1
|
Orofino G, Vago L. Biology of post-transplant relapse: actionable features. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2024; 2024:736-743. [PMID: 39644002 DOI: 10.1182/hematology.2024000588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2024]
Abstract
In patients receiving allogeneic hematopoietic cell transplantation to cure acute myeloid leukemia (AML), recurrence of the underlying disease, or relapse, represents a crucial unanswered issue and prominent cause of mortality. Still, over recent years, advancements in omic technologies have allowed us to gain new insights into the dynamic changes occurring in cancer and the host over the course of treatments, providing a novel evolutionary perspective on the issue of disease relapse. In this review, we summarize current knowledge on the molecular features of relapsing AML, with a specific focus on changes in the mutational asset of the disease and in the interplay between the tumor and the donor-derived immune system. In particular, we discuss how this information can be translated into relevant indications for monitoring transplanted patients and selecting the most appropriate therapeutic options to prevent and treat relapse.
Collapse
Affiliation(s)
- Giorgio Orofino
- Unit of Immunogenetics, Leukemia Genomics and Immunobiology, IRCCS San Raffaele Scientific Institute, Milano, Italy
- Hematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milano, Italy
- Vita-Salute San Raffaele University, Milano, Italy
| | - Luca Vago
- Unit of Immunogenetics, Leukemia Genomics and Immunobiology, IRCCS San Raffaele Scientific Institute, Milano, Italy
- Hematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milano, Italy
- Vita-Salute San Raffaele University, Milano, Italy
| |
Collapse
|
2
|
Kambara Y, Sadato D, Toya T, Honda A, Kato S, Hirama C, Haraguchi K, Shimizu H, Najima Y, Kobayashi T, Okuyama Y, Harada H, Takahashi S, Kurokawa M, Harada Y, Doki N. Recurrent DDX41 mutation in very late relapse after allogeneic stem cell transplantation. Leukemia 2024; 38:667-670. [PMID: 38238444 DOI: 10.1038/s41375-024-02152-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/09/2024] [Accepted: 01/09/2024] [Indexed: 03/06/2024]
Affiliation(s)
- Yasuhiro Kambara
- Hematology Division, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, Tokyo, Japan
| | - Daichi Sadato
- Clinical Research Support Center, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, Tokyo, Japan
| | - Takashi Toya
- Hematology Division, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, Tokyo, Japan.
| | - Akira Honda
- Department of Hematology and Oncology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Seiko Kato
- Department of Hematology/Oncology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Chizuko Hirama
- Clinical Research Support Center, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, Tokyo, Japan
| | - Kyoko Haraguchi
- Division of Transfusion and Cell Therapy, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, Tokyo, Japan
| | - Hiroaki Shimizu
- Hematology Division, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, Tokyo, Japan
| | - Yuho Najima
- Hematology Division, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, Tokyo, Japan
| | - Takeshi Kobayashi
- Hematology Division, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, Tokyo, Japan
| | - Yoshiki Okuyama
- Division of Transfusion and Cell Therapy, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, Tokyo, Japan
| | - Hironori Harada
- Hematology Division, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, Tokyo, Japan
- Laboratory of Oncology, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Satoshi Takahashi
- Department of Hematology/Oncology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Division of Clinical Precision Research Platform, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Mineo Kurokawa
- Department of Hematology and Oncology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Cell Therapy and Transplantation Medicine, The University of Tokyo, Tokyo, Japan
| | - Yuka Harada
- Clinical Research Support Center, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, Tokyo, Japan
| | - Noriko Doki
- Hematology Division, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, Tokyo, Japan
| |
Collapse
|
3
|
Baranwal A, Basmaci R, He R, Viswanatha D, Greipp P, Murthy HS, Foran J, Palmer J, Hogan WJ, Litzow MR, Hefazi M, Mangaonkar A, Shah MV, Al-Kali A, Alkhateeb HB. Genetic features and outcomes of allogeneic transplantation in patients with WT1-mutated myeloid neoplasms. Blood Adv 2024; 8:562-570. [PMID: 38011614 PMCID: PMC10837491 DOI: 10.1182/bloodadvances.2023010960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/05/2023] [Accepted: 11/05/2023] [Indexed: 11/29/2023] Open
Affiliation(s)
| | - Rami Basmaci
- Division of Hematology, Mayo Clinic, Rochester, MN
| | - Rong He
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - David Viswanatha
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - Patricia Greipp
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | | | - James Foran
- Division of Hematology, Mayo Clinic, Jacksonville, FL
| | | | | | | | | | | | | | - Aref Al-Kali
- Division of Hematology, Mayo Clinic, Rochester, MN
| | | |
Collapse
|
4
|
Herrity E, Pereira MP, Kim DDH. Acute myeloid leukaemia relapse after allogeneic haematopoietic stem cell transplantation: Mechanistic diversity and therapeutic directions. Br J Haematol 2023; 203:722-735. [PMID: 37787151 DOI: 10.1111/bjh.19121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/28/2023] [Accepted: 09/12/2023] [Indexed: 10/04/2023]
Abstract
Emerging biological and clinical data, along with advances in new technologies, have exposed the mechanistic diversity in post-haematopoietic stem cell transplant (HCT) relapse. Post-HCT relapse mechanisms are relevant for guiding sophisticated selection of therapeutic interventions and identification of areas for further research. Clonal evolution and emergence of resistant leukemic strains is a common mechanism shared by relapse post-chemotherapy and post-HCT, other mechanisms such as leukemic immune escape and donor T cell exhaustion are unique entities to post-HCT relapse. Due to diversity in the mechanisms behind post-HCT relapse, the subsequent clinical approach relies on clinician discretion, rather than objective evidence. Lack of standardized selection based on post-HCT relapse mechanism(s) could be a contributing factor to observed poor outcomes. Therapeutic strategies including donor lymphocyte infusion (DLI), second transplant, immunotherapies, hypomethylating agents, and targeted strategies are supported options and efficacy may be enhanced when post-HCT AML relapse mechanism is established and guides treatment selection. This review aims, through compilation of supporting studies, to describe mechanisms of post-HCT relapse and their implications for subsequent treatment selection and inspiration for future research.
Collapse
Affiliation(s)
- Elizabeth Herrity
- Hans Messner Allogeneic Blood and Marrow Transplantation Program, Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Mariana Pinto Pereira
- Hans Messner Allogeneic Blood and Marrow Transplantation Program, Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Dennis Dong Hwan Kim
- Hans Messner Allogeneic Blood and Marrow Transplantation Program, Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
- Leukemia Program, Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
- Department of Hematology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
5
|
Miyajima T, Onozawa M, Yoshida S, Miyashita N, Kimura H, Takahashi S, Yokoyama S, Matsukawa T, Goto H, Sugita J, Fujisawa S, Hidaka D, Ogasawara R, Mori A, Matsuoka S, Shigematsu A, Wakasa K, Kasahara I, Saga T, Hashiguchi J, Takeda Y, Ibata M, Yutaka T, Fujimoto K, Kondo T, Teshima T. Clinical implications of NUP98::NSD1 fusion at diagnosis in adult FLT3-ITD positive AML. Eur J Haematol 2023; 111:620-627. [PMID: 37465857 DOI: 10.1111/ejh.14055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 07/09/2023] [Accepted: 07/10/2023] [Indexed: 07/20/2023]
Abstract
OBJECTIVES The cryptic fusion oncogene NUP98::NSD1 is known to be associated with FLT3-ITD mutation in acute myeloid leukemia (AML), and an independent poor prognostic factor in pediatric AML. However, there are little data regarding the clinical significance of NUP98::NSD1 in adult cohort. METHODS We conducted a multicenter retrospective study to investigate the prevalence, clinical characteristics, and prognostic impact of NUP98::NSD1 in adult FLT3-ITD-positive AML patients. RESULTS In a total of 97 FLT3-ITD-positive AML patients, six cases (6.2%) were found to harbor the NUP98::NSD1 fusion transcript. NUP98::NSD1 positive cases had significantly higher platelet counts and a higher frequency of FAB-M4 morphology than NUP98::NSD1 negative cases. NUP98::NSD1 was found to be mutually exclusive with NPM1 mutation, and was accompanied by the WT1 mutation in three of the six cases. The presence of NUP98::NSD1 fusion at the time of diagnosis predicted poor response to cytarabine-anthracycline-based intensive induction chemotherapy (induction failure rate: 83% vs. 36%, p = .038). Five of the six cases with NUP98::NSD1 underwent allogeneic hematopoietic stem cell transplantation (HSCT). Two of the five cases have successfully maintained remission, with one of them being rescued through a second HSCT. CONCLUSIONS Detecting NUP98::NSD1 in adult FLT3-ITD-positive AML is crucial to recognizing chemotherapy-resistant group.
Collapse
Affiliation(s)
- Toru Miyajima
- Department of Hematology, Graduate School of Medicine, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Masahiro Onozawa
- Department of Hematology, Graduate School of Medicine, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Shota Yoshida
- Department of Hematology, Graduate School of Medicine, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Naoki Miyashita
- Department of Hematology, Graduate School of Medicine, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Hiroyuki Kimura
- Department of Hematology, Graduate School of Medicine, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Shogo Takahashi
- Department of Hematology, Graduate School of Medicine, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Shota Yokoyama
- Department of Hematology, Graduate School of Medicine, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Toshihiro Matsukawa
- Department of Hematology, Graduate School of Medicine, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Hideki Goto
- Department of Hematology, Graduate School of Medicine, Hokkaido University Faculty of Medicine, Sapporo, Japan
- Division of Laboratory and Transfusion Medicine, Hokkaido University Hospital, Sapporo, Japan
| | - Junichi Sugita
- Department of Hematology, Graduate School of Medicine, Hokkaido University Faculty of Medicine, Sapporo, Japan
- Department of Hematology, Sapporo Hokuyu Hospital, Sapporo, Japan
| | - Shinichi Fujisawa
- Division of Laboratory and Transfusion Medicine, Hokkaido University Hospital, Sapporo, Japan
| | - Daisuke Hidaka
- Department of Hematology, Sapporo Hokuyu Hospital, Sapporo, Japan
| | - Reiki Ogasawara
- Department of Hematology, Sapporo Hokuyu Hospital, Sapporo, Japan
| | - Akio Mori
- Blood Disorders Center, Aiiku Hospital, Sapporo, Japan
| | - Satomi Matsuoka
- Department of Hematology, Asahikawa City Hospital, Asahikawa, Japan
| | - Akio Shigematsu
- Department of Hematology, Kushiro Rosai Hospital, Kushiro, Japan
| | - Kentaro Wakasa
- Department of Hematology, Obihiro Kosei Hospital, Obihiro, Japan
| | - Ikumi Kasahara
- Department of Hematology, Sapporo City General Hospital, Sapporo, Japan
| | - Tomoyuki Saga
- Department of Hematology, Kin-Ikyo Chuo Hospital, Sapporo, Japan
| | - Junichi Hashiguchi
- Department of Internal Medicine/General Medicine, Kitami Red Cross Hospital, Kitami, Japan
| | - Yukari Takeda
- Department of Hematology, Tonan Hospital, Sapporo, Japan
| | - Makoto Ibata
- Department of Hematology, Sapporo Kosei General Hospital, Sapporo, Japan
| | - Tsutsumi Yutaka
- Department of Hematology, Hakodate Municipal Hospital, Hakodate, Japan
| | - Katsuya Fujimoto
- Department of Hematology, National Hospital Organization Hokkaido Cancer Center, Sapporo, Japan
| | - Takeshi Kondo
- Blood Disorders Center, Aiiku Hospital, Sapporo, Japan
| | - Takanori Teshima
- Department of Hematology, Graduate School of Medicine, Hokkaido University Faculty of Medicine, Sapporo, Japan
- Division of Laboratory and Transfusion Medicine, Hokkaido University Hospital, Sapporo, Japan
| |
Collapse
|
6
|
Acquired WT1 mutations contribute to relapse of NPM1-mutated acute myeloid leukemia following allogeneic hematopoietic stem cell transplant. Bone Marrow Transplant 2022; 57:370-376. [PMID: 34992253 DOI: 10.1038/s41409-021-01538-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/08/2021] [Accepted: 11/19/2021] [Indexed: 11/08/2022]
Abstract
The role of WT1 protein in hematopoiesis and leukemogenesisis incompletely elucidated. WT1 overexpression is common in acute myeloid leukemia (AML); however, WT1 mutations occur in only about 10% of cases, with increasing incidence in the setting of relapse. In this study, we investigated the clinical and molecular characteristics of WT1 mutations in NPM1-mutated AML, to enhance our understanding of the biology and potential therapeutic implications of WT1 mutations. Our study cohort included 67 patients with NPM1 mutated AML and a median follow-up of 13.7 months. WT1 mutations were identified in 7% (n = 5) of patients at the time of initial diagnosis. WT1 mutant clones were presumed to be present as co-dominant clones in 3/5 and in subclonal populations in 2/5 cases based on variant allelic frequency (VAF) when compared with NPM1 mutation VAF. All WT1 mutations became undetectable at time of MRD-negative (NPM1-wild type) remission. None of these patients experienced relapse at the time of last follow-up (median, 15 months; range, 4.5-20.2 months). A total of 15/67 (22%) patients relapsed; among these patient, four (27%) relapsed with WT1 mutant AML. Three of four patients had undergone allogeneic hematopoietic stem cell transplantation (HSCT). None of these patients had detectable WT1 mutations at the time of initial diagnosis. WT1 mutations were presumed clonal in two cases and subclonal in the other two cases, based on VAF. Our results indicate that WT1 mutations contribute to relapse in NPM1 mutated AML, especially in the setting of HSCT. These findings suggest that emerging WT1 mutations may serve as a conduit for relapse in NPM1-mutated AML, and that sequential molecular profiling to evaluate potential emergent WT1 mutations during surveillance and particularly at relapse likely has prognostic value in patients with NPM1 mutated AML.
Collapse
|
7
|
Osman Y, Elsharkawy T, Hashim TM, Alratroot JA, Alsuwat HS, Otaibi WMA, Hegazi FM, AbdulAzeez S, Borgio JF. Functional multigenic variations associated with hodgkin lymphoma. Int J Lab Hematol 2021; 43:1472-1482. [PMID: 34216518 DOI: 10.1111/ijlh.13644] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/03/2021] [Accepted: 06/09/2021] [Indexed: 11/27/2022]
Abstract
INTRODUCTION The current study aimed to describe genotypes associated with Hodgkin lymphoma (HL) in a cohort of Saudi and non-Saudi patients and discuss their possible susceptibility to HL. METHODS We studied clinical, histopathological, and laboratory findings of HL patients admitted over 12 years duration, at King Fahd University Hospital, KSA. The genomic DNAs of HL patients (n = 61) and normal control subjects (n = 36) were extracted, and genotyping was performed using the Illumina human exome bead chip. Set of HL patients and set of normal controls were included in this study. RESULTS A total of 35 DNA variants were found to be highly significant with the P-value <9.90 × 10-11 among 243 345 exonic biomarkers and obeying the Hardy-Weinberg equilibrium. Nine, MEGF11-rs150945752 (P-value 1.20 × 10-12 ), CACNA1I- s58055559 (P-value 1.93 × 10-12 ), DECR2-rs146760080 (P-value 2.19 × 10-12 ), STAB1-rs143894786 (P-value 2.45 × 10-12 ), ZNF526-rs144433879 (P-value 2.76 × 10-12 ), CPLANE1-rs200612080 (P-value 3.77 × 10-12 ), DLK1-rs1058009 (P-value 5.95 × 10-12 ), RTN4RL2-rs61745214 (P-value 7.71 × 10-12 ), and PGRMC1-rs145582672 (P-value 8.56 × 10-12 ), exonic variants on chromosomes 15, 22, and 16 were highly associated with HL cases. THE HIGHLY SIGNIFICANT HAPLOTYPES AT CHROMOSOME 3: rs143894786G; rs149982219G with P-value = 3.43 × 10-14 was found to be the risk haplotype for the HL patients. The opposite alleles at chromosome 3: rs143894786A; rs149982219G is protective with P-value = 2.46 × 10-12 . Maximum number of SNPs at the chromosome 19: rs144433879C; rs181265966G; rs201144421C; rs145591797G; rs200560875G; rs77270337G (risk P-value = 2.24 × 10-12 ) and its opposite allele rs144433879A; rs181265966A; rs201144421T; rs145591797A; rs200560875A; rs77270337A (protective P-value = 2.60 × 10-9 ) were found to be associated haplotype with the HL and controls, respectively, in Saudi population. CONCLUSION Our study concludes that the HL is genetically heterogeneous with multigene causation.
Collapse
Affiliation(s)
- Yasser Osman
- Pathology Department, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Tarek Elsharkawy
- Pathology Department, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Tariq Mohammad Hashim
- Pathology Department, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | | | - Hind Saleh Alsuwat
- Department of Genetic Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Waad Mohammed Al Otaibi
- Department of Genetic Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Fatma Mohammed Hegazi
- Department of Genetic Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Sayed AbdulAzeez
- Department of Genetic Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - J Francis Borgio
- Department of Genetic Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| |
Collapse
|
8
|
Clonal evolution of acute myeloid leukemia with FLT3-ITD mutation under treatment with midostaurin. Blood 2021; 137:3093-3104. [PMID: 33598693 DOI: 10.1182/blood.2020007626] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 02/01/2021] [Indexed: 12/15/2022] Open
Abstract
In the international randomized phase 3 RATIFY (Randomized AML Trial In FLT3 in patients less than 60 Years old) trial, the multikinase inhibitor midostaurin significantly improved overall and event-free survival in patients 18 to 59 years of age with FLT3-mutated acute myeloid leukemia (AML). However, only 59% of patients in the midostaurin arm achieved protocol-specified complete remission (CR), and almost half of patients achieving CR relapsed. To explore underlying mechanisms of resistance, we studied patterns of clonal evolution in patients with FLT3-internal tandem duplications (ITD)-positive AML who were entered in the RATIFY or German-Austrian Acute Myeloid Leukemia Study Group 16-10 trial and received treatment with midostaurin. To this end, paired samples from 54 patients obtained at time of diagnosis and at time of either relapsed or refractory disease were analyzed using conventional Genescan-based testing for FLT3-ITD and whole exome sequencing. At the time of disease resistance or progression, almost half of the patients (46%) became FLT3-ITD negative but acquired mutations in signaling pathways (eg, MAPK), thereby providing a new proliferative advantage. In cases with FLT3-ITD persistence, the selection of resistant ITD clones was found in 11% as potential drivers of disease. In 32% of cases, no FLT3-ITD mutational change was observed, suggesting either resistance mechanisms bypassing FLT3 inhibition or loss of midostaurin inhibitory activity because of inadequate drug levels. In summary, our study provides novel insights into the clonal evolution and resistance mechanisms of FLT3-ITD-mutated AML under treatment with midostaurin in combination with intensive chemotherapy.
Collapse
|
9
|
Molecular pathogenesis of progression to myeloid leukemia from TET-insufficient status. Blood Adv 2021; 4:845-854. [PMID: 32126143 DOI: 10.1182/bloodadvances.2019001324] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 01/29/2020] [Indexed: 12/11/2022] Open
Abstract
Loss-of-function mutations in ten-eleven translocation-2 (TET2) are recurrent events in acute myeloid leukemia (AML) as well as in preleukemic hematopoietic stem cells (HSCs) of age-related clonal hematopoiesis. TET3 mutations are infrequent in AML, but the level of TET3 expression in HSCs has been found to decline with age. We examined the impact of gradual decrease of TET function in AML development by generating mice with Tet deficiency at various degrees. Tet2f/f and Tet3f/f mice were crossed with mice expressing Mx1-Cre to generate Tet2f/wtTet3f/fMx-Cre+ (T2ΔT3), Tet2f/fTet3f/wtMx-Cre+ (ΔT2T3), and Tet2f/fTet3f/fMx-Cre+ (ΔT2ΔT3) mice. All ΔT2ΔT3 mice died of aggressive AML at a median survival of 10.7 weeks. By comparison, T2ΔT3 and ΔT2T3 mice developed AML at longer latencies, with a median survival of ∼27 weeks. Remarkably, all 9 T2ΔT3 and 8 ΔT2T3 mice with AML showed inactivation of the remaining nontargeted Tet2 or Tet3 allele, respectively, owing to exonic loss in either gene or stop-gain mutations in Tet3. Recurrent mutations other than Tet3 were not noted in any mice by whole-exome sequencing. Spontaneous inactivation of residual Tet2 or Tet3 alleles is a recurrent genetic event during the development of AML with Tet insufficiency.
Collapse
|
10
|
Rimando JC, Christopher MJ, Rettig MP, DiPersio JF. Biology of Disease Relapse in Myeloid Disease: Implication for Strategies to Prevent and Treat Disease Relapse After Stem-Cell Transplantation. J Clin Oncol 2021; 39:386-396. [PMID: 33434062 PMCID: PMC8462627 DOI: 10.1200/jco.20.01587] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 10/05/2020] [Accepted: 10/13/2020] [Indexed: 12/15/2022] Open
Affiliation(s)
- Joseph C. Rimando
- Division of Oncology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO
| | - Matthew J. Christopher
- Division of Oncology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO
| | - Michael P. Rettig
- Division of Oncology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO
| | - John F. DiPersio
- Division of Oncology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO
| |
Collapse
|
11
|
Vosberg S, Greif PA. Clonal evolution of acute myeloid leukemia from diagnosis to relapse. Genes Chromosomes Cancer 2019; 58:839-849. [PMID: 31478278 PMCID: PMC6852285 DOI: 10.1002/gcc.22806] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 08/19/2019] [Accepted: 08/21/2019] [Indexed: 12/13/2022] Open
Abstract
Based on the individual genetic profile, acute myeloid leukemia (AML) patients are classified into clinically meaningful molecular subtypes. However, the mutational profile within these groups is highly heterogeneous and multiple AML subclones may exist in a single patient in parallel. Distinct alterations of single cells may be key factors in providing the fitness to survive in this highly competitive environment. Although the majority of AML patients initially respond to induction chemotherapy and achieve a complete remission, most patients will eventually relapse. These points toward an evolutionary process transforming treatment-sensitive cells into treatment-resistant cells. As described by Charles Darwin, evolution by natural selection is the selection of individuals that are optimally adapted to their environment, based on the random acquisition of heritable changes. By changing their mutational profile, AML cell populations are able to adapt to the new environment defined by chemotherapy treatment, ultimately leading to cell survival and regrowth. In this review, we will summarize the current knowledge about clonal evolution in AML, describe different models of clonal evolution, and provide the methodological background that allows the detection of clonal evolution in individual AML patients. During the last years, numerous studies have focused on delineating the molecular patterns that are associated with AML relapse, each focusing on a particular genetic subgroup of AML. Finally, we will review the results of these studies in the light of Darwinian evolution and discuss open questions regarding the molecular background of relapse development.
Collapse
Affiliation(s)
- Sebastian Vosberg
- Department of Medicine IIIUniversity Hospital, LMU MunichMunichGermany
- Experimental Leukemia and Lymphoma Research (ELLF)University Hospital, LMU MunichMunichGermany
- German Cancer Consortium (DKTK)HeidelbergGermany
- German Cancer Research Center (DKFZ)HeidelbergGermany
| | - Philipp A. Greif
- Department of Medicine IIIUniversity Hospital, LMU MunichMunichGermany
- Experimental Leukemia and Lymphoma Research (ELLF)University Hospital, LMU MunichMunichGermany
- German Cancer Consortium (DKTK)HeidelbergGermany
- German Cancer Research Center (DKFZ)HeidelbergGermany
| |
Collapse
|
12
|
Montesinos P, Bergua J, Infante J, Esteve J, Guimaraes JE, Sierra J, Sanz MÁ. Update on management and progress of novel therapeutics for R/R AML: an Iberian expert panel consensus. Ann Hematol 2019; 98:2467-2483. [PMID: 31667544 DOI: 10.1007/s00277-019-03820-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Accepted: 10/08/2019] [Indexed: 12/19/2022]
Abstract
A significant proportion of adult patients with acute myeloid leukemia (AML) fail to achieve complete remission or will relapse later on after achieving it. Prognosis for relapsed or refractory (R/R) AML patients remains discouraging, with the main curative option still relying on hematopoietic stem cell transplant (HSCT) for those who are eligible. Beyond morphological bone marrow and peripheral blood assessment, evaluation of patient performance status and comorbidities, as well as genetic/molecular characterization, is crucial to make an accurate diagnosis and prognosis, which will be useful to select the most appropriate treatment. Emerging strategies are mainly focusing on the development of immune- and molecular-based approaches. Novel targeted therapies are generally well tolerated, potentially allowing them to be administered alone or in combination with classical chemotherapy agents. Enrolment in clinical trials should be considered first option for R/R AML patients, either as a bridge to HSCT or to benefit from novel therapies that eventually may prolong survival and improve quality of life. An Iberian expert panel has reviewed the recent advances in the management of R/R AML with the aim to develop updated evidence and expert opinion-based recommendations.
Collapse
Affiliation(s)
- Pau Montesinos
- Hematology Department, Hospital Universitari I Politècnic La Fe, Av. Fernando Abril Martorell, 106, 46026, Valencia, Spain. .,CIBERONC, Instituto de Salud Carlos III, Madrid, Spain.
| | - Juan Bergua
- Division of Hematology/Oncology, Hospital San Pedro Alcántara, Cáceres, Spain
| | - Joana Infante
- Serviço de Hematologia e Transplantação de Medula Óssea, Hospital de Santa Maria, Centro Hospitalar de Lisboa Norte, Lisbon, Portugal
| | - Jordi Esteve
- Department of Hematology, IDIBAPS, Hospital Clinic, Barcelona, Spain
| | - José Eduardo Guimaraes
- Serviço de Hematologia Clínica, Centro Hospitalar Universitário de São João, Porto, Portugal
| | - Jordi Sierra
- Hematology Department, Hospital de la Santa Creu i Sant Pau, IIB Sant Pau and Jose Carreras Leukemia Research Institutes, Autonomous University of Barcelona, Barcelona, Spain
| | - Miguel Ángel Sanz
- Hematology Department, Hospital Universitari I Politècnic La Fe, Av. Fernando Abril Martorell, 106, 46026, Valencia, Spain
| |
Collapse
|
13
|
CD123 as a Therapeutic Target in the Treatment of Hematological Malignancies. Cancers (Basel) 2019; 11:cancers11091358. [PMID: 31547472 PMCID: PMC6769702 DOI: 10.3390/cancers11091358] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/08/2019] [Accepted: 09/09/2019] [Indexed: 12/14/2022] Open
Abstract
The interleukin-3 receptor alpha chain (IL-3Rα), more commonly referred to as CD123, is widely overexpressed in various hematological malignancies, including acute myeloid leukemia (AML), B-cell acute lymphoblastic leukemia, hairy cell leukemia, Hodgkin lymphoma and particularly, blastic plasmacytoid dendritic neoplasm (BPDCN). Importantly, CD123 is expressed at both the level of leukemic stem cells (LSCs) and more differentiated leukemic blasts, which makes CD123 an attractive therapeutic target. Various agents have been developed as drugs able to target CD123 on malignant leukemic cells and on the normal counterpart. Tagraxofusp (SL401, Stemline Therapeutics), a recombinant protein composed of a truncated diphtheria toxin payload fused to IL-3, was approved for use in patients with BPDCN in December of 2018 and showed some clinical activity in AML. Different monoclonal antibodies directed against CD123 are under evaluation as antileukemic drugs, showing promising results either for the treatment of AML minimal residual disease or of relapsing/refractory AML or BPDCN. Finally, recent studies are exploring T cell expressing CD123 chimeric antigen receptor-modified T-cells (CAR T) as a new immunotherapy for the treatment of refractory/relapsing AML and BPDCN. In December of 2018, MB-102 CD123 CAR T developed by Mustang Bio Inc. received the Orphan Drug Designation for the treatment of BPDCN. In conclusion, these recent studies strongly support CD123 as an important therapeutic target for the treatment of BPDCN, while a possible in the treatment of AML and other hematological malignancies will have to be evaluated by in the ongoing clinical studies.
Collapse
|
14
|
Buelow DR, Pounds SB, Wang YD, Shi L, Li Y, Finkelstein D, Shurtleff S, Neale G, Inaba H, Ribeiro RC, Palumbo R, Garrison D, Orwick SJ, Blachly JS, Kroll K, Byrd JC, Gruber TA, Rubnitz JE, Baker SD. Uncovering the Genomic Landscape in Newly Diagnosed and Relapsed Pediatric Cytogenetically Normal FLT3-ITD AML. Clin Transl Sci 2019; 12:641-647. [PMID: 31350825 PMCID: PMC6853146 DOI: 10.1111/cts.12669] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 06/12/2019] [Indexed: 12/18/2022] Open
Abstract
Fms-like tyrosine kinase 3 (FLT3) internal tandem duplication (ITD) mutations, common in pediatric acute myeloid leukemia (AML), associate with early relapse and poor prognosis. Past studies have suggested additional cooperative mutations are required for leukemogenesis in FLT3-ITD+ AML. Using RNA sequencing and a next-generation targeted gene panel, we broadly characterize the co-occurring genomic alterations in pediatric cytogenetically normal (CN) FLT3-ITD+ AML to gain a deeper understanding of the clonal patterns and heterogeneity at diagnosis and relapse. We show that chimeric transcripts were present in 21 of 34 (62%) of de novo samples, 2 (6%) of these samples included a rare reoccurring fusion partner BCL11B. At diagnosis, the median number of mutations other than FLT3 per patient was 1 (range 0-3), which involved 8 gene pathways; WT1 and NPM1 mutations were frequently observed (35% and 24%, respectively). Fusion transcripts and high variant allele frequency (VAF) mutants, which included WT1, NPM1, SMARCA2, RAD21, and TYK2, were retained from diagnosis to relapse. We did observe reduction in VAF of simple or single mutation clones, but VAFs were preserved or expanded in more complex clones with multiple mutations. Our data provide the first insight into the genomic complexity of pediatric CN FLT3-ITD+ AML and could help stratify future targeted treatment strategies.
Collapse
Affiliation(s)
- Daelynn R Buelow
- Division of Pharmaceutics, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Stanley B Pounds
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Yong-Dong Wang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Lei Shi
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Yongjin Li
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - David Finkelstein
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Sheila Shurtleff
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Geoffrey Neale
- Hartwell Center, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Hiroto Inaba
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Raul C Ribeiro
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Reid Palumbo
- Division of Pharmaceutics, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Dominique Garrison
- Division of Pharmaceutics, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Shelley J Orwick
- Division of Hematology, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - James S Blachly
- Division of Hematology, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Karl Kroll
- Division of Hematology, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - John C Byrd
- Division of Pharmaceutics, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA.,Division of Hematology, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Tanja A Gruber
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Jeffrey E Rubnitz
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Sharyn D Baker
- Division of Pharmaceutics, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA.,Division of Hematology, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
15
|
Dvořák M, Dvořáková M. Genes and Mechanisms Responsible for Expansion of Acute Myeloid Leukaemia Blasts. Folia Biol (Praha) 2019; 65:11-23. [PMID: 31171078 DOI: 10.14712/fb2019065010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Acute myeloid leukaemia (AML) is the leading form of fatal acute leukaemia in adults. AML is a heterogeneous disease with respect to responsible mutations and chromosomal abnormalities as well as to their clinicopathological image. In recent years, great progress has been made in techniques allowing detection of genetic changes in both de novo AML and in secondary AML induced by other haematological disorders or therapy, and in detection of residual disease after therapy. Accumulated knowledge allowed better understanding of the molecules and mechanisms involved not only in the formation and expansion of a primary leukaemia-founding clone, but also of a temporal order of changes leading to the fully malignant phenotype. The recent knowledge of bone marrow (BM) compartments and interrelations among various BM resident and recruited cell types helps in understanding the AML development. The progress in the techniques and knowledge will result in the development and use of molecularly targeted therapies tailored to individual patient needs.
Collapse
Affiliation(s)
- M Dvořák
- Department of Cell Differentiation, Institute of Molecular Genetics of the ASCR, v. v. i., Prague, Czech Republic
| | - M Dvořáková
- Department of Cell Differentiation, Institute of Molecular Genetics of the ASCR, v. v. i., Prague, Czech Republic
| |
Collapse
|