ B-ALL, and TKIs are being tested in clinical trials for Ph-like B-ALL. However, growth factors and nutrients in the leukemia microenvironment can support cell cycle and survival even in cells treated with TKIs targeting the driving oncogene. These stimuli converge on the kinase mTOR, whose elevated activity is associated with poor prognosis. In preclinical models of Ph+ and Ph-like B-ALL, mTOR inhibitors strongly enhance the anti-leukemic efficacy of TKIs. Despite this strong conceptual basis for targeting mTOR in B-ALL, the first two generations of mTOR inhibitors tested clinically (rapalogs and mTOR kinase inhibitors) have not demonstrated a clear therapeutic window. The aim of this review is to introduce new therapeutic strategies to the management of Ph-like B-ALL. We discuss novel approaches to targeting mTOR in B-ALL with potential to overcome the limitations of previous mTOR inhibitor classes. One approach is to apply third-generation bi-steric inhibitors that are selective for mTOR complex-1 (mTORC1) and show preclinical efficacy with intermittent dosing. A distinct, non-pharmacological approach is to use nutrient restriction to target signaling and metabolic dependencies in malignant B-ALL cells. These two new approaches could potentiate TKI efficacy in Ph-like leukemia and improve survival.
Collapse
Affiliation(s)
- Roberta Buono
- Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, CA, United States
- *Correspondence: David A. Fruman, ; Roberta Buono,
| | - Muneera Alhaddad
- Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, CA, United States
- Hematology/Oncology Fellowship Program, CHOC Children's Hospital, Orange, CA, United States
| | - David A. Fruman
- Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, CA, United States
- *Correspondence: David A. Fruman, ; Roberta Buono,
| |
Collapse
|
11
|
Tran TH, Tasian SK. Clinical screening for Ph-like ALL and the developing role of TKIs. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2022; 2022:594-602. [PMID: 36485164 PMCID: PMC9821133 DOI: 10.1182/hematology.2022000357] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Philadelphia chromosome-like acute lymphoblastic leukemia (Ph-like ALL) is a common subtype of B-lineage acute lymphoblastic leukemia (B-ALL) with increasing frequency across the age spectrum. Characterized by a kinase-activated gene expression profile and driven by a variety of genetic alterations involving cytokine receptors and kinases, Ph-like ALL is associated with high rates of residual disease and relapse in patients treated with conventional chemotherapy. In this case-based review, we describe the biology of the 2 major ABL-class and JAK pathway genetic subtypes of Ph-like ALL, discuss current diagnostic testing methodologies, and highlight targeted inhibitor and chemo/immunotherapy approaches under clinical investigation in children, adolescents, and adults with these high-risk leukemias.
Collapse
Affiliation(s)
- Thai Hoa Tran
- Division of Pediatric Hematology-Oncology, Charles-Bruneau Cancer Center, Centre Hospitalier Universitaire Sainte-Justine, University of Montreal, Montreal, Quebec, Canada
| | - Sarah K Tasian
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA
- Department of Pediatrics and Abramson Cancer Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| |
Collapse
|
12
|
Kołodrubiec J, Kozłowska M, Irga-Jaworska N, Sędek Ł, Pastorczak A, Trelińska J, Młynarski W. Efficacy of ruxolitinib in acute lymphoblastic leukemia: A systematic review. Leuk Res 2022; 121:106925. [PMID: 35939887 DOI: 10.1016/j.leukres.2022.106925] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/27/2022] [Accepted: 08/01/2022] [Indexed: 11/19/2022]
Abstract
Philadelphia-like acute lymphoblastic leukemia (Ph-like ALL) is a high-risk molecular subtype with a gene expression profile similar to Philadelphia-positive ALL, but not harboring the BCR-ABL1 gene fusion. We aimed to investigate the efficacy of target therapy with the Janus kinase inhibitor, ruxolitinib, in patients with Ph-like ALL and molecular signature of JAK-STAT signaling pathway. A systematic search of the literature was performed to identify reports concerning administration of ruxolitinib in Ph-like ALL patients. Additionally, Polish Pediatric ALL registries were searched for patients with Ph-like ALL treated with ruxolitinib. Extracted information included epidemiological background, somatic aberrations, treatment response, and patient outcome. After PubMed database search, twelve patients were identified, and one was identified in the Polish Pediatric ALL registry. In nine patients gene fusions affecting JAK2 (n = 7) and EPOR (n = 2) were detected. Surface overexpression of CRLF2 and IKZF1 deletions were observed in two and three patients, respectively. Induction failure occurred in all the patients. Therapy with ruxolitinib led to complete (n = 7) and partial (n = 2) remission, in three individuals no information was found. Based on the limited number of studies describing the efficacy of ruxolitinib as an additional compound administrated with standard ALL therapy, we conclude that this approach can be considered in patients with aberrations activating JAK-STAT pathway.
Collapse
Affiliation(s)
- Julia Kołodrubiec
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, Lodz, Poland.
| | - Marta Kozłowska
- Department of Pediatric Hematology and Oncology, Medical University of Gdansk, Gdansk, Poland
| | - Ninela Irga-Jaworska
- Department of Pediatric Hematology and Oncology, Medical University of Gdansk, Gdansk, Poland
| | - Łukasz Sędek
- Department of Pediatric Hematology and Oncology, Zabrze, Medical University of Silesia, Katowice, Poland
| | - Agata Pastorczak
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, Lodz, Poland
| | - Joanna Trelińska
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, Lodz, Poland
| | - Wojciech Młynarski
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
13
|
Downes CEJ, McClure BJ, McDougal DP, Heatley SL, Bruning JB, Thomas D, Yeung DT, White DL. JAK2 Alterations in Acute Lymphoblastic Leukemia: Molecular Insights for Superior Precision Medicine Strategies. Front Cell Dev Biol 2022; 10:942053. [PMID: 35903543 PMCID: PMC9315936 DOI: 10.3389/fcell.2022.942053] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 06/16/2022] [Indexed: 11/13/2022] Open
Abstract
Acute lymphoblastic leukemia (ALL) is the most common pediatric cancer, arising from immature lymphocytes that show uncontrolled proliferation and arrested differentiation. Genomic alterations affecting Janus kinase 2 (JAK2) correlate with some of the poorest outcomes within the Philadelphia-like subtype of ALL. Given the success of kinase inhibitors in the treatment of chronic myeloid leukemia, the discovery of activating JAK2 point mutations and JAK2 fusion genes in ALL, was a breakthrough for potential targeted therapies. However, the molecular mechanisms by which these alterations activate JAK2 and promote downstream signaling is poorly understood. Furthermore, as clinical data regarding the limitations of approved JAK inhibitors in myeloproliferative disorders matures, there is a growing awareness of the need for alternative precision medicine approaches for specific JAK2 lesions. This review focuses on the molecular mechanisms behind ALL-associated JAK2 mutations and JAK2 fusion genes, known and potential causes of JAK-inhibitor resistance, and how JAK2 alterations could be targeted using alternative and novel rationally designed therapies to guide precision medicine approaches for these high-risk subtypes of ALL.
Collapse
Affiliation(s)
- Charlotte EJ. Downes
- Blood Cancer Program, Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia
- School of Biological Sciences, Faculty of Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Barbara J. McClure
- Blood Cancer Program, Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Daniel P. McDougal
- School of Biological Sciences, Faculty of Sciences, University of Adelaide, Adelaide, SA, Australia
- Institute for Photonics and Advanced Sensing (IPAS), University of Adelaide, Adelaide, SA, Australia
| | - Susan L. Heatley
- Blood Cancer Program, Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
- Australian and New Zealand Children’s Oncology Group (ANZCHOG), Clayton, VIC, Australia
| | - John B. Bruning
- School of Biological Sciences, Faculty of Sciences, University of Adelaide, Adelaide, SA, Australia
- Institute for Photonics and Advanced Sensing (IPAS), University of Adelaide, Adelaide, SA, Australia
| | - Daniel Thomas
- Blood Cancer Program, Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
| | - David T. Yeung
- Blood Cancer Program, Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
- Department of Haematology, Royal Adelaide Hospital and SA Pathology, Adelaide, SA, Australia
| | - Deborah L. White
- Blood Cancer Program, Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia
- School of Biological Sciences, Faculty of Sciences, University of Adelaide, Adelaide, SA, Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
- Australian and New Zealand Children’s Oncology Group (ANZCHOG), Clayton, VIC, Australia
| |
Collapse
|
14
|
Jain H, Rajendra A, Sengar M, Goli VB, Thorat J, Muthuluri H, Tongaonkar AH, Kota KK, Gupta H, Sharma N, Eipe T, Mehta H. The current treatment approach to adolescents and young adults with acute lymphoblastic leukemia (AYA-ALL): challenges and considerations. Expert Rev Anticancer Ther 2022; 22:845-860. [PMID: 35734814 DOI: 10.1080/14737140.2022.2093718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION AYA-ALL differs from pediatric ALL in terms of clinical, biological, psychosocial factors and access to care and has an inferior outcome. It is now being recognized that pediatric-inspired protocols are superior to adult protocols for this cohort, but given the lack of randomized trials, several questions remain unanswered. AREAS COVERED In this review, we discuss how AYA-ALL is different from the pediatric ALL population, compare AYA ALL with ALL in middle and older age adults, review the studies that have enrolled the AYA cohort, summarize risk-stratified and response-adapted approaches, describe the biological subtypes, and review the novel agents/approaches under evaluation. EXPERT OPINION AYA-ALL is a complex and challenging disease that needs multidisciplinary and focused care. Well-designed clinical trials that focus on this cohort are needed to further improve the outcomes.
Collapse
Affiliation(s)
- Hasmukh Jain
- Tata Memorial Hospital, Parel, Mumbai, Maharashtra, India
| | - Akhil Rajendra
- Tata Memorial Hospital, Parel, Mumbai, Maharashtra, India
| | - Manju Sengar
- Tata Memorial Hospital, Parel, Mumbai, Maharashtra, India
| | - Vasu Babu Goli
- Tata Memorial Hospital, Parel, Mumbai, Maharashtra, India
| | | | | | | | | | - Himanshi Gupta
- Tata Memorial Hospital, Parel, Mumbai, Maharashtra, India
| | - Neha Sharma
- Tata Memorial Hospital, Parel, Mumbai, Maharashtra, India
| | - Thomas Eipe
- Gloria, PRRA-143, Pallissery road, Palarivattom, Ernakulam, Kerala, India
| | - Hiral Mehta
- A/31, 65-D, Bafna Courts, West Ponnurangam Road, RS Puram, Coimbatore, India
| |
Collapse
|
15
|
A study of Ruxolitinib-response-based stratified treatment for pediatric hemophagocytic lymphohistiocytosis. Blood 2022; 139:3493-3504. [PMID: 35344583 DOI: 10.1182/blood.2021014860] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 03/15/2022] [Indexed: 11/20/2022] Open
Abstract
Hemophagocytic lymphohistiocytosis (HLH) is a lethal disorder characterized by hyperinflammation. Recently, ruxolitinib, targeting key cytokines in HLH, has shown promise for HLH treatment. However, there is a lack of robust clinical trials evaluating its efficacy, especially its utility as a front-line therapy. In this study (www.chictr.org.cn, ChiCTR2000031702), we designed ruxolitinib as a first-line agent for pediatric HLH and stratified the treatment based on its early response. Fifty-two newly diagnosed patients were enrolled. The overall response rate (ORR) of ruxolitinib monotherapy (day-28) was 69.2% (36/52), with 42.3% (22/52) achieving sustained complete remission (CR). All responders achieved their first response to ruxolitinib within 3-days. The response to ruxolitinib was significantly associated with the underlying etiology at enrollment (p=0.009). EBV-HLH patients were most sensitive to ruxolitinib, with an ORR of 87.5% (58.3% in CR). After ruxolitinib therapy, 57.7% (30/52) of the patients entered intensive therapy with additional chemotherapy. Among them, 53.3% (16/30) patients achieved CR, and 46.7% (14/30) patients dominated by chronic active Epstein Barr virus infection-associated HLH (CAEBV-HLH) developed refractory HLH by week-8. The median interval to additional treatment since first ruxolitinib administration was 6-days (range, 3-25). Altogether, 73.1% (38/52) of the enrolled patients achieved CR after treatment overall. The 12-month overall survival for all patients was 86.4% (95%CI, 77.1%-95.7%). Ruxolitinib had low toxicity and was well tolerated compared to intensive chemotherapy. Our study provides clinical evidence for ruxolitinib as a front-line agent for pediatric HLH. The efficacy was particularly exemplified with stratified regiment based on the early differential response to ruxolitinib. This study was registered in the Chinese Clinical Trials Registry Platform (http://www.chictr.org.cn/) as ChiCTR2000031702.
Collapse
|
16
|
Krstic A, Rezayee F, Saft L, Hammarsjö A, Svenberg P, Barbany G. Case Report: Whole genome sequencing identifies CCDC88C as a novel JAK2 fusion partner in pediatric T-cell acute lymphoblastic leukemia. Front Pediatr 2022; 10:1082986. [PMID: 36704135 PMCID: PMC9871838 DOI: 10.3389/fped.2022.1082986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 12/12/2022] [Indexed: 01/11/2023] Open
Abstract
In the present report, we applied whole genome sequencing (WGS) to genetically characterize a case of pediatric T-cell acute lymphoblastic leukemia (ALL) refractory to standard therapy. WGS identified a novel JAK2 fusion, with CCDC88C as a partner. CCDC88C encodes a protein part of the Wnt signaling pathway and has previously been described in hematological malignancies as fusion partner to FLT3 and PDGFRB. The novel CCDC88C::JAK2 fusion gene results in a fusion transcript, predicted to produce a hybrid protein, which retains the kinase domain of JAK2 and is expected to respond to JAK2 inhibitors. This report illustrates the potential of WGS in the diagnostic setting of ALL.
Collapse
Affiliation(s)
- Aleksandra Krstic
- Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden.,Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Fatemah Rezayee
- Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden.,Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Leonie Saft
- Clinical Pathology and Cancer Diagnostics, Karolinska University Hospital, Stockholm, Sweden.,Department of Clinical Pathology and Oncology, Karolinska Institute, Stockholm, Sweden
| | - Anna Hammarsjö
- Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden.,Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Petter Svenberg
- Pediatric Oncology, Karolinska University Hospital, Stockholm, Sweden.,Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Gisela Barbany
- Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden.,Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
17
|
Chang Y, Min J, Jarusiewicz JA, Actis M, Yu-Chen Bradford S, Mayasundari A, Yang L, Chepyala D, Alcock LJ, Roberts KG, Nithianantham S, Maxwell D, Rowland L, Larsen R, Seth A, Goto H, Imamura T, Akahane K, Hansen BS, Pruett-Miller SM, Paietta EM, Litzow MR, Qu C, Yang JJ, Fischer M, Rankovic Z, Mullighan CG. Degradation of Janus kinases in CRLF2-rearranged acute lymphoblastic leukemia. Blood 2021; 138:2313-2326. [PMID: 34110416 PMCID: PMC8662068 DOI: 10.1182/blood.2020006846] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 04/02/2021] [Indexed: 11/20/2022] Open
Abstract
CRLF2-rearranged (CRLF2r) acute lymphoblastic leukemia (ALL) accounts for more than half of Philadelphia chromosome-like (Ph-like) ALL and is associated with a poor outcome in children and adults. Overexpression of CRLF2 results in activation of Janus kinase (JAK)-STAT and parallel signaling pathways in experimental models, but existing small molecule inhibitors of JAKs show variable and limited efficacy. Here, we evaluated the efficacy of proteolysis-targeting chimeras (PROTACs) directed against JAKs. Solving the structure of type I JAK inhibitors ruxolitinib and baricitinib bound to the JAK2 tyrosine kinase domain enabled the rational design and optimization of a series of cereblon (CRBN)-directed JAK PROTACs utilizing derivatives of JAK inhibitors, linkers, and CRBN-specific molecular glues. The resulting JAK PROTACs were evaluated for target degradation, and activity was tested in a panel of leukemia/lymphoma cell lines and xenograft models of kinase-driven ALL. Multiple PROTACs were developed that degraded JAKs and potently killed CRLF2r cell lines, the most active of which also degraded the known CRBN neosubstrate GSPT1 and suppressed proliferation of CRLF2r ALL in vivo, e.g. compound 7 (SJ988497). Although dual JAK/GSPT1-degrading PROTACs were the most potent, the development and evaluation of multiple PROTACs in an extended panel of xenografts identified a potent JAK2-degrading, GSPT1-sparing PROTAC that demonstrated efficacy in the majority of kinase-driven xenografts that were otherwise unresponsive to type I JAK inhibitors, e.g. compound 8 (SJ1008030). Together, these data show the potential of JAK-directed protein degradation as a therapeutic approach in JAK-STAT-driven ALL and highlight the interplay of JAK and GSPT1 degradation activity in this context.
Collapse
Affiliation(s)
| | - Jaeki Min
- Department of Chemical Biology and Therapeutics
| | | | | | | | | | - Lei Yang
- Department of Chemical Biology and Therapeutics
| | | | | | | | | | | | | | - Randolph Larsen
- Department of Pharmaceutical Sciences, and
- Graduate School of Biomedical Sciences, St Jude Children's Research Hospital, Memphis, TN
| | | | - Hiroaki Goto
- Division of Hemato-Oncology/Regenerative Medicine, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Toshihiko Imamura
- Department of Pediatrics, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Koshi Akahane
- Department of Pediatrics, School of Medicine, University of Yamanashi, Chuo, Japan
| | - Baranda S Hansen
- Center for Advanced Genome Engineering, St Jude Children's Research Hospital, Memphis, TN
| | | | - Elisabeth M Paietta
- Cancer Center, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY
| | - Mark R Litzow
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN; and
| | | | - Jun J Yang
- Department of Pharmaceutical Sciences, and
- Hematological Malignancies Program, St Jude Children's Research Hospital, Memphis, TN
| | - Marcus Fischer
- Department of Chemical Biology and Therapeutics
- Department of Structural Biology
- Cancer Biology Program, and
| | - Zoran Rankovic
- Department of Chemical Biology and Therapeutics
- Cancer Biology Program, and
| | - Charles G Mullighan
- Department of Pathology
- Hematological Malignancies Program, St Jude Children's Research Hospital, Memphis, TN
| |
Collapse
|
18
|
Tran TH, Tasian SK. Has Ph-like ALL Superseded Ph+ ALL as the Least Favorable Subtype? Best Pract Res Clin Haematol 2021; 34:101331. [PMID: 34865703 DOI: 10.1016/j.beha.2021.101331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Philadelphia chromosome-like acute lymphoblastic leukemia (Ph-like ALL) is a subset of high-risk B-ALL associated with high relapse risk and inferior clinical outcomes across the pediatric-to-adult age spectrum. Ph-like ALL is characterized by frequent IKZF1 alterations and a kinase-activated gene expression profile similar to that of Philadelphia chromosome-positive (Ph+) ALL, yet lacks the canonical BCR-ABL1 rearrangement. Advances in high-throughput sequencing technologies during the past decade have unraveled the genomic landscape of Ph-like ALL, revealing a diverse array of kinase-activating translocations and mutations that may be amenable to targeted therapies that have set a remarkable precision medicine paradigm for patients with Ph + ALL. Collaborative scientific efforts to identify and characterise Ph-like ALL during the past decade has directly informed current precision medicine trials investigating the therapeutic potential of tyrosine kinase inhibitor-based therapies for children, adolescents, and adults with Ph-like ALL, although the most optimal treatment paradigm for this high-risk group of patients has yet to be established. Herein, we describe the epidemiology, clinical features, and biology of Ph-like ALL, highlight challenges in implementing pragmatic and cost-effective diagnostic algorithms in the clinic, and describe the milieu of treatment strategies under active investigation that strive to decrease relapse risk and improve long-term survival for patients with Ph-like ALL as has been successfully achieved for those with Ph + ALL.
Collapse
Affiliation(s)
- Thai Hoa Tran
- Division of Pediatric Hematology-Oncology, Charles-Bruneau Cancer Center, CHU Sainte-Justine, Montreal, QC, Canada; Department of Pediatrics, University of Montreal, Montreal, QC, Canada
| | - Sarah K Tasian
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Pediatrics and Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
19
|
Płotka A, Lewandowski K. BCR/ABL1-Like Acute Lymphoblastic Leukemia: From Diagnostic Approaches to Molecularly Targeted Therapy. Acta Haematol 2021; 145:122-131. [PMID: 34818644 DOI: 10.1159/000519782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 09/21/2021] [Indexed: 12/26/2022]
Abstract
BACKGROUND BCR/ABL1-like acute lymphoblastic leukemia is a newly recognized high-risk subtype of ALL, characterized by the presence of genetic alterations activating kinase and cytokine receptor signaling. This subtype is associated with inferior outcomes, compared to other B-cell precursor ALL. SUMMARY The recognition of BCR/ABL1-like ALL is challenging due to the complexity of underlying genetic alterations. Rearrangements of CRLF2 are the most frequent alteration in BCR/ABL1-like ALL and can be identified by flow cytometry. The identification of BCR/ABL1-like ALL can be achieved with stepwise algorithms or broad-based testing. The main goal of the diagnostic analysis is to detect the underlying genetic alterations, which are critical for the diagnosis and targeted therapy. KEY MESSAGES The aim of the manuscript is to review the available data on BCR/ABL1-like ALL characteristics, diagnostic algorithms, and novel, molecularly targeted therapeutic options.
Collapse
Affiliation(s)
- Anna Płotka
- Department of Hematology and Bone Marrow Transplantation, Poznan University of Medical Sciences, Poznań, Poland
| | - Krzysztof Lewandowski
- Department of Hematology and Bone Marrow Transplantation, Poznan University of Medical Sciences, Poznań, Poland
| |
Collapse
|
20
|
Sun Y, Cai Y, Chen J, Cen J, Zhu M, Pan J, Wu D, Sun A, Chen S. Diagnosis and Treatment of Myeloproliferative Neoplasms With PCM1-JAK2 Rearrangement: Case Report and Literature Review. Front Oncol 2021; 11:753842. [PMID: 34707996 PMCID: PMC8542851 DOI: 10.3389/fonc.2021.753842] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/22/2021] [Indexed: 02/03/2023] Open
Abstract
Myeloproliferative neoplasm (MPN) with PCM1-JAK2 rearrangement is a rare disease with poor prognosis and lacks uniform treatment guidelines. Several studies confirmed the efficacy of ruxolitinib in hematological malignancies with PCM1-JAK2 fusion, but the efficacy is variable. Here, we report two patients diagnosed with MPN with PCM1-JAK2 fusion who were treated with ruxolitinib-based regimen, including the first case of ruxolitinib combined with pegylated interferon (Peg-IFN), and we conduct a literature review. We found that ruxolitinib combined with Peg-IFN is an effective treatment option in the case of poor efficacy of ruxolitinib monotherapy.
Collapse
Affiliation(s)
- Yingxin Sun
- Department of Hematology, First Affiliated Hospital of Soochow University, National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, Soochow University, Suzhou, China.,Department of Thrombosis and Hemostasis, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, China
| | - Yifeng Cai
- Department of Hematology, The Affiliated Hospital of Nantong University, Nantong University, Nantong, China
| | - Jia Chen
- Department of Hematology, First Affiliated Hospital of Soochow University, National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, Soochow University, Suzhou, China.,Department of Thrombosis and Hemostasis, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, China
| | - Jiannong Cen
- Department of Hematology, First Affiliated Hospital of Soochow University, National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, Soochow University, Suzhou, China.,Department of Thrombosis and Hemostasis, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, China
| | - Mingqing Zhu
- Department of Hematology, First Affiliated Hospital of Soochow University, National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, Soochow University, Suzhou, China.,Department of Thrombosis and Hemostasis, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, China
| | - Jinlan Pan
- Department of Hematology, First Affiliated Hospital of Soochow University, National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, Soochow University, Suzhou, China.,Department of Thrombosis and Hemostasis, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, China
| | - Depei Wu
- Department of Hematology, First Affiliated Hospital of Soochow University, National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, Soochow University, Suzhou, China.,Department of Thrombosis and Hemostasis, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, China
| | - Aining Sun
- Department of Hematology, First Affiliated Hospital of Soochow University, National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, Soochow University, Suzhou, China.,Department of Thrombosis and Hemostasis, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, China
| | - Suning Chen
- Department of Hematology, First Affiliated Hospital of Soochow University, National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, Soochow University, Suzhou, China.,Department of Thrombosis and Hemostasis, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, China
| |
Collapse
|
21
|
Downes CEJ, Rehn J, Heatley SL, Yeung D, McClure BJ, White DL. Identification of a novel GOLGA4-JAK2 fusion gene in B-cell acute lymphoblastic leukaemia. Br J Haematol 2021; 196:700-705. [PMID: 34697799 DOI: 10.1111/bjh.17910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/07/2021] [Accepted: 10/08/2021] [Indexed: 11/29/2022]
Abstract
Rearrangements of Janus kinase 2 (JAK2r) form a subtype of acute lymphoblastic leukaemia (ALL) associated with poor patient outcomes. We present a high-risk case of B-cell ALL (B-ALL) where retrospective mRNA sequencing identified a novel GOLGA4-JAK2 fusion gene. Expression of GOLGA4-JAK2 in murine pro-B cells promoted factor-independent growth, implicating GOLGA4-JAK2 as an oncogenic driver. Cells expressing GOLGA4-JAK2 demonstrated constitutive activation of JAK/STAT signalling and were sensitive to JAK inhibitors. This study contributes to the diverse collection of JAK2 fusion genes identified in B-ALL and supports the incorporation of JAK inhibitors into treatment strategies to improve outcomes for this subtype.
Collapse
Affiliation(s)
- Charlotte E J Downes
- Cancer Program, Precision Medicine Theme, South Australian Health & Medical Research Institute (SAHMRI), Adelaide, SA, Australia.,School of Biological Sciences, Faculty of Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Jacqueline Rehn
- Cancer Program, Precision Medicine Theme, South Australian Health & Medical Research Institute (SAHMRI), Adelaide, SA, Australia.,Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Susan L Heatley
- Cancer Program, Precision Medicine Theme, South Australian Health & Medical Research Institute (SAHMRI), Adelaide, SA, Australia.,Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia.,Australian and New Zealand Children's Haematology/Oncology Group (ANZCHOG), Clayton, Victoria, Australia
| | - David Yeung
- Cancer Program, Precision Medicine Theme, South Australian Health & Medical Research Institute (SAHMRI), Adelaide, SA, Australia.,Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia.,Department of Haematology, Royal Adelaide Hospital and SA Pathology, Adelaide, SA, Australia
| | - Barbara J McClure
- Cancer Program, Precision Medicine Theme, South Australian Health & Medical Research Institute (SAHMRI), Adelaide, SA, Australia.,Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Deborah L White
- Cancer Program, Precision Medicine Theme, South Australian Health & Medical Research Institute (SAHMRI), Adelaide, SA, Australia.,School of Biological Sciences, Faculty of Sciences, University of Adelaide, Adelaide, SA, Australia.,Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia.,Australian and New Zealand Children's Haematology/Oncology Group (ANZCHOG), Clayton, Victoria, Australia.,Australian Genomics Health Alliance (AGHA), The Murdoch Children's Research Institute, Parkville, Victoria, Australia
| |
Collapse
|
22
|
Manzano-Muñoz A, Alcon C, Menéndez P, Ramírez M, Seyfried F, Debatin KM, Meyer LH, Samitier J, Montero J. MCL-1 Inhibition Overcomes Anti-apoptotic Adaptation to Targeted Therapies in B-Cell Precursor Acute Lymphoblastic Leukemia. Front Cell Dev Biol 2021; 9:695225. [PMID: 34568318 PMCID: PMC8458912 DOI: 10.3389/fcell.2021.695225] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 08/20/2021] [Indexed: 12/30/2022] Open
Abstract
Multiple targeted therapies are currently explored for pediatric and young adult B-cell precursor acute lymphoblastic leukemia (BCP-ALL) treatment. However, this new armamentarium of therapies faces an old problem: choosing the right treatment for each patient. The lack of predictive biomarkers is particularly worrying for pediatric patients since it impairs the implementation of new treatments in the clinic. In this study, we used the functional assay dynamic BH3 profiling (DBP) to evaluate two new treatments for BCP-ALL that could improve clinical outcome, especially for relapsed patients. We found that the MEK inhibitor trametinib and the multi-target tyrosine kinase inhibitor sunitinib exquisitely increased apoptotic priming in an NRAS-mutant and in a KMT2A-rearranged cell line presenting a high expression of FLT3, respectively. Following these observations, we sought to study potential adaptations to these treatments. Indeed, we identified with DBP anti-apoptotic changes in the BCL-2 family after treatment, particularly involving MCL-1 - a pro-survival strategy previously observed in adult cancers. To overcome this adaptation, we employed the BH3 mimetic S63845, a specific MCL-1 inhibitor, and evaluated its sequential addition to both kinase inhibitors to overcome resistance. We observed that the metronomic combination of both drugs with S63845 was synergistic and showed an increased efficacy compared to single agents. Similar observations were made in BCP-ALL KMT2A-rearranged PDX cells in response to sunitinib, showing an analogous DBP profile to the SEM cell line. These findings demonstrate that rational sequences of targeted agents with BH3 mimetics, now extensively explored in clinical trials, may improve treatment effectiveness by overcoming anti-apoptotic adaptations in BCP-ALL.
Collapse
Affiliation(s)
- Albert Manzano-Muñoz
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Clara Alcon
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Pablo Menéndez
- Stem Cell Biology, Developmental Leukemia and Immunotherapy, Josep Carreras Leukemia Research Institute-Campus Clinic, Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III (ISCIII), Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Manuel Ramírez
- Department of Pediatric Hematology and Oncology, Niño Jesús University Children’s Hospital, Madrid, Spain
| | - Felix Seyfried
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| | - Klaus-Michael Debatin
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| | - Lüder H. Meyer
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| | - Josep Samitier
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Department of Electronics and Biomedical Engineering, Faculty of Physics, University of Barcelona, Barcelona, Spain
- Networking Biomedical Research Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Joan Montero
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| |
Collapse
|
23
|
Lühmann JL, Stelter M, Wolter M, Kater J, Lentes J, Bergmann AK, Schieck M, Göhring G, Möricke A, Cario G, Žaliová M, Schrappe M, Schlegelberger B, Stanulla M, Steinemann D. The Clinical Utility of Optical Genome Mapping for the Assessment of Genomic Aberrations in Acute Lymphoblastic Leukemia. Cancers (Basel) 2021; 13:cancers13174388. [PMID: 34503197 PMCID: PMC8431583 DOI: 10.3390/cancers13174388] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/23/2021] [Accepted: 08/26/2021] [Indexed: 01/01/2023] Open
Abstract
Simple Summary The stratification of childhood ALL is currently based on various diagnostic assays. This study investigates the feasibility of Optical Genome Mapping (OGM) to determine the genetic risk profile of ALL using fresh and frozen blood cells in an all-in-one approach. Acute lymphoblastic leukemia samples with data available from SNP-array/array-CGH, RNA-Seq, MLPA, karyotyping and FISH were compared to results obtained by OGM. We show that OGM has the potential to simplify the diagnostic workflow and to identify new structural variants helpful for classifying patients into treatment groups. Abstract Acute lymphoblastic leukemia (ALL) is the most prevalent type of cancer occurring in children. ALL is characterized by structural and numeric genomic aberrations that strongly correlate with prognosis and clinical outcome. Usually, a combination of cyto- and molecular genetic methods (karyotyping, array-CGH, FISH, RT-PCR, RNA-Seq) is needed to identify all aberrations relevant for risk stratification. We investigated the feasibility of optical genome mapping (OGM), a DNA-based method, to detect these aberrations in an all-in-one approach. As proof of principle, twelve pediatric ALL samples were analyzed by OGM, and results were validated by comparing OGM data to results obtained from routine diagnostics. All genomic aberrations including translocations (e.g., dic(9;12)), aneuploidies (e.g., high hyperdiploidy) and copy number variations (e.g., IKZF1, PAX5) known from other techniques were also detected by OGM. Moreover, OGM was superior to well-established techniques for resolution of the more complex structure of a translocation t(12;21) and had a higher sensitivity for detection of copy number alterations. Importantly, a new and unknown gene fusion of JAK2 and NPAT due to a translocation t(9;11) was detected. We demonstrate the feasibility of OGM to detect well-established as well as new putative prognostic markers in an all-in-one approach in ALL. We hope that these limited results will be confirmed with testing of more samples in the future.
Collapse
Affiliation(s)
- Jonathan Lukas Lühmann
- Department of Human Genetics, Hannover Medical School, 30625 Hannover, Germany; (J.L.L.); (M.S.); (M.W.); (J.K.); (J.L.); (A.K.B.); (M.S.); (G.G.); (B.S.)
| | - Marie Stelter
- Department of Human Genetics, Hannover Medical School, 30625 Hannover, Germany; (J.L.L.); (M.S.); (M.W.); (J.K.); (J.L.); (A.K.B.); (M.S.); (G.G.); (B.S.)
| | - Marie Wolter
- Department of Human Genetics, Hannover Medical School, 30625 Hannover, Germany; (J.L.L.); (M.S.); (M.W.); (J.K.); (J.L.); (A.K.B.); (M.S.); (G.G.); (B.S.)
| | - Josephine Kater
- Department of Human Genetics, Hannover Medical School, 30625 Hannover, Germany; (J.L.L.); (M.S.); (M.W.); (J.K.); (J.L.); (A.K.B.); (M.S.); (G.G.); (B.S.)
| | - Jana Lentes
- Department of Human Genetics, Hannover Medical School, 30625 Hannover, Germany; (J.L.L.); (M.S.); (M.W.); (J.K.); (J.L.); (A.K.B.); (M.S.); (G.G.); (B.S.)
| | - Anke Katharina Bergmann
- Department of Human Genetics, Hannover Medical School, 30625 Hannover, Germany; (J.L.L.); (M.S.); (M.W.); (J.K.); (J.L.); (A.K.B.); (M.S.); (G.G.); (B.S.)
| | - Maximilian Schieck
- Department of Human Genetics, Hannover Medical School, 30625 Hannover, Germany; (J.L.L.); (M.S.); (M.W.); (J.K.); (J.L.); (A.K.B.); (M.S.); (G.G.); (B.S.)
| | - Gudrun Göhring
- Department of Human Genetics, Hannover Medical School, 30625 Hannover, Germany; (J.L.L.); (M.S.); (M.W.); (J.K.); (J.L.); (A.K.B.); (M.S.); (G.G.); (B.S.)
| | - Anja Möricke
- Department of Pediatrics I, ALL-BFM Study Group, Christian-Albrechts University Kiel and University Medical Center Schleswig-Holstein, 24105 Kiel, Germany; (A.M.); (G.C.); (M.S.)
| | - Gunnar Cario
- Department of Pediatrics I, ALL-BFM Study Group, Christian-Albrechts University Kiel and University Medical Center Schleswig-Holstein, 24105 Kiel, Germany; (A.M.); (G.C.); (M.S.)
| | - Markéta Žaliová
- Department of Paediatric Haematology and Oncology, 2nd Faculty of Medicine, Charles University and University Hospital Motol, CZ-15006 Prague, Czech Republic;
| | - Martin Schrappe
- Department of Pediatrics I, ALL-BFM Study Group, Christian-Albrechts University Kiel and University Medical Center Schleswig-Holstein, 24105 Kiel, Germany; (A.M.); (G.C.); (M.S.)
| | - Brigitte Schlegelberger
- Department of Human Genetics, Hannover Medical School, 30625 Hannover, Germany; (J.L.L.); (M.S.); (M.W.); (J.K.); (J.L.); (A.K.B.); (M.S.); (G.G.); (B.S.)
| | - Martin Stanulla
- Pediatric Hematology and Oncology, Hannover Medical School, 30625 Hannover, Germany;
| | - Doris Steinemann
- Department of Human Genetics, Hannover Medical School, 30625 Hannover, Germany; (J.L.L.); (M.S.); (M.W.); (J.K.); (J.L.); (A.K.B.); (M.S.); (G.G.); (B.S.)
- Correspondence:
| |
Collapse
|
24
|
Downes CEJ, McClure BJ, Bruning JB, Page E, Breen J, Rehn J, Yeung DT, White DL. Acquired JAK2 mutations confer resistance to JAK inhibitors in cell models of acute lymphoblastic leukemia. NPJ Precis Oncol 2021; 5:75. [PMID: 34376782 PMCID: PMC8355279 DOI: 10.1038/s41698-021-00215-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 07/20/2021] [Indexed: 11/24/2022] Open
Abstract
Ruxolitinib (rux) Phase II clinical trials are underway for the treatment of high-risk JAK2-rearranged (JAK2r) B-cell acute lymphoblastic leukemia (B-ALL). Treatment resistance to targeted inhibitors in other settings is common; elucidating potential mechanisms of rux resistance in JAK2r B-ALL will enable development of therapeutic strategies to overcome or avert resistance. We generated a murine pro-B cell model of ATF7IP-JAK2 with acquired resistance to multiple type-I JAK inhibitors. Resistance was associated with mutations within the JAK2 ATP/rux binding site, including a JAK2 p.G993A mutation. Using in vitro models of JAK2r B-ALL, JAK2 p.G993A conferred resistance to six type-I JAK inhibitors and the type-II JAK inhibitor, CHZ-868. Using computational modeling, we postulate that JAK2 p.G993A enabled JAK2 activation in the presence of drug binding through a unique resistance mechanism that modulates the mobility of the conserved JAK2 activation loop. This study highlights the importance of monitoring mutation emergence and may inform future drug design and the development of therapeutic strategies for this high-risk patient cohort.
Collapse
Affiliation(s)
- Charlotte E J Downes
- Cancer Program, Precision Medicine Theme, South Australian Health & Medical Research Institute (SAHMRI), Adelaide, SA, Australia
- School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Barbara J McClure
- Cancer Program, Precision Medicine Theme, South Australian Health & Medical Research Institute (SAHMRI), Adelaide, SA, Australia
- Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
| | - John B Bruning
- Institute of Photonics and Advanced Sensing, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Elyse Page
- Cancer Program, Precision Medicine Theme, South Australian Health & Medical Research Institute (SAHMRI), Adelaide, SA, Australia
- School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - James Breen
- Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
- Computational and Systems Biology Program, South Australian Health & Medical Research Institute (SAHMRI), Adelaide, SA, Australia
- Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia
| | - Jacqueline Rehn
- Cancer Program, Precision Medicine Theme, South Australian Health & Medical Research Institute (SAHMRI), Adelaide, SA, Australia
- Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
| | - David T Yeung
- Cancer Program, Precision Medicine Theme, South Australian Health & Medical Research Institute (SAHMRI), Adelaide, SA, Australia
- Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
- Department of Haematology, Royal Adelaide Hospital and SA Pathology, Adelaide, SA, Australia
| | - Deborah L White
- Cancer Program, Precision Medicine Theme, South Australian Health & Medical Research Institute (SAHMRI), Adelaide, SA, Australia.
- School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia.
- Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia.
- Australian Genomics Health Alliance (AGHA), The Murdoch Children's Research Institute, Parkville, VIC, Australia.
- Australian and New Zealand Children's Oncology Group (ANZCHOG), Clayton, VIC, Australia.
| |
Collapse
|
25
|
Salvaris R, Fedele PL. Targeted Therapy in Acute Lymphoblastic Leukaemia. J Pers Med 2021; 11:715. [PMID: 34442359 PMCID: PMC8398498 DOI: 10.3390/jpm11080715] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 07/21/2021] [Indexed: 11/26/2022] Open
Abstract
The last decade has seen a significant leap in our understanding of the wide range of genetic lesions underpinning acute lymphoblastic leukaemia (ALL). Next generation sequencing has led to the identification of driver mutations with significant implications on prognosis and has defined entities such as BCR-ABL-like ALL, where targeted therapies such as tyrosine kinase inhibitors (TKIs) and JAK inhibitors may play a role in its treatment. In Philadelphia positive ALL, the introduction of TKIs into frontline treatment regimens has already transformed patient outcomes. In B-ALL, agents targeting surface receptors CD19, CD20 and CD22, including monoclonal antibodies, bispecific T cell engagers, antibody drug conjugates and chimeric antigen receptor (CAR) T cells, have shown significant activity but come with unique toxicities and have implications for how treatment is sequenced. Advances in T-ALL have lagged behind those seen in B-ALL. However, agents such as nelarabine, bortezomib and CAR T cell therapy targeting T cell antigens have been examined with promising results seen. As our understanding of disease biology in ALL grows, as does our ability to target pathways such as apoptosis, through BH3 mimetics, chemokines and epigenetic regulators. This review aims to highlight a range of available and emerging targeted therapeutics in ALL, to explore their mechanisms of action and to discuss the current evidence for their use.
Collapse
Affiliation(s)
- Ross Salvaris
- Department of Clinical Haematology, Monash Health, Clayton 3168, Australia;
- School of Clinical Sciences at Monash Health, Monash University, Clayton 3168, Australia
| | - Pasquale Luke Fedele
- Department of Clinical Haematology, Monash Health, Clayton 3168, Australia;
- School of Clinical Sciences at Monash Health, Monash University, Clayton 3168, Australia
| |
Collapse
|
26
|
Ruxolitinib as a Novel Therapeutic Option for Poor Prognosis T-LBL Pediatric Patients. Cancers (Basel) 2021; 13:cancers13153724. [PMID: 34359628 PMCID: PMC8345121 DOI: 10.3390/cancers13153724] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/20/2021] [Accepted: 07/21/2021] [Indexed: 01/05/2023] Open
Abstract
Simple Summary Current treatment protocols for pediatric patients with T-Lymphoblastic lymphoma (T-LBL) allow the achievement of a complete remission in around 85% of T-LBL pediatric patients; however the overall survival rate of second-line treatments for patients with progressive disease or relapse is around 14%. Thus, the major issues to be addressed are the identification of a valuable predictor marker to foresee the disease risk and new therapeutic targets to improve relapsed/resistant patients’ outcome. We identified JAK2 Y1007-1008 as a potential prognosis marker as well as a therapeutic target for patients with progressive disease or relapse and suggest that its inhibition by ruxolitinib, a JAK1/2 FDA approved inhibitor, could represent a novel therapeutic approach to overcome therapy resistance and meliorate the outcome of pediatric T-LBL patients. Abstract Lymphoblastic lymphoma (LBL) is the second most common type of non-Hodgkin lymphoma in childhood, mainly of T cell origin (T-LBL). Although current treatment protocols allow a complete remission in 85% of cases, the second-line treatment overall survival for patients with progressive or relapsed disease is around 14%, making this the major issue to be confronted. Thus, we performed a Reverse Phase Protein Array study in a cohort of 22 T-LBL patients to find reliable disease risk marker(s) and new therapeutic targets to improve pediatric T-LBL patients’ outcome. Interestingly, we pinpointed JAK2 Y1007-1008 as a potential prognosis marker as well as a therapeutic target in poor prognosis patients. Hence, the hyperactivation of the JAK1/2-STAT6 pathway characterizes these latter patients. Moreover, we functionally demonstrated that STAT6 hyperactivation contributes to therapy resistance by binding the glucocorticoid receptor, thus inhibiting its transcriptional activity. This was further confirmed by specific STAT6 gene silencing followed by dexamethasone treatment. Finally, JAK1/2-STAT6 pathway inhibition by ruxolitinib, an FDA approved drug, in cell line models and in one T-LBL primary sample led to cell proliferation reduction and increased apoptosis. Globally, our results identify a new potential prognostic marker and suggest a novel therapeutic approach to overcome therapy resistance in pediatric T-LBL patients.
Collapse
|
27
|
Ding YY, Kim H, Madden K, Loftus JP, Chen GM, Allen DH, Zhang R, Xu J, Chen CH, Hu Y, Tasian SK, Tan K. Network Analysis Reveals Synergistic Genetic Dependencies for Rational Combination Therapy in Philadelphia Chromosome-Like Acute Lymphoblastic Leukemia. Clin Cancer Res 2021; 27:5109-5122. [PMID: 34210682 DOI: 10.1158/1078-0432.ccr-21-0553] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 05/10/2021] [Accepted: 06/25/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE Systems biology approaches can identify critical targets in complex cancer signaling networks to inform new therapy combinations that may overcome conventional treatment resistance. EXPERIMENTAL DESIGN We performed integrated analysis of 1,046 childhood B-ALL cases and developed a data-driven network controllability-based approach to identify synergistic key regulator targets in Philadelphia chromosome-like B-acute lymphoblastic leukemia (Ph-like B-ALL), a common high-risk leukemia subtype associated with hyperactive signal transduction and chemoresistance. RESULTS We identified 14 dysregulated network nodes in Ph-like ALL involved in aberrant JAK/STAT, Ras/MAPK, and apoptosis pathways and other critical processes. Genetic cotargeting of the synergistic key regulator pair STAT5B and BCL2-associated athanogene 1 (BAG1) significantly reduced leukemia cell viability in vitro. Pharmacologic inhibition with dual small molecule inhibitor therapy targeting this pair of key nodes further demonstrated enhanced antileukemia efficacy of combining the BCL-2 inhibitor venetoclax with the tyrosine kinase inhibitors ruxolitinib or dasatinib in vitro in human Ph-like ALL cell lines and in vivo in multiple childhood Ph-like ALL patient-derived xenograft models. Consistent with network controllability theory, co-inhibitor treatment also shifted the transcriptomic state of Ph-like ALL cells to become less like kinase-activated BCR-ABL1-rearranged (Ph+) B-ALL and more similar to prognostically favorable childhood B-ALL subtypes. CONCLUSIONS Our study represents a powerful conceptual framework for combinatorial drug discovery based on systematic interrogation of synergistic vulnerability pathways with pharmacologic inhibitor validation in preclinical human leukemia models.
Collapse
Affiliation(s)
- Yang-Yang Ding
- Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.,Department of Pediatrics, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Hannah Kim
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, Pennsylvania
| | - Kellyn Madden
- Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Joseph P Loftus
- Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Gregory M Chen
- Graduate Group in Genomics and Computational Biology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - David Hottman Allen
- Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Ruitao Zhang
- Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Jason Xu
- Graduate Group in Genomics and Computational Biology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Chia-Hui Chen
- Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Yuxuan Hu
- School of Computer Science and Technology, Xidian University, Xi'an, Shaanxi, China
| | - Sarah K Tasian
- Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania. .,Department of Pediatrics, University of Pennsylvania, Philadelphia, Pennsylvania.,Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Kai Tan
- Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania. .,Department of Pediatrics, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.,Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
28
|
Bayram N, Yaman Y, Özdilli K, Telhan L, Nepesov S, Bilgen H, Elli M, Behar SS, Anak S. Clinical Efficacy of Ruxolitinib Monotherapy and Haploidentical Hematopoeitic Stem Cell Transplantation in a Child with Philadelphia Chromosome-like Relapsed/Refractory acute lymphoblastic leukemia. Pediatr Transplant 2021; 25:e14024. [PMID: 33860589 DOI: 10.1111/petr.14024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 03/19/2021] [Indexed: 11/26/2022]
Abstract
INTRODUCTION (Ph-like) ALL is a subset of leukemia which has a gene expression profile similar to Ph+disease, but without the presence of BCR-ABL1 translocation. CASE DESCRIPTION We reported an exceptional case of a child with relapsed Ph-like ALL with IKZF1 gene deletion treated with high-dose ruxolitinib as monotherapy, after multi-agent chemotherapy. He remains in continued MRD-negative leukemia remission with full donor chimerism at 12 months post-HSCT. DISCUSSION The circumstance that makes our case featured is the usage of ruxolitinib as monotherapy. This report, we believe, is a pioneering report for a frequent disease with a high risk of failure for the outcome.
Collapse
Affiliation(s)
- Nihan Bayram
- Pediatric Hematology and Oncology, Istanbul Medipol University, Istanbul, Turkey
| | - Yöntem Yaman
- Pediatric Hematology and Oncology, Istanbul Medipol University, Istanbul, Turkey
| | - Kürşat Özdilli
- Pediatric Hematology and Oncology, Istanbul Medipol University- Medical Biology, Istanbul, Turkey
| | - Leyla Telhan
- Pediatric Intensive Care Unit, Istanbul Medipol University, Istanbul, Turkey
| | - Serdar Nepesov
- Pediatric Immunology, Istanbul Medipol University, Istanbul, Turkey
| | - Hülya Bilgen
- Hematology, Istanbul Medipol University, Istanbul, Turkey
| | - Murat Elli
- Pediatric Hematology and Oncology, Istanbul Medipol University, Istanbul, Turkey
| | - Sude Sema Behar
- Medical Faculty Student, Istanbul Medipol University, Istanbul, Turkey
| | - Sema Anak
- Pediatric Hematology and Oncology, Istanbul Medipol University, Istanbul, Turkey
| |
Collapse
|
29
|
Hrabovsky S, Vrzalova Z, Stika J, Jelinkova H, Jarosova M, Navrkalova V, Martenek J, Folber F, Salek C, Horacek JM, Pospisilova S, Mayer J, Doubek M. Genomic landscape of B-other acute lymphoblastic leukemia in an adult retrospective cohort with a focus on BCR-ABL1-like subtype. Acta Oncol 2021; 60:760-770. [PMID: 33750258 DOI: 10.1080/0284186x.2021.1900908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION BCR-ABL1-like acute lymphoblastic leukemia (ALL) is a high-risk disease with a complex genomic background. Though extensively studied, data on the frequency and mutual associations of present mutations are still incomplete in adult patients. This retrospective study aims to map the genomic landscape of B-other ALL in a cohort of adult patients with a focus on the BCR-ABL1-like ALL subtype. METHODS We analyzed bone marrow and peripheral blood samples of adult B-other ALL patients treated consecutively at three major Czech teaching hospitals. Samples were analyzed by cytogenetic methods, gene expression profiling, multiplex ligation-dependent probe amplification (MLPA), and next-generation sequencing (NGS). RESULTS Fifty-eight B-other ALL patients (not BCR-ABL1, KMT2A-rearranged, ETV6-RUNX1, TCF3-PBX1, or iAMP21) were included in the study. Median follow-up was 23.8 months. Samples from 33 patients were available for a gene expression analysis, 48.9% identified as BCR-ABL1-like ALL. Of the BCR-ABL1-like ALL cases, 18.8% harbored IGH-CRLF2 and 12.5% P2RY8-CRLF2 fusion gene. We observed a higher MRD failure rate in BCR-ABL1-like than in non-BCR-ABL1-like ALL patients after the induction treatment (50.0 vs. 13.3%, p=.05). There was a trend to worse progression-free and overall survival in the BCR-ABL1-like group, though not statistically significant. Deletions in IKZF1 gene were found in 31.3% of BCR-ABL1-like cases. Patients with concurrent IKZF1 and CDKN2A/B, PAX5 or PAR1 region deletions (IKZF1plus profile) had significantly worse progression-free survival than those with sole IKZF1 deletion or IKZF1 wild-type (p=.02). NGS analysis was performed in 54 patients and identified 99 short variants in TP53, JAK2, NRAS, PAX5, CREBBP, NF1, FLT3, ATM, KRAS, RUNX1, and other genes. Seventy-five of these gene variants have not yet been described in B-cell precursor ALL to date. CONCLUSION This study widens existing knowledge of the BCR-ABL1-like and B-other ALL genomic landscape in the adult population, supports previous findings, and identifies a number of novel gene variants.
Collapse
Affiliation(s)
- Stepan Hrabovsky
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno, Brno, Czechia
- Faculty of Medicine, Masaryk University, Brno, Czechia
- Czech Leukemia Study Group – for Life (CELL), Brno, Czechia
| | - Zuzana Vrzalova
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno, Brno, Czechia
- Central European Institute of Technology (CEITEC), Brno, Czechia
| | - Jiri Stika
- Central European Institute of Technology (CEITEC), Brno, Czechia
| | - Hana Jelinkova
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno, Brno, Czechia
| | - Marie Jarosova
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno, Brno, Czechia
- Faculty of Medicine, Masaryk University, Brno, Czechia
- Central European Institute of Technology (CEITEC), Brno, Czechia
| | - Veronika Navrkalova
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno, Brno, Czechia
- Central European Institute of Technology (CEITEC), Brno, Czechia
| | - Jiri Martenek
- Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Frantisek Folber
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno, Brno, Czechia
- Faculty of Medicine, Masaryk University, Brno, Czechia
- Czech Leukemia Study Group – for Life (CELL), Brno, Czechia
| | - Cyril Salek
- Czech Leukemia Study Group – for Life (CELL), Brno, Czechia
- Institute of Hematology and Blood Transfusion, Prague, Czechia
- Institute of Clinical and Experimental Hematology, First Faculty of Medicine, Charles University, Prague, Czechia
| | - Jan M. Horacek
- Czech Leukemia Study Group – for Life (CELL), Brno, Czechia
- Fourth Department of Internal Medicine – Hematology, University Hospital Hradec Kralove, Hradec Kralove, Czechia
- Department of Military Internal Medicine and Hygiene, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czechia
| | - Sarka Pospisilova
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno, Brno, Czechia
- Faculty of Medicine, Masaryk University, Brno, Czechia
- Czech Leukemia Study Group – for Life (CELL), Brno, Czechia
- Central European Institute of Technology (CEITEC), Brno, Czechia
| | - Jiri Mayer
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno, Brno, Czechia
- Faculty of Medicine, Masaryk University, Brno, Czechia
- Czech Leukemia Study Group – for Life (CELL), Brno, Czechia
- Central European Institute of Technology (CEITEC), Brno, Czechia
| | - Michael Doubek
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno, Brno, Czechia
- Faculty of Medicine, Masaryk University, Brno, Czechia
- Czech Leukemia Study Group – for Life (CELL), Brno, Czechia
- Central European Institute of Technology (CEITEC), Brno, Czechia
| |
Collapse
|
30
|
Iacobucci I, Roberts KG. Genetic Alterations and Therapeutic Targeting of Philadelphia-Like Acute Lymphoblastic Leukemia. Genes (Basel) 2021; 12:genes12050687. [PMID: 34062932 PMCID: PMC8147256 DOI: 10.3390/genes12050687] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 04/29/2021] [Accepted: 04/29/2021] [Indexed: 12/21/2022] Open
Abstract
Philadelphia-like (Ph-like) acute lymphoblastic leukemia (ALL) is a subgroup of B-cell precursor ALL which by gene expression analysis clusters with Philadelphia-positive ALL although lacking the pathognomonic BCR-ABL1 oncoprotein. Its prevalence increases with age and similar to BCR-ABL1-positive ALL, Ph-like ALL is characterized by IKZF1 or other B-lymphoid transcription factor gene deletions and by poor outcome to conventional therapeutic approaches. Genetic alterations are highly heterogenous across patients and include gene fusions, sequence mutations, DNA copy number changes and cryptic rearrangements. These lesions drive constitutively active cytokine receptor and kinase signaling pathways which deregulate ABL1 or JAK signaling and more rarely other kinase-driven pathways. The presence of activated kinase alterations and cytokine receptors has led to the incorporation of targeted therapy to the chemotherapy backbone which has improved treatment outcome for this high-risk subtype. More recently, retrospective studies have shown the efficacy of immunotherapies including both antibody drug-conjugates and chimeric antigen receptor T cell therapy and as they are not dependent on a specific genetic alteration, it is likely their use will increase in prospective clinical trials. This review summarizes the genomic landscape, clinical features, diagnostic assays, and novel therapeutic approaches for patients with Ph-like ALL.
Collapse
Affiliation(s)
- Ilaria Iacobucci
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Kathryn G Roberts
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| |
Collapse
|
31
|
Loftus JP, Yahiaoui A, Brown PA, Niswander LM, Bagashev A, Wang M, Schauf A, Tannheimer S, Tasian SK. Combinatorial efficacy of entospletinib and chemotherapy in patient-derived xenograft models of infant acute lymphoblastic leukemia. Haematologica 2021; 106:1067-1078. [PMID: 32414848 PMCID: PMC8018117 DOI: 10.3324/haematol.2019.241729] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Indexed: 12/21/2022] Open
Abstract
Survival of infants with KMT2A-rearranged acute lymphoblastic leukemia (ALL) remains dismal despite intensive chemotherapy. We observed constitutive phosphorylation of spleen tyrosine kinase (SYK) and associated signaling proteins in infant ALL patient-derived xenograft (PDX) model specimens and hypothesized that the SYK inhibitor entospletinib would inhibit signaling and cell growth in vitro and leukemia proliferation in vivo. We further predicted that combined entospletinib and chemotherapy could augment anti-leukemia effects. Basal kinase signaling activation and HOXA9/MEIS1 expression differed among KMT2Arearranged (KMT2A-AFF1 [n=4], KMT2A-MLLT3 [n=1], KMT2A-MLLT1 [n=4]) and non-KMT2A-rearranged [n=3] ALL specimens and stratified by genetic subgroup. Incubation of KMT2A-rearranged ALL cells in vitro with entospletinib inhibited methylcellulose colony formation and SYK pathway signaling in a dose-dependent manner. In vivo inhibition of leukemia proliferation with entospletinib monotherapy was observed in RAS-wild-type KMT2A-AFF1, KMT2A-MLLT3, and KMT2A-MLLT1 ALL PDX models with enhanced activity in combination with vincristine chemotherapy in several models. Surprisingly, entospletinib did not decrease leukemia burden in two KMT2A-AFF1 PDX models with NRAS or KRAS mutations, suggesting potential RAS-mediated resistance to SYK inhibition. As hypothesized, superior inhibition of ALL proliferation was observed in KMT2A-AFF1 PDX models treated with entospletinib and the MEK inhibitor selumetinib versus vehicle or inhibitor monotherapies (P<0.05). In summary, constitutive activation of SYK and associated signaling occurs in KMT2A-rearranged ALL with in vitro and in vivo sensitivity to entospletinib. Combination therapy with vincristine or selumetinib further enhanced treatment effects of SYK inhibition. Clinical study of entospletinib and chemotherapy or other kinase inhibitors in patients with KMT2A-rearranged leukemias may be warranted.
Collapse
Affiliation(s)
- Joseph P Loftus
- Div of Oncology, Children Hospital and Center for Childhood Cancer Research, Philadelphia, USA
| | | | - Patrick A Brown
- Johns Hopkins University and Sidney Kimmel Comprehensive Cancer Center, Baltimore, USA
| | - Lisa M Niswander
- Div of Oncology, Children Hospital and Center for Childhood Cancer Research, Philadelphia, USA
| | - Asen Bagashev
- Div of Oncology, Children Hospital and Center for Childhood Cancer Research, Philadelphia, USA
| | - Min Wang
- Gilead Sciences; Foster City, CA, USA
| | | | | | - Sarah K Tasian
- Div of Oncology, Children Hospital and Center for Childhood Cancer Research, Philadelphia, USA
| |
Collapse
|
32
|
Norvilas R, Dirse V, Semaskeviciene R, Mickeviciute O, Gineikiene E, Stoskus M, Vaitkeviciene G, Rascon J, Griskevicius L. Low incidence of ABL-class and JAK-STAT signaling pathway alterations in uniformly treated pediatric and adult B-cell acute lymphoblastic leukemia patients using MRD risk-directed approach - a population-based study. BMC Cancer 2021; 21:326. [PMID: 33781217 PMCID: PMC8006339 DOI: 10.1186/s12885-020-07781-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 12/30/2020] [Indexed: 12/01/2022] Open
Abstract
Background ABL-class and JAK-STAT signaling pathway activating alterations have been associated with both a poor post-induction minimal residual disease (MRD) response and an inferior outcome in B-cell acute lymphoblastic leukemia (B-ALL). However, in most of the studies patients received non-uniform treatment. Methods We performed a population-based analysis of 160 (122 pediatric and 38 adult) Lithuanian BCR-ABL1-negative B-ALL patients who had been uniformly treated according to MRD-directed NOPHO ALL-2008 protocol. Targeted RNA sequencing and FISH analysis were performed in cases without canonical B-ALL genomic alterations (high hyperdiploids and low hypodiploids included). Results We identified ABL-class fusions in 3/160 (1.9%) B-ALL patients, and exclusively in adults (p = 0.003). JAK-STAT pathway fusions were present in 4/160 (2.5%) cases. Of note, P2RY8-CRLF2 fusion was absent in both pediatric and adult B-ALL cases. Patients with ABL-class or JAK-STAT pathway fusions had a poor MRD response and were assigned to the higher risk groups, and had an inferior event-free survival (EFS) / overall survival (OS) compared to patients without these fusions. In a multivariate analysis, positivity for ABL-class and JAK-STAT fusions was a risk factor for worse EFS (p = 0.046) but not for OS (p = 0.278) in adults. Conclusions We report a low overall frequency of ABL-class and JAK-STAT fusions and the absence of P2RY8-CRLF2 gene fusion in the Lithuanian BCR-ABL1 negative B-ALL cohort. Future (larger) studies are warranted to confirm an inferior event-free survival of ABL-class/JAK-STAT fusion-positive adult patients in MRD-directed protocols. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-020-07781-6.
Collapse
Affiliation(s)
- Rimvydas Norvilas
- Hematology, Oncology and Transfusion Medicine Center, Vilnius University Hospital Santaros Klinikos, Vilnius, Lithuania. .,Department of Experimental, Preventive and Clinical Medicine, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania.
| | - Vaidas Dirse
- Hematology, Oncology and Transfusion Medicine Center, Vilnius University Hospital Santaros Klinikos, Vilnius, Lithuania.,Institute of Clinical Medicine, Vilnius University, Vilnius, Lithuania
| | - Ruta Semaskeviciene
- Hematology, Oncology and Transfusion Medicine Center, Vilnius University Hospital Santaros Klinikos, Vilnius, Lithuania
| | - Orinta Mickeviciute
- Hematology, Oncology and Transfusion Medicine Center, Vilnius University Hospital Santaros Klinikos, Vilnius, Lithuania
| | - Egle Gineikiene
- Hematology, Oncology and Transfusion Medicine Center, Vilnius University Hospital Santaros Klinikos, Vilnius, Lithuania
| | - Mindaugas Stoskus
- Hematology, Oncology and Transfusion Medicine Center, Vilnius University Hospital Santaros Klinikos, Vilnius, Lithuania
| | - Goda Vaitkeviciene
- Institute of Clinical Medicine, Vilnius University, Vilnius, Lithuania.,Center for Pediatric Oncology and Hematology, Vilnius University Hospital Santaros Klinikos, Vilnius, Lithuania
| | - Jelena Rascon
- Institute of Clinical Medicine, Vilnius University, Vilnius, Lithuania.,Center for Pediatric Oncology and Hematology, Vilnius University Hospital Santaros Klinikos, Vilnius, Lithuania
| | - Laimonas Griskevicius
- Hematology, Oncology and Transfusion Medicine Center, Vilnius University Hospital Santaros Klinikos, Vilnius, Lithuania.,Institute of Clinical Medicine, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
33
|
Aldoss I, Advani AS. Have any strategies in Ph-like ALL been shown to be effective? Best Pract Res Clin Haematol 2021; 34:101242. [DOI: 10.1016/j.beha.2021.101242] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
34
|
Wouters Y, Nevejan L, Louwagie A, Devos H, Dewaele B, Selleslag D, Michaux L. Efficacy of ruxolitinib in B-lymphoblastic leukaemia with the PCM1-JAK2 fusion gene. Br J Haematol 2021; 192:e112-e115. [PMID: 33502001 DOI: 10.1111/bjh.17340] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 12/29/2020] [Indexed: 12/20/2022]
Affiliation(s)
- Yannick Wouters
- Department of Laboratory Medicine, Sint-Franciscus Hospital, Heusden-Zolder, Belgium.,Department of Laboratory Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Louis Nevejan
- Department of Laboratory Medicine, AZ Sint-Jan Hospital Brugge-Oostende, Bruges, Belgium
| | - Annelies Louwagie
- Department of Laboratory Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Helena Devos
- Department of Laboratory Medicine, AZ Sint-Jan Hospital Brugge-Oostende, Bruges, Belgium
| | - Barbara Dewaele
- Center for Human Genetics, University Hospitals Leuven and KU Leuven, Leuven, Belgium
| | - Dominik Selleslag
- Department of Hematology, AZ Sint-Jan Hospital Brugge-Oostende, Bruges, Belgium
| | - Lucienne Michaux
- Center for Human Genetics, University Hospitals Leuven and KU Leuven, Leuven, Belgium
| |
Collapse
|
35
|
Zhang XY, Dai HP, Li Z, Yin J, Lang XP, Yang CX, Xiao S, Zhu MQ, Liu DD, Liu H, Shen HJ, Wu DP, Tang XW. Identification of STRBP as a Novel JAK2 Fusion Partner Gene in a Young Adult With Philadelphia Chromosome-Like B-Lymphoblastic Leukemia. Front Oncol 2021; 10:611467. [PMID: 33505919 PMCID: PMC7831028 DOI: 10.3389/fonc.2020.611467] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 11/24/2020] [Indexed: 12/26/2022] Open
Abstract
Philadelphia chromosome-like B-lymphoblastic leukemia (Ph-like ALL) describes a group of genetically heterogeneous, Ph-negative entities with high relapse rates and poor prognoses. A Janus-kinase-2 (JAK2) rearrangement has been reported in approximately 7% of Ph-like ALL patients whose therapeutic responses to JAK inhibitors have been studied in clinical trials. Here, we report a novel STRBP-JAK2 fusion gene in a 21-year-old woman with Ph-like ALL. Although a normal karyotype was observed, a hitherto unreported JAK2 rearrangement was detected cytogenetically. STRBP-JAK2 fusion was identified by RNA sequencing and validated by Sanger sequencing. The Ph-like ALL proved refractory to traditional induction chemotherapy combined with ruxolitinib. The patient consented to infusion of autologous chimeric antigen receptor (CAR) T cells against both CD19 and CD22, which induced morphologic remission. Haplo-identical stem cell transplantation was then performed; however, she suffered relapse at just one month after transplantation. The patient subsequently received donor lymphocyte infusion after which she achieved and maintained a minimal residual disease negative remission. However, she succumbed to grade IV graft-versus-host disease 7 months post-transplant. In conclusion, this report describes a novel STRBP-JAK2 gene fusion in a Ph-like ALL patient with a very aggressive disease course, which proved resistant to chemotherapy combined with ruxolitinib but sensitive to immunotherapy. Our study suggests that CAR T-cell therapy may be a viable option for this type of leukemia.
Collapse
Affiliation(s)
- Xin-Yue Zhang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Hai-Ping Dai
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Zheng Li
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Jia Yin
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | | | | | - Sheng Xiao
- Department of Pathology, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, United States
| | - Ming-Qing Zhu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Dan-Dan Liu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Hong Liu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Hong-Jie Shen
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - De-Pei Wu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Xiao-Wen Tang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| |
Collapse
|
36
|
Abstract
PURPOSE OF REVIEW Acute lymphoblastic leukemia (ALL) is a rare hematologic malignancy. Advances in multi-agent chemotherapy have resulted in dramatic improvements in the number of pediatric cases that result in a cure; however, until recently, treatment options for older adults or patients with relapsed and refractory disease were extremely limited. This review seeks to describe in greater detail a number of emerging novel treatment modalities recently approved for this cancer. RECENT FINDINGS In this review, we discuss a number of recently approved novel therapies for ALL, including new approaches with targeted tyrosine kinase inhibitors, novel immune-based therapies including the bispecific antibody blinatumomab and the antibody-drug conjugate inotuzumab ozogamicin, and the role of cellular therapeutics such as chimeric antigen receptor (CAR) T cells. We also discuss the impact that advances in diagnostics and disease classification and monitoring have had on treatment. A number of advances in ALL have resulted in dramatic changes to the treatment landscape and therapeutic options both at the time of diagnosis and in salvage. These findings are reshaping our treatment paradigms throughout the course of disease.
Collapse
|
37
|
Tran TH, Hunger SP. The genomic landscape of pediatric acute lymphoblastic leukemia and precision medicine opportunities. Semin Cancer Biol 2020; 84:144-152. [PMID: 33197607 DOI: 10.1016/j.semcancer.2020.10.013] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 10/25/2020] [Accepted: 10/26/2020] [Indexed: 12/12/2022]
Abstract
Acute lymphoblastic leukemia (ALL) is the most common childhood cancer and constitutes approximately 25 % of cancer diagnoses among children under the age of 15 (Howlader et al., 2013) [1]. Overall, about half of ALL cases occur in children and adolescents and it is the most common acute leukemia until the early 20s, after which acute myeloid leukemia predominates. ALL is the most successful treatment paradigm in pediatric cancer medicine as illustrated by the significant survival rate improvement from ∼10 % in the 1960s to >90 % today (Hunger et al., 2015) [2]. This remarkable success stems from the progressive improvement in the efficacy of risk-adapted multiagent chemotherapy regimens with effective central nervous system (CNS) prophylaxis via well-designed randomized clinical trials conducted by international collaborative consortia, enhanced supportive care measures to decrease treatment-related mortality, in-depth understanding of the genetic basis of ALL, and refinement in treatment response assessment through serial minimal residual disease (MRD) monitoring (Pui et al., 2015) [3]. These advances collectively contribute to a decline in mortality rate of 23.5% for children diagnosed with ALL in the US from 2000 to 2010 (Smith et al., 2014) [4]. Nevertheless, outcomes of older adolescents and young adults with ALL still lag behind those of their younger counterparts despite pediatric-inspired chemotherapy regimens (Stock et al., 2019) [5], relapsed/refractory childhood ALL is associated with poor outcomes (Rheingold et al., 2019) [6], and ALL still represents the leading causes of cancer-related deaths (Smith et al., 2010) [7]. The last two decades have witnessed important genomic discoveries in ALL, enabled by advances in next-generation sequencing (NGS) technologies to characterize the landscape of germline and somatic alterations in ALL, some of which have important diagnostic, prognostic and therapeutic implications. Comprehensive genomic analysis of large cohorts of children and adults with ALL has revised the taxonomy of ALL in the molecular era by identifying novel clonal, subtype-defined chromosomal alterations associated with distinct gene expression signatures, thus reducing the proportion of patients previously labelled as "Others" from 25 % to approximately 5 % (Mullighan et al., 2019) [8]. Insights into the genomics of ALL further provide compelling biologic rationale to expand the scope of precision medicine therapies for childhood ALL. Herein, we summarize a decade of genomic discoveries to highlight three different facets of precision medicine in pediatric ALL: 1) inherited predispositions of ALL; 2) relevant molecularly targeted therapies in genomically-defined ALL subtypes; and 3) treatment response monitoring via pharmacogenomics and novel MRD biomarkers.
Collapse
Affiliation(s)
- Thai Hoa Tran
- Division of Pediatric Hematology-Oncology, Charles-Bruneau Cancer Center, CHU Sainte-Justine, University of Montreal, Montreal, Quebec, Canada
| | - Stephen P Hunger
- Department of Pediatrics, The Center for Childhood Cancer Research, Children's Hospital of Philadelphia, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
38
|
Hamilton CE, Craiglow BG. JAK Inhibitors for the Treatment of Pediatric Alopecia Areata. J Investig Dermatol Symp Proc 2020; 20:S31-S36. [PMID: 33099381 DOI: 10.1016/j.jisp.2020.04.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Alopecia areata is a common autoimmune condition that disproportionately affects children and can significantly hinder quality of life. Few safe and effective therapies are available for the treatment of severely affected pediatric patients. JAK inhibitors have been recently established as an effective and well-tolerated therapy in adults, but there are limited data regarding the use of JAK inhibitors to treat alopecia areata in children. Here, we review the available literature regarding the use of JAK inhibitors in children in dermatology and across other medical disciplines.
Collapse
Affiliation(s)
- Claire E Hamilton
- Department of Dermatology, Yale University, New Haven, Connecticut, USA
| | - Brittany G Craiglow
- Department of Dermatology, Yale University, New Haven, Connecticut, USA; Dermatology Physicians of Connecticut, Fairfield, Connecticut, USA.
| |
Collapse
|
39
|
Lee JW, Kim Y, Cho B, Kim S, Jang PS, Lee J, Cho H, Lee GD, Chung NG, Kim M. High incidence of RAS pathway mutations among sentinel genetic lesions of Korean pediatric BCR-ABL1-like acute lymphoblastic leukemia. Cancer Med 2020; 9:4632-4639. [PMID: 32378810 PMCID: PMC7333828 DOI: 10.1002/cam4.3099] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 04/14/2020] [Accepted: 04/15/2020] [Indexed: 12/16/2022] Open
Abstract
INTRODUCTION Recent advances in genetic analysis have led to the discovery of novel genetic subtypes of precursor B-cell acute lymphoblastic leukemia (B-ALL) with prognostic relevance. In this study, we studied a cohort of pediatric B-ALL patients to retrospectively determine the incidence of patients harboring novel genetic subtypes, as well as their outcome. METHODS B-ALL patients (N = 190) diagnosed in a single Korean hospital were included in the study. Patients' medical records were reviewed for data on established genetic abnormalities and outcome. CRLF2 expression was analyzed by quantitative RT-PCR. Anchored multiplex PCR-based enrichment was used to detect fusions and point mutations in 81 ALL-related genes. RESULTS Incidence of established recurrent genetic subtypes was as follows: high hyperdiploidy (21.6%), ETV6-RUNX1 (21.6%), BCR-ABL1 (7.9%), KMT2A rearrangement (7.4%) TCF3-PBX1/TCF3-HLF (7.4%), and hypodiploidy (1.1%). Incidence of new genetic subtypes was as follows: BCR-ABL1-like (13.2%), ETV6-RUNX1-like (2.1%), EWSR1-ZNF384 (1.1%), and iAMP21 (1.1%). Median age at diagnosis of BCR-ABL1-like ALL was 6.8 years. According to type of genetic abnormality, BCR-ABL1-like ALL was divided into ABL class (12%), CRLF2 class (8%), JAK-STAT class (12%), and RAS class (68%). The 5-year event-free survival (EFS) of BCR-ABL1-like patients was significantly inferior to non-BCR-ABL1-like low- and standard-risk patients (71.5 ± 9.1% vs 92.5 ± 3.2%, P = .001) and comparable to non-BCR-ABL1-like high (75.2 ± 6.2%) and very high-risk patients (56.8 ± 7.4%). All four ETV6-RUNX1-like patients survived event-free. CONCLUSION Analogous to previous studies, incidence of BCR-ABL1-like ALL in our cohort was 13.2% with outcome comparable to high and very high-risk patients. A significantly high number of RAS class mutations was a distinct feature of our BCR-ABL1-like ALL group.
Collapse
Affiliation(s)
- Jae Wook Lee
- Department of Pediatrics, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Yonggoo Kim
- Department of Laboratory Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.,Catholic Genetic Laboratory Center, College of Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Bin Cho
- Department of Pediatrics, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Seongkoo Kim
- Department of Pediatrics, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Pil-Sang Jang
- Department of Pediatrics, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jaewoong Lee
- Department of Laboratory Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.,Catholic Genetic Laboratory Center, College of Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hanwool Cho
- Department of Laboratory Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Gun Dong Lee
- Catholic Genetic Laboratory Center, College of Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Nack-Gyun Chung
- Department of Pediatrics, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Myungshin Kim
- Department of Laboratory Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.,Catholic Genetic Laboratory Center, College of Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
40
|
Evidence-based review of genomic aberrations in B-lymphoblastic leukemia/lymphoma: Report from the cancer genomics consortium working group for lymphoblastic leukemia. Cancer Genet 2020; 243:52-72. [PMID: 32302940 DOI: 10.1016/j.cancergen.2020.03.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 03/04/2020] [Accepted: 03/17/2020] [Indexed: 12/19/2022]
Abstract
Clinical management and risk stratification of B-lymphoblastic leukemia/ lymphoma (B-ALL/LBL) depend largely on identification of chromosomal abnormalities obtained using conventional cytogenetics and Fluorescence In Situ Hybridization (FISH) testing. In the last few decades, testing algorithms have been implemented to support an optimal risk-oriented therapy, leading to a large improvement in overall survival. In addition, large scale genomic studies have identified multiple aberrations of prognostic significance that are not routinely tested by existing modalities. However, as chromosomal microarray analysis (CMA) and next-generation sequencing (NGS) technologies are increasingly used in clinical management of hematologic malignancies, these abnormalities may be more readily detected. In this article, we have compiled a comprehensive, evidence-based review of the current B-ALL literature, focusing on known and published subtypes described to date. More specifically, we describe the role of various testing modalities in the diagnosis, prognosis, and therapeutic relevance. In addition, we propose a testing algorithm aimed at assisting laboratories in the most effective detection of the underlying genomic abnormalities.
Collapse
|
41
|
Goto H, Yoshino Y, Ito M, Nagai J, Kumamoto T, Inukai T, Sakurai Y, Miyagawa N, Keino D, Yokosuka T, Iwasaki F, Hamanoue S, Shiomi M, Goto S. Aurora B kinase as a therapeutic target in acute lymphoblastic leukemia. Cancer Chemother Pharmacol 2020; 85:773-783. [PMID: 32144432 DOI: 10.1007/s00280-020-04045-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 02/19/2020] [Indexed: 12/21/2022]
Abstract
PURPOSE Acute lymphoblastic leukemia (ALL) is curable with standardized chemotherapy. However, the development of novel therapies is still required, especially for patients with relapsed or refractory disease. By utilizing an in vitro drug screening system, active molecular targeting agents against ALL were explored in this study. METHODS By the in vitro drug sensitivity test, 81 agents with various actions were screened for their cytotoxicity in a panel of 22 ALL cell lines and ALL clinical samples. The drug effect score (DES) was calculated from the dose-response of each drug for comparison among drugs or samples. Normal peripheral blood mononuclear cells were also applied onto the drug screening to provide the reference control values. The drug combination effect was screened based on the Bliss independent model, and validated by the improved isobologram method. RESULTS On sensitivity screening in a cell line panel, barasertib-HQPA which is an active metabolite of barasertib, an aurora B kinase inhibitor, alisertib, an aurora A kinase inhibitor, and YM155, a survivin inhibitor, were effective against the broadest range of ALL cells. The DES of barasertib-HQPA was significantly higher in ALL clinical samples compared to the reference value. There were significant correlations in DES between barasertib-HQPA and vincristine or docetaxel. In the drug combination assay, barasertib-HQPA and eribulin showed additive to synergistic effects. CONCLUSION Aurora B kinase was identified to be an active therapeutic target in a broad range of ALL cells. Combination therapy of barasertib and a microtubule-targeting drug is of clinical interest.
Collapse
Affiliation(s)
- Hiroaki Goto
- Division of Hematology/Oncology, Kanagawa Children's Medical Center, 2-138-4 Mutsukawa Minami-Ku, Yokohama, Japan.
| | - Yuki Yoshino
- Division of Hematology/Oncology, Kanagawa Children's Medical Center, 2-138-4 Mutsukawa Minami-Ku, Yokohama, Japan
| | - Mieko Ito
- Division of Hematology/Oncology, Kanagawa Children's Medical Center, 2-138-4 Mutsukawa Minami-Ku, Yokohama, Japan
| | - Junichi Nagai
- Department of Laboratory Medicine, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Tadashi Kumamoto
- Department of Pediatric Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Takesi Inukai
- Department of Pediatrics, School of Medicine, Yamanashi University, Kofu, Japan
| | - Yukari Sakurai
- Division of Hematology/Oncology, Kanagawa Children's Medical Center, 2-138-4 Mutsukawa Minami-Ku, Yokohama, Japan
| | - Naoyuki Miyagawa
- Division of Hematology/Oncology, Kanagawa Children's Medical Center, 2-138-4 Mutsukawa Minami-Ku, Yokohama, Japan
| | - Dai Keino
- Division of Hematology/Oncology, Kanagawa Children's Medical Center, 2-138-4 Mutsukawa Minami-Ku, Yokohama, Japan
| | - Tomoko Yokosuka
- Division of Hematology/Oncology, Kanagawa Children's Medical Center, 2-138-4 Mutsukawa Minami-Ku, Yokohama, Japan
| | - Fuminori Iwasaki
- Division of Hematology/Oncology, Kanagawa Children's Medical Center, 2-138-4 Mutsukawa Minami-Ku, Yokohama, Japan
| | - Satoshi Hamanoue
- Division of Hematology/Oncology, Kanagawa Children's Medical Center, 2-138-4 Mutsukawa Minami-Ku, Yokohama, Japan
| | - Masae Shiomi
- Division of Hematology/Oncology, Kanagawa Children's Medical Center, 2-138-4 Mutsukawa Minami-Ku, Yokohama, Japan
| | - Shoko Goto
- Division of Hematology/Oncology, Kanagawa Children's Medical Center, 2-138-4 Mutsukawa Minami-Ku, Yokohama, Japan
| |
Collapse
|
42
|
Lenk L, Alsadeq A, Schewe DM. Involvement of the central nervous system in acute lymphoblastic leukemia: opinions on molecular mechanisms and clinical implications based on recent data. Cancer Metastasis Rev 2020; 39:173-187. [PMID: 31970588 PMCID: PMC7098933 DOI: 10.1007/s10555-020-09848-z] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Acute lymphoblastic leukemia (ALL) is the most common childhood cancer. One of the major clinical challenges is adequate diagnosis and treatment of central nervous system (CNS) involvement in this disease. Intriguingly, there is little solid evidence on the mechanisms sustaining CNS disease in ALL. Here, we present and discuss recent data on this topic, which are mainly derived from preclinical model systems. We thereby highlight sites and routes of leukemic CNS infiltration, cellular features promoting infiltration and survival of leukemic cells in a presumably hostile niche, and dormancy as a potential mechanism of survival and relapse in CNS leukemia. We also focus on the impact of ALL cytogenetic subtypes on features associated with a particular CNS tropism. Finally, we speculate on new perspectives in the treatment of ALL in the CNS, including ideas on the impact of novel immunotherapies.
Collapse
Affiliation(s)
- Lennart Lenk
- Department of Pediatrics I, ALL-BFM Study Group, Christian-Albrechts University Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Ameera Alsadeq
- Institute of Immunology, Ulm University Medical Center, Ulm, Germany
| | - Denis M Schewe
- Department of Pediatrics I, ALL-BFM Study Group, Christian-Albrechts University Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany.
| |
Collapse
|
43
|
Dahlen E, Sarghi SI, Renosi F, Ferrand C, Collonge-Rame MA, Kuentz P. Post-Essential Thrombocythemia Myelofibrosis and Multiple Isodicentric Y Chromosomes: A Unique Case among a Rare Association. Cytogenet Genome Res 2020; 160:18-21. [PMID: 32008001 DOI: 10.1159/000505844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2019] [Indexed: 11/19/2022] Open
Abstract
Multiple isodicentric Y chromosomes [idic(Y)] is a rare cytogenetic abnormality, most exclusively described in constitutional karyotypes. Only recently has this entity been reported in hematologic neoplasms such as myeloid disorders, albeit these cases remain very scarce. The possible involvement of increasing copies of potential proto-oncogenes located on the multiple idic(Y) led to consider one of them, CRLF2, as a target for kinase inhibitors. We report here, to our knowledge, the first case of multiple idic(Y) in a patient with myelofibrosis secondary to essential thrombocythemia. The patient received ruxolitinib therapy with initial good clinical response.
Collapse
|
44
|
Harvey RC, Tasian SK. Clinical diagnostics and treatment strategies for Philadelphia chromosome-like acute lymphoblastic leukemia. Blood Adv 2020; 4:218-228. [PMID: 31935290 PMCID: PMC6960477 DOI: 10.1182/bloodadvances.2019000163] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 11/20/2019] [Indexed: 12/13/2022] Open
Abstract
Philadelphia chromosome-like B-cell acute lymphoblastic leukemia (Ph-like ALL) accounts for 15% to 30% of B-cell acute lymphoblastic leukemia in older children, adolescents, and adults and is associated with high rates of conventional treatment failure and relapse. Current clinical trials are assessing the efficacy of the addition of tyrosine kinase inhibitors (TKIs) to chemotherapy for children and adults with Ph-like ALL harboring ABL class translocations or CRLF2 rearrangements and other JAK pathway alterations. However, real-time diagnosis of patients can be quite challenging given the genetic heterogeneity of this disease and the often cytogenetically cryptic nature of Ph-like ALL-associated alterations. In this review, we discuss the complex biologic and clinical features of Ph-like ALL across the age spectrum, available diagnostic testing modalities, and current clinical treatment strategies for these high-risk patients. We further propose a practical and step-wise approach to Ph-like ALL genetic testing to facilitate the identification and allocation of patients to appropriate clinical trials of TKI-based therapies or commercially available drugs. Although the majority of patients with Ph-like ALL can be successfully identified via current clinical assays by the end of induction chemotherapy, increasing diagnostic efficiency and sensitivity and decreasing time to test resulting will facilitate earlier therapeutic intervention and may improve clinical outcomes for these high-risk patients.
Collapse
Affiliation(s)
- Richard C Harvey
- Department of Pathology, University of New Mexico School of Medicine, Albuquerque, NM
- University of New Mexico Comprehensive Cancer Center, Albuquerque, NM
| | - Sarah K Tasian
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA; and
- Department of Pediatrics and Abramson Cancer Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| |
Collapse
|
45
|
|
46
|
Ruxolitinib Synergizes With Dexamethasone for the Treatment of T-cell Acute Lymphoblastic Leukemia. Hemasphere 2019; 3:e310. [PMID: 31976483 PMCID: PMC6924552 DOI: 10.1097/hs9.0000000000000310] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 09/10/2019] [Accepted: 10/10/2019] [Indexed: 12/29/2022] Open
|
47
|
Frisch A, Ofran Y. How I diagnose and manage Philadelphia chromosome-like acute lymphoblastic leukemia. Haematologica 2019; 104:2135-2143. [PMID: 31582548 PMCID: PMC6821607 DOI: 10.3324/haematol.2018.207506] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 09/03/2019] [Indexed: 01/31/2023] Open
Abstract
Advances in our understanding of mechanisms of leukemogenesis and driver mutations in acute lymphoblastic leukemia (ALL) lead to a more precise and informative sub-classification, mainly of B-cell ALL. In parallel, in recent years, novel agents have been approved for the therapy of B-cell ALL, and many others are in active clinical research. Among the newly recognized disease subtypes, Philadelphia-chromosome-like ALL is the most heterogeneous and thus, diagnostically challenging. Given that this subtype of B-cell ALL is associated with a poorer prognosis, improvement of available therapeutic approaches and protocols is a burning issue. Herein, we summarize, in a clinically relevant manner, up-to-date information regarding diagnostic strategies developed for the identification of patients with Philadelphia-chromosome-like ALL. Common therapeutic dilemmas, presented as several case scenarios, are also discussed. It is currently acceptable that patients with B-cell ALL, treated with an aim of cure, irrespective of their age, be evaluated for a Philadelphia-chromosome-like signature as early as possible. Following Philadelphia-chromosome-like recognition, a higher risk of resistance or relapse must be realized and treatment should be modified based on the patient’s specific genetic driver and clinical features. However, while active targeted therapeutic options are limited, there is much more to do than just prescribe a matched inhibitor to the identified mutated driver genes. In this review, we present a comprehensive evidence-based approach to the diagnosis and management of Philadelphia-chromosome-like ALL at different time-points during the disease course.
Collapse
Affiliation(s)
- Avraham Frisch
- Department of Hematology and Bone Marrow Transplantation, Rambam Health Care Campus, Haifa
| | - Yishai Ofran
- Department of Hematology and Bone Marrow Transplantation, Rambam Health Care Campus, Haifa .,Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
48
|
Chang F, Lin F, Cao K, Surrey LF, Aplenc R, Bagatell R, Resnick AC, Santi M, Storm PB, Tasian SK, Waanders AJ, Hunger SP, Li MM. Development and Clinical Validation of a Large Fusion Gene Panel for Pediatric Cancers. J Mol Diagn 2019; 21:873-883. [PMID: 31255796 PMCID: PMC6734859 DOI: 10.1016/j.jmoldx.2019.05.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 04/30/2019] [Accepted: 05/16/2019] [Indexed: 12/12/2022] Open
Abstract
Gene fusions are one of the most common genomic alterations in pediatric cancer. Many fusions encode oncogenic drivers and play important roles in cancer diagnosis, risk stratification, and treatment selection. We report the development and clinical validation of a large custom-designed RNA sequencing panel, CHOP Fusion panel, using anchored multiplex PCR technology. The panel interrogates 106 cancer genes known to be involved in nearly 600 different fusions reported in hematological malignancies and solid tumors. The panel works well with different types of samples, including formalin-fixed, paraffin-embedded samples. The panel demonstrated excellent analytic accuracy, with 100% sensitivity and specificity on 60 pediatric tumor validation samples. In addition to identifying all known fusions in the validation samples, three unrecognized, yet clinically significant, fusions were also detected. A total of 276 clinical cases were analyzed after the validation, and 51 different fusions were identified in 104 cases. Of these fusions, 16 were not previously reported at the time of discovery. These fusions provided genomic information useful for clinical management. Our experience demonstrates that CHOP Fusion panel can detect the vast majority of known and certain novel clinically relevant fusion genes in pediatric cancers accurately, efficiently, and cost-effectively; and the panel provides an excellent tool for new fusion gene discovery.
Collapse
Affiliation(s)
- Fengqi Chang
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania; Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Fumin Lin
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Kajia Cao
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Lea F Surrey
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania; Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Richard Aplenc
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Rochelle Bagatell
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Adam C Resnick
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania; Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Mariarita Santi
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania; Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Phillip B Storm
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Sarah K Tasian
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Angela J Waanders
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Stephen P Hunger
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Marilyn M Li
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania; Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.
| |
Collapse
|
49
|
Starý J, Zuna J, Zaliova M. New biological and genetic classification and therapeutically relevant categories in childhood B-cell precursor acute lymphoblastic leukemia. F1000Res 2018; 7. [PMID: 30345005 PMCID: PMC6173109 DOI: 10.12688/f1000research.16074.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/24/2018] [Indexed: 01/12/2023] Open
Abstract
Traditionally, genetic abnormalities detected by conventional karyotyping, fluorescence in situ hybridization, and polymerase chain reaction divided childhood B-cell precursor acute lymphoblastic leukemia (BCP-ALL) into well-established genetic subtypes. This genetic classification has been prognostically relevant and thus used for the risk stratification of therapy. Recently, the introduction of genome-wide approaches, including massive parallel sequencing methods (whole-genome, -exome, and -transcriptome sequencing), enabled extensive genomic studies which, together with gene expression profiling, largely expanded our understanding of leukemia pathogenesis and its heterogeneity. Novel BCP-ALL subtypes have been described. Exact identification of recurrent genetic alterations and their combinations facilitates more precise risk stratification of patients. Discovery of targetable lesions in subsets of patients enables the introduction of new treatment modalities into clinical practice and stimulates the transfer of modern methods from research laboratories to routine practice.
Collapse
Affiliation(s)
- Jan Starý
- Department of Pediatric Hematology and Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic.,Childhood Leukaemia Investigation Prague (CLIP), Prague, Czech Republic
| | - Jan Zuna
- Department of Pediatric Hematology and Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic.,Childhood Leukaemia Investigation Prague (CLIP), Prague, Czech Republic
| | - Marketa Zaliova
- Department of Pediatric Hematology and Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic.,Childhood Leukaemia Investigation Prague (CLIP), Prague, Czech Republic
| |
Collapse
|