1
|
Perez-Correa JF, Stiehl T, Marioni RE, Corley J, Cox SR, Costa IG, Wagner W. Weighted 2D-kernel density estimations provide a new probabilistic measure for epigenetic age. Genome Biol 2025; 26:103. [PMID: 40264182 PMCID: PMC12016065 DOI: 10.1186/s13059-025-03562-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 03/27/2025] [Indexed: 04/24/2025] Open
Abstract
Epigenetic aging signatures provide insights into human aging, but traditional clocks rely on linear regression of DNA methylation levels, assuming linear trajectories. This study explores a non-parametric approach using 2D-kernel density estimation to determine epigenetic age. Our weighted model achieves similar predictive accuracy as conventional clocks and provides a variation score reflecting the inherent variability of age-related epigenetic changes within samples. This score is significantly increased in various diseases and associated with mortality risk in the Lothian Birth Cohort 1921. Thus, weighted 2D-kernel density estimation facilitates accurate epigenetic age predictions and offers an additional variable for biological age estimation.
Collapse
Affiliation(s)
- Juan-Felipe Perez-Correa
- Institute for Stem Cell Biology, RWTH Aachen University Medical School, Aachen, Germany
- Helmholtz Institute for Biomedical Engineering, RWTH Aachen University Medical School, Aachen, Germany
| | - Thomas Stiehl
- Institute for Computational Biomedicine - Disease Modeling, RWTH Aachen University, Aachen, Germany
| | - Riccardo E Marioni
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Janie Corley
- Lothian Birth Cohorts, Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Simon R Cox
- Lothian Birth Cohorts, Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Ivan G Costa
- Institute for Computational Genomics, RWTH Aachen University Hospital, Aachen, Germany
| | - Wolfgang Wagner
- Institute for Stem Cell Biology, RWTH Aachen University Medical School, Aachen, Germany.
- Helmholtz Institute for Biomedical Engineering, RWTH Aachen University Medical School, Aachen, Germany.
- Center for Integrated Oncology, Aachen Bonn Cologne Düsseldorf (CIO ABCD), Aachen, Germany.
| |
Collapse
|
2
|
Gellée N, Legrand N, Jouve M, Devaux PJ, Dubuquoy L, Sobolewski C. Tristetraprolin Family Members and Processing Bodies: A Complex Regulatory Network Involved in Fatty Liver Disease, Viral Hepatitis and Hepatocellular Carcinoma. Cancers (Basel) 2025; 17:348. [PMID: 39941720 PMCID: PMC11815756 DOI: 10.3390/cancers17030348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/15/2025] [Accepted: 01/18/2025] [Indexed: 02/16/2025] Open
Abstract
Chronic liver diseases, such as those encountered with obesity, chronic/abusive alcohol consumption or viral infections, represent not only major public health concerns with limited therapeutic options but also important risk factors for the onset of hepatocellular carcinoma (HCC). Deciphering the molecular traits underlying these disorders is of high interest for designing new and effective treatments. The tristetraprolin (TTP) family members are of particular importance given their ability to control the expression of a wide range of genes involved in metabolism, inflammation and carcinogenesis at the post-transcriptional level. This regulation can occur within small cytoplasmic granules, namely, processing bodies (P-bodies), where the mRNA degradation occurs. Increasing evidence indicates that TTP family members and P-bodies are involved in the development of chronic liver diseases and cancers. In this review, we discuss the role of this regulatory mechanism in metabolic-dysfunction-associated steatotic liver disease (MASLD), alcohol-related liver disease (ALD), hepatic viral infections and HCC.
Collapse
Affiliation(s)
| | | | | | | | | | - Cyril Sobolewski
- Univ Lille, Inserm, CHU Lille, U1286-INFINITE-Institute for Translational Research in Inflammation, F-59000 Lille, France; (N.G.); (N.L.); (M.J.); (L.D.)
| |
Collapse
|
3
|
Garbayo E, El Moukhtari SH, Rodríguez-Nogales C, Agirre X, Rodriguez-Madoz JR, Rodriguez-Marquez P, Prósper F, Couvreur P, Blanco-Prieto MJ. RNA-loaded nanoparticles for the treatment of hematological cancers. Adv Drug Deliv Rev 2024; 214:115448. [PMID: 39303823 DOI: 10.1016/j.addr.2024.115448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 06/07/2024] [Accepted: 09/08/2024] [Indexed: 09/22/2024]
Abstract
Hematological cancers encompass a diverse group of malignancies affecting the blood, bone marrow, lymph nodes, and spleen. These disorders present unique challenges due to their complex etiology and varied clinical manifestations. Despite significant advancements in understanding and treating hematological malignancies, innovative therapeutic approaches are continually sought to enhance patient outcomes. This review highlights the application of RNA nanoparticles (RNA-NPs) in the treatment of hematological cancers. We delve into detailed discussions on in vitro and preclinical studies involving RNA-NPs for adult patients, as well as the application of RNA-NPs in pediatric hematological cancer. The review also addresses ongoing clinical trials involving RNA-NPs and explores the emerging field of CAR-T therapy engineered by RNA-NPs. Finally, we discuss the challenges still faced in translating RNA-NP research to clinics.
Collapse
Affiliation(s)
- Elisa Garbayo
- Department of Pharmaceutical Sciences, School of Pharmacy and Nutrition, Universidad de Navarra, C/Irunlarrea 1, 31008 Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra, IdiSNA, C/Irunlarrea 3, 31008 Pamplona, Spain; Cancer Center Clinica Universidad de Navarra (CCUN). Avenida Pio XII 36, 31008 Pamplona, Spain
| | - Souhaila H El Moukhtari
- Department of Pharmaceutical Sciences, School of Pharmacy and Nutrition, Universidad de Navarra, C/Irunlarrea 1, 31008 Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra, IdiSNA, C/Irunlarrea 3, 31008 Pamplona, Spain
| | - Carlos Rodríguez-Nogales
- Department of Pharmaceutical Sciences, School of Pharmacy and Nutrition, Universidad de Navarra, C/Irunlarrea 1, 31008 Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra, IdiSNA, C/Irunlarrea 3, 31008 Pamplona, Spain; Cancer Center Clinica Universidad de Navarra (CCUN). Avenida Pio XII 36, 31008 Pamplona, Spain
| | - Xabier Agirre
- Instituto de Investigación Sanitaria de Navarra, IdiSNA, C/Irunlarrea 3, 31008 Pamplona, Spain; Cancer Center Clinica Universidad de Navarra (CCUN). Avenida Pio XII 36, 31008 Pamplona, Spain; Hemato-Oncology Program, Center for Applied Medical Research (CIMA), University of Navarra, Avenida Pío XII 55, 31008 Pamplona, Spain; Centro de Investigación Biomédica en Red Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Juan R Rodriguez-Madoz
- Instituto de Investigación Sanitaria de Navarra, IdiSNA, C/Irunlarrea 3, 31008 Pamplona, Spain; Cancer Center Clinica Universidad de Navarra (CCUN). Avenida Pio XII 36, 31008 Pamplona, Spain; Hemato-Oncology Program, Center for Applied Medical Research (CIMA), University of Navarra, Avenida Pío XII 55, 31008 Pamplona, Spain; Centro de Investigación Biomédica en Red Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Paula Rodriguez-Marquez
- Instituto de Investigación Sanitaria de Navarra, IdiSNA, C/Irunlarrea 3, 31008 Pamplona, Spain; Cancer Center Clinica Universidad de Navarra (CCUN). Avenida Pio XII 36, 31008 Pamplona, Spain; Hemato-Oncology Program, Center for Applied Medical Research (CIMA), University of Navarra, Avenida Pío XII 55, 31008 Pamplona, Spain; Centro de Investigación Biomédica en Red Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Felipe Prósper
- Instituto de Investigación Sanitaria de Navarra, IdiSNA, C/Irunlarrea 3, 31008 Pamplona, Spain; Cancer Center Clinica Universidad de Navarra (CCUN). Avenida Pio XII 36, 31008 Pamplona, Spain; Hemato-Oncology Program, Center for Applied Medical Research (CIMA), University of Navarra, Avenida Pío XII 55, 31008 Pamplona, Spain; Centro de Investigación Biomédica en Red Cáncer (CIBERONC), 28029 Madrid, Spain; Departmento de Hematología and CCUN, Clínica Universidad de Navarra, University of Navarra, Avenida Pío XII 36, 31008 Pamplona, Spain
| | - Patrick Couvreur
- Institut Galien Paris-Sud, UMR CNRS 8612, Université Paris-Saclay, Orsay Cedex, France.
| | - María J Blanco-Prieto
- Department of Pharmaceutical Sciences, School of Pharmacy and Nutrition, Universidad de Navarra, C/Irunlarrea 1, 31008 Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra, IdiSNA, C/Irunlarrea 3, 31008 Pamplona, Spain; Cancer Center Clinica Universidad de Navarra (CCUN). Avenida Pio XII 36, 31008 Pamplona, Spain.
| |
Collapse
|
4
|
Mangione R, Giallongo C, Duminuco A, La Spina E, Longhitano L, Giallongo S, Tibullo D, Lazzarino G, Saab MW, Sbriglione A, Palumbo GA, Graziani A, Alanazi AM, Di Pietro V, Tavazzi B, Amorini AM, Lazzarino G. Targeted Metabolomics Highlights Dramatic Antioxidant Depletion, Increased Oxidative/Nitrosative Stress and Altered Purine and Pyrimidine Concentrations in Serum of Primary Myelofibrosis Patients. Antioxidants (Basel) 2024; 13:490. [PMID: 38671937 PMCID: PMC11047794 DOI: 10.3390/antiox13040490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/13/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
To date, little is known concerning the circulating levels of biochemically relevant metabolites (antioxidants, oxidative/nitrosative stress biomarkers, purines, and pyrimidines) in patients with primary myelofibrosis (PMF), a rare form of myeloproliferative tumor causing a dramatic decrease in erythropoiesis and angiogenesis. In this study, using a targeted metabolomic approach, serum samples of 22 PMF patients and of 22 control healthy donors were analyzed to quantify the circulating concentrations of hypoxanthine, xanthine, uric acid (as representative purines), uracil, β-pseudouridine, uridine (as representative pyrimidines), reduced glutathione (GSH), ascorbic acid (as two of the main water-soluble antioxidants), malondialdehyde, nitrite, nitrate (as oxidative/nitrosative stress biomarkers) and creatinine, using well-established HPLC method for their determination. Results showed that PMF patients have dramatic depletions of both ascorbic acid and GSH (37.3- and 3.81-times lower circulating concentrations, respectively, than those recorded in healthy controls, p < 0.0001), accompanied by significant increases in malondialdehyde (MDA) and nitrite + nitrate (4.73- and 1.66-times higher circulating concentrations, respectively, than those recorded in healthy controls, p < 0.0001). Additionally, PMF patients have remarkable alterations of circulating purines, pyrimidines, and creatinine, suggesting potential mitochondrial dysfunctions causing energy metabolism imbalance and consequent increases in these cell energy-related compounds. Overall, these results, besides evidencing previously unknown serum metabolic alterations in PMF patients, suggest that the determination of serum levels of the aforementioned compounds may be useful to evaluate PMF patients on hospital admission for adjunctive therapies aimed at recovering their correct antioxidant status, as well as to monitor patients' status and potential pharmacological treatments.
Collapse
Affiliation(s)
- Renata Mangione
- Department of Basic Biotechnological Sciences, Intensive and Perioperative Clinics, Catholic University of the Sacred Heart of Rome, Largo F. Vito 1, 00168 Rome, Italy;
- Departmental Faculty of Medicine, UniCamillus—Saint Camillus International University of Health and Medical Sciences, Via di Sant’Alessandro 8, 00131 Rome, Italy; (A.G.); (G.L.)
| | - Cesarina Giallongo
- Department of Medical and Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, Division of Hematology, University of Catania, Via S. Sofia 87, 95123 Catania, Italy; (C.G.); (S.G.); (G.A.P.)
| | - Andrea Duminuco
- Hematology Unit with BMT, A.O.U. Policlinico “G.Rodolico-San Marco”, Via S. Sofia 78, 95123 Catania, Italy;
| | - Enrico La Spina
- Department of Biomedical and Biotechnological Sciences, Division of Medical Biochemistry, University of Catania, Via S. Sofia 97, 95123 Catania, Italy; (E.L.S.); (L.L.); (D.T.); (G.L.); (M.W.S.); (A.S.)
| | - Lucia Longhitano
- Department of Biomedical and Biotechnological Sciences, Division of Medical Biochemistry, University of Catania, Via S. Sofia 97, 95123 Catania, Italy; (E.L.S.); (L.L.); (D.T.); (G.L.); (M.W.S.); (A.S.)
| | - Sebastiano Giallongo
- Department of Medical and Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, Division of Hematology, University of Catania, Via S. Sofia 87, 95123 Catania, Italy; (C.G.); (S.G.); (G.A.P.)
| | - Daniele Tibullo
- Department of Biomedical and Biotechnological Sciences, Division of Medical Biochemistry, University of Catania, Via S. Sofia 97, 95123 Catania, Italy; (E.L.S.); (L.L.); (D.T.); (G.L.); (M.W.S.); (A.S.)
| | - Giuseppe Lazzarino
- Department of Biomedical and Biotechnological Sciences, Division of Medical Biochemistry, University of Catania, Via S. Sofia 97, 95123 Catania, Italy; (E.L.S.); (L.L.); (D.T.); (G.L.); (M.W.S.); (A.S.)
| | - Miriam Wissam Saab
- Department of Biomedical and Biotechnological Sciences, Division of Medical Biochemistry, University of Catania, Via S. Sofia 97, 95123 Catania, Italy; (E.L.S.); (L.L.); (D.T.); (G.L.); (M.W.S.); (A.S.)
| | - Arianna Sbriglione
- Department of Biomedical and Biotechnological Sciences, Division of Medical Biochemistry, University of Catania, Via S. Sofia 97, 95123 Catania, Italy; (E.L.S.); (L.L.); (D.T.); (G.L.); (M.W.S.); (A.S.)
| | - Giuseppe A. Palumbo
- Department of Medical and Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, Division of Hematology, University of Catania, Via S. Sofia 87, 95123 Catania, Italy; (C.G.); (S.G.); (G.A.P.)
| | - Andrea Graziani
- Departmental Faculty of Medicine, UniCamillus—Saint Camillus International University of Health and Medical Sciences, Via di Sant’Alessandro 8, 00131 Rome, Italy; (A.G.); (G.L.)
| | - Amer M. Alanazi
- Pharmaceutical Biotechnology Laboratory, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Valentina Di Pietro
- Neurotrauma and Ophthalmology Research Group, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK;
- National Institute for Health Research Surgical Reconstruction and Microbiology Research Centre, Queen Elizabeth Hospital, Edgbaston, Birmingham B15 2TH, UK
| | - Barbara Tavazzi
- Departmental Faculty of Medicine, UniCamillus—Saint Camillus International University of Health and Medical Sciences, Via di Sant’Alessandro 8, 00131 Rome, Italy; (A.G.); (G.L.)
| | - Angela Maria Amorini
- Department of Biomedical and Biotechnological Sciences, Division of Medical Biochemistry, University of Catania, Via S. Sofia 97, 95123 Catania, Italy; (E.L.S.); (L.L.); (D.T.); (G.L.); (M.W.S.); (A.S.)
| | - Giacomo Lazzarino
- Departmental Faculty of Medicine, UniCamillus—Saint Camillus International University of Health and Medical Sciences, Via di Sant’Alessandro 8, 00131 Rome, Italy; (A.G.); (G.L.)
| |
Collapse
|
5
|
Siller Wilks SJ, Heidinger BJ, Westneat DF, Solomon J, Rubenstein DR. The impact of parental and developmental stress on DNA methylation in the avian hypothalamic-pituitary-adrenal axis. Mol Ecol 2024; 33:e17291. [PMID: 38343177 DOI: 10.1111/mec.17291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/29/2023] [Accepted: 01/23/2024] [Indexed: 03/07/2024]
Abstract
The hypothalamic-pituitary-adrenal (HPA) axis coordinates an organism's response to environmental stress. The responsiveness and sensitivity of an offspring's stress response may be shaped not only by stressors encountered in their early post-natal environment but also by stressors in their parent's environment. Yet, few studies have considered how stressors encountered in both of these early life environments may function together to impact the developing HPA axis. Here, we manipulated stressors in the parental and post-natal environments in a population of house sparrows (Passer domesticus) to assess their impact on changes in DNA methylation (and corresponding gene expression) in a suite of genes within the HPA axis. We found that nestlings that experienced early life stress across both life-history periods had higher DNA methylation in a critical HPA axis gene, the glucocorticoid receptor (NR3C1). In addition, we found that the life-history stage when stress was encountered impacted some genes (HSD11B1, NR3C1 and NR3C2) differently. We also found evidence for the mitigation of parental stress by post-natal stress (in HSD11B1 and NR3C2). Finally, by assessing DNA methylation in both the brain and blood, we were able to evaluate cross-tissue patterns. While some differentially methylated regions were tissue-specific, we found cross-tissue changes in NR3C2 and NR3C1, suggesting that blood is a suitable tissue for assessing DNA methylation as a biomarker of early life stress. Our results provide a crucial first step in understanding the mechanisms by which early life stress in different life-history periods contributes to changes in the epigenome of the HPA axis.
Collapse
Affiliation(s)
- Stefanie J Siller Wilks
- Department of Ecology Evolution and Environmental Biology, Columbia University, New York, New York, USA
| | - Britt J Heidinger
- Biological Sciences Department, North Dakota State University, Fargo, North Dakota, USA
| | - David F Westneat
- Department of Biology, University of Kentucky, Lexington, Kentucky, USA
| | - Joseph Solomon
- Department of Ecology Evolution and Environmental Biology, Columbia University, New York, New York, USA
| | - Dustin R Rubenstein
- Department of Ecology Evolution and Environmental Biology, Columbia University, New York, New York, USA
| |
Collapse
|
6
|
Enokido T, Horie M, Yoshino S, Suzuki HI, Matsuki R, Brunnström H, Micke P, Nagase T, Saito A, Miyashita N. Distinct microRNA Signature and Suppression of ZFP36L1 Define ASCL1-Positive Lung Adenocarcinoma. Mol Cancer Res 2024; 22:29-40. [PMID: 37801008 DOI: 10.1158/1541-7786.mcr-23-0229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 08/23/2023] [Accepted: 10/04/2023] [Indexed: 10/07/2023]
Abstract
Achaete-scute family bHLH transcription factor 1 (ASCL1) is a master transcription factor involved in neuroendocrine differentiation. ASCL1 is expressed in approximately 10% of lung adenocarcinomas (LUAD) and exerts tumor-promoting effects. Here, we explored miRNA profiles in ASCL1-positive LUADs and identified several miRNAs closely associated with ASCL1 expression, including miR-375, miR-95-3p/miR-95-5p, miR-124-3p, and members of the miR-17∼92 family. Similar to small cell lung cancer, Yes1 associated transcriptional regulator (YAP1), a representative miR-375 target gene, was suppressed in ASCL1-positive LUADs. ASCL1 knockdown followed by miRNA profiling in a cell culture model further revealed that ASCL1 positively regulates miR-124-3p and members of the miR-17∼92 family. Integrative transcriptomic analyses identified ZFP36 ring finger protein like 1 (ZFP36L1) as a target gene of miR-124-3p, and IHC studies demonstrated that ASCL1-positive LUADs are associated with low ZFP36L1 protein levels. Cell culture studies showed that ectopic ZFP36L1 expression inhibits cell proliferation, survival, and cell-cycle progression. Moreover, ZFP36L1 negatively regulated several genes including E2F transcription factor 1 (E2F1) and snail family transcriptional repressor 1 (SNAI1). In conclusion, our study revealed that suppression of ZFP36L1 via ASCL1-regulated miR-124-3p could modulate gene expression, providing evidence that ASCL1-mediated regulation of miRNAs shapes molecular features of ASCL1-positive LUADs. IMPLICATIONS Our study revealed unique miRNA profiles of ASCL1-positive LUADs and identified ASCL1-regulated miRNAs with functional relevance.
Collapse
Affiliation(s)
- Takayoshi Enokido
- Department of Respiratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Masafumi Horie
- Department of Molecular and Cellular Pathology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Seiko Yoshino
- Division of Molecular Oncology, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroshi I Suzuki
- Division of Molecular Oncology, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Institute for Glyco-core Research (iGCORE), Nagoya University, Nagoya, Japan
- Center for One Medicine Innovative Translational Research (COMIT), Nagoya University, Nagoya, Japan
| | - Rei Matsuki
- Department of Respiratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hans Brunnström
- Lund University, Laboratory Medicine Region Skåne, Department of Clinical Sciences Lund, Pathology, Lund, Sweden
| | - Patrick Micke
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Takahide Nagase
- Department of Respiratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Akira Saito
- Department of Respiratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Naoya Miyashita
- Department of Respiratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Cell Biology, Duke University School of Medicine, Durham, North Carolina
| |
Collapse
|
7
|
Peng J, Wu Z. MTHFR act as a potential cancer biomarker in immune checkpoints blockades, heterogeneity, tumor microenvironment and immune infiltration. Discov Oncol 2023; 14:112. [PMID: 37354330 DOI: 10.1007/s12672-023-00716-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/05/2023] [Indexed: 06/26/2023] Open
Abstract
PURPOSE To evaluate the role and landscape of 5-10-Methylenetetrahydrofolate reductase (MTHFR) to immune infiltration, tumor microenvironment, heterogeneity, immune checkpoints blockades, prognostic significance across cancer types. METHODS Data sets of genomic, transcriptomic and clinic features of MTHFR across > 60,000 patients and up to 44 cancer types were comprehensively analyzed using R software. RESULTS Expression of MTHFR gene is significantly lower in 17 tumors and correlated with overall survival (OS), disease-specific survival (DSS), progression-free interval (PFI) in specific tumors. Gene alterations of MTHFR are observed significant differences across tumor types. Expression of MTHFR is negatively correlated with the stemness index (mDNAsi, mRNAsi, DMPsi, ENHsi, EREG-mDNAsi and EREG-mRNAsi) in the most cancers. MTHFR showed significantly correlated with 67 types of immune cell infiltration scores in 44 cancer types by XCELL algorithm. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis are conducted to show the core tumor mechanism and biological process. Correlations between MTHFR and biomarkers of heterogeneity (MSI, TMB, MATH, HRD, LOH, Neoantigen, ploidy and purity) are also significant in specific tumors. MTHFR is significantly positively correlated with biomarkers of immune related genes (CD19, CD274, CD80, CD86) and mismatched repair genes (MLH1, PMS2, MSH2, MSH6, EPCAM, MLH3, PMS1, EXO1) in most cancer types. Receiver Operating Characteristics (ROC) analyses show MTHFR could act as a potential biomarker in anti-PD-1 (nivolumab to melanoma) and anti-CTLA4 (ipilimumab to melanoma) group of ontreatment, in anti-PD-1 (pembrolizumab to melanoma) group of pretreatment. Two immunohistochemistry antibodies HPA076180 and HPA077255 are verified in 20 types of tumor and could be used to detect the expression of MTHFR efficiently in clinic. CONCLUSIONS MTHFR could predict the response of immune checkpoints blockades, heterogeneity, tumor microenvironment and immune infiltration.
Collapse
Affiliation(s)
- Jianheng Peng
- Health Management Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Zhongjun Wu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
8
|
Chen J, Patial S, Saini Y. Silencing of RNA binding protein, ZFP36L1, promotes epithelial-mesenchymal transition in liver cancer cells by regulating transcription factor ZEB2. Cell Signal 2022; 100:110462. [PMID: 36100056 DOI: 10.1016/j.cellsig.2022.110462] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/13/2022] [Accepted: 08/30/2022] [Indexed: 11/25/2022]
Abstract
RNA binding proteins (RBPs) of the zinc finger protein 36 family including zinc finger protein 36 like 1 (ZFP36L1) are implicated in cancer, however, the underlying molecular mechanisms have remained unclear. These proteins function by regulating post-transcriptional gene expression upon binding to the AU-rich elements (ARE's) within the 3'untranslated regions (3'UTRs) of specific mRNAs and increasing their mRNA turnover. Here, we tested the role of ZFP36L1 in hepatocellular carcinoma (HCC) cell lines. ZFP36L1 was under-expressed among the three RBPs in a majority of the HCC cell lines. Silencing of ZFP36L1 in two of the seven HCC cell lines resulted in epithelial-mesenchymal transition (EMT) like morphological changes, which were characterized by the transition of epithelial morphology to elongated mesenchymal morphology and increased migration and invasion potential. Conversely, overexpression of ZFP36L1 abolished these changes. RNA-seq analysis of ZFP36L1-depleted HCC cells revealed a significant upregulation of an EMT-inducing transcription factor, ZEB2 (zinc-finger E-box-binding homeobox 2), and enrichment of pathways associated with mesenchymal cell development and differentiation. ZEB2 mRNA contains AREs within its 3'UTR and its stability was increased following ZFP36L1 knockdown. Conversely, ZEB2 was significantly downregulated following ZFP36L1 overexpression and ZEB2 3'UTR was regulated by ZFP36L1 in luciferase reporter assays. These data identify ZEB2 mRNA as a ZFP36L1 target in HCC cells and demonstrate that ZFP36L1 regulates EMT possibly through direct regulation of ZEB2 mRNA. In summary, our results demonstrate that ZFP36L1 suppresses EMT inliver cancer cells by down-regulating the expression of EMT-inducing transcription factor, ZEB2. These data suggest an important role of ZFP36L1 in the development, progression, and metastasis of hepatocellular cancer.
Collapse
Affiliation(s)
- Jian Chen
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, United States of America
| | - Sonika Patial
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, United States of America.
| | - Yogesh Saini
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, United States of America.
| |
Collapse
|
9
|
Liu SY, Qu HT, Sun RJ, Yuan D, Sui XH, Shan NN. High-throughput DNA methylation analysis in ITP confirms NOTCH1 hypermethylation through the Th1 and Th2 cell differentiation pathways. Int Immunopharmacol 2022; 111:109105. [PMID: 35930913 DOI: 10.1016/j.intimp.2022.109105] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 07/21/2022] [Accepted: 07/25/2022] [Indexed: 11/05/2022]
Abstract
BACKGROUND Immune thrombocytopenia (ITP) is a prevalent autoimmune disease with a complex aetiology where DNA methylation changes are becoming triggers. METHOD To investigate novel abnormally methylated genes in the pathogenesis of ITP, we performed a high-throughput methylation analysis on 21 ITP patients and 9 normal control samples. We analysed the extent of key methylated genes and their downstream cytokines through Luminex assay or qRT-PCR. Then, bone marrow mononuclear cells were extracted from ITP patients, and decitabine (demethylation drug) was added to the culture medium of cultured cells. qRT-PCR and ELISA were used to detect whether decitabine could effectively affect target genes and related cytokines. RESULTS Through the STRING and Metascape databases, hypermethylated NOTCH1 can be identified and can influence ITP by regulating many downstream cytokines through Th1 and Th2 cell differentiation pathways. Compared with those in the normal control group, the expression levels of NOTCH1 and its downstream Th2 cytokines (IL-4, IL-10, and GATA3) were significantly decreased and those of Th1 cytokines (IFN-γ, IL-12, and TNF-α) were significantly increased in the ITP group. Decitabine exerts its demethylation effect, so the expression of NOTCH1 and its related cytokines in the ITP group treated with 100 nM decitabine were significantly reversed. CONCLUSIONS Our results suggest that the pathogenesis of ITP may exert its influence on epigenetics through alteration of DNA methylation at regulatory regions of the target NOTCH1 gene in the Th1 and Th2 cell differentiation pathways. At the same time, decitabine may achieve a therapeutic effect on ITP by demethylation.
Collapse
Affiliation(s)
- Shu-Yan Liu
- Department of Haematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, China
| | - Hui-Ting Qu
- Department of Haematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, China; Department of Haematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Rui-Jie Sun
- Department of Rheumatology, Peking Union Medical College Hospital, Clinical Immunology Center, Beijing, China
| | - Dai Yuan
- Department of Haematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, China; Department of Haematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Xiao-Hui Sui
- Department of Haematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, China; Department of Haematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China.
| | - Ning-Ning Shan
- Department of Haematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, China; Department of Haematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China.
| |
Collapse
|
10
|
Dye CK, Corley MJ, Ing C, Lum-Jones A, Li D, Mau MKLM, Maunakea AK. Shifts in the immunoepigenomic landscape of monocytes in response to a diabetes-specific social support intervention: a pilot study among Native Hawaiian adults with diabetes. Clin Epigenetics 2022; 14:91. [PMID: 35851422 PMCID: PMC9295496 DOI: 10.1186/s13148-022-01307-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 07/04/2022] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Native Hawaiians are disproportionately affected by type 2 diabetes mellitus (DM), a chronic metabolic, non-communicable disease characterized by hyperglycemia and systemic inflammation. Unrelenting systemic inflammation frequently leads to a cascade of multiple comorbidities associated with DM, including cardiovascular disease, microvascular complications, and renal dysfunction. Yet few studies have examined the link between chronic inflammation at a cellular level and its relationship to standard DM therapies such as diabetes-specific lifestyle and social support education, well recognized as the cornerstone of clinical standards of diabetes care. This pilot study was initiated to explore the association of monocyte inflammation using epigenetic, immunologic, and clinical measures following a 3-month diabetes-specific social support program among high-risk Native Hawaiian adults with DM. RESULTS From a sample of 16 Native Hawaiian adults with DM, monocytes enriched from peripheral blood mononuclear cells (PBMCs) of 8 individuals were randomly selected for epigenomic analysis. Using the Illumina HumanMethylation450 BeadChip microarray, 1,061 differentially methylated loci (DML) were identified in monocytes of participants at baseline and 3 months following a DM-specific social support program (DM-SSP). Gene ontology analysis showed that these DML were enriched within genes involved in immune, metabolic, and cardiometabolic pathways, a subset of which were also significantly differentially expressed. Ex vivo analysis of immune function showed improvement post-DM-SSP compared with baseline, characterized by attenuated interleukin 1β and IL-6 secretion from monocytes. Altered cytokine secretion in response to the DM-SSP was significantly associated with changes in the methylation and gene expression states of immune-related genes in monocytes between intervention time points. CONCLUSIONS Our pilot study provides preliminary evidence of changes to inflammatory monocyte activity, potentially driven by epigenetic modifications, 3 months following a DM-specific SSP intervention. These novel alterations in the trajectory of monocyte inflammatory states were identified at loci that regulate transcription of immune and metabolic genes in high-risk Native Hawaiians with DM, suggesting a relationship between improvements in psychosocial behaviors and shifts in the immunoepigenetic patterns following a diabetes-specific SSP. Further research is warranted to investigate how social support influences systemic inflammation via immunoepigenetic modifications in chronic inflammatory diseases such as DM.
Collapse
Affiliation(s)
- Christian K Dye
- Department of Molecular Biosciences and Bioengineering, University of Hawaii, Honolulu, HI, 96822, USA
- Department of Native Hawaiian Health, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, 96813, USA
- Department of Anatomy, Biochemistry and Physiology, John A. Burns School of Medicine, University of Hawaii, 651 Ilalo St. BSB222-K, Honolulu, HI, 96813, USA
| | - Michael J Corley
- Cornell Center for Immunology, Weill Cornell Medical Center, Cornell University, New York, NY, 10065, USA
- Department of Native Hawaiian Health, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, 96813, USA
| | - Claire Ing
- Department of Native Hawaiian Health, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, 96813, USA
| | - Annette Lum-Jones
- Department of Native Hawaiian Health, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, 96813, USA
- University of Hawaii Cancer Center, University of Hawaii, Honolulu, HI, 96813, USA
| | - Dongmei Li
- Department of Clinical and Translational Research, School of Medicine and Dentistry, University of Rochester, Rochester, NY, 14642, USA
| | - Marjorie K L M Mau
- Department of Native Hawaiian Health, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, 96813, USA
| | - Alika K Maunakea
- Department of Anatomy, Biochemistry and Physiology, John A. Burns School of Medicine, University of Hawaii, 651 Ilalo St. BSB222-K, Honolulu, HI, 96813, USA.
| |
Collapse
|
11
|
Roux B, Picou F, Debeissat C, Koubi M, Gallay N, Hirsch P, Ravalet N, Béné MC, Maigre M, Hunault M, Mosser J, Etcheverry A, Gyan E, Delhommeau F, Domenech J, Herault O. Aberrant DNA methylation impacts HOX genes expression in bone marrow mesenchymal stromal cells of myelodysplastic syndromes and de novo acute myeloid leukemia. Cancer Gene Ther 2022; 29:1263-1275. [PMID: 35194200 DOI: 10.1038/s41417-022-00441-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 12/12/2021] [Accepted: 02/08/2022] [Indexed: 11/09/2022]
Abstract
DNA methylation, a major biological process regulating the transcription, contributes to the pathophysiology of hematologic malignancies, and hypomethylating agents are commonly used to treat myelodysplastic syndromes (MDS) and acute myeloid leukemias (AML). In these diseases, bone marrow mesenchymal stromal cells (MSCs) play a key supportive role through the production of various signals and interactions. The DNA methylation status of MSCs, likely to reflect their functionality, might be relevant to understand their contribution to the pathophysiology of these diseases. Consequently, the aim of our study was to analyze the modifications of DNA methylation profiles of MSCs induced by MDS or AML. MSCs from MDS/AML patients were characterized via 5-methylcytosine quantification, gene expression profiles of key regulators of DNA methylation, identification of differentially methylated regions (DMRs) by methylome array, and quantification of DMR-coupled genes expression. MDS and AML-MSCs displayed global hypomethylation and under-expression of DNMT1 and UHRF1. Methylome analysis revealed aberrant methylation profiles in all MDS and in a subgroup of AML-MSCs. This aberrant methylation was preferentially found in the sequence of homeobox genes, especially from the HOX family (HOXA1, HOXA4, HOXA5, HOXA9, HOXA10, HOXA11, HOXB5, HOXC4, and HOXC6), and impacted on their expression. These results highlight modifications of DNA methylation in MDS/AML-MSCs, both at global and focal levels dysregulating the expression of HOX genes well known for their involvement in leukemogenesis. Such DNA methylation in MSCs could be the consequence of the malignant disease or could participate in its development through defective functionality or exosomal transfer of HOX transcription factors from MSCs to hematopoietic cells.
Collapse
Affiliation(s)
- Benjamin Roux
- CNRS EMR 7001 LNOx "Leukemic niche & redox metabolism", Tours, France.,EA 7501 GICC, université de Tours, Tours, France.,CHU de Tours, Service d'Hématologie Biologique, Tours, France
| | - Frédéric Picou
- CNRS EMR 7001 LNOx "Leukemic niche & redox metabolism", Tours, France.,EA 7501 GICC, université de Tours, Tours, France.,CHU de Tours, Service d'Hématologie Biologique, Tours, France
| | - Christelle Debeissat
- CNRS EMR 7001 LNOx "Leukemic niche & redox metabolism", Tours, France.,EA 7501 GICC, université de Tours, Tours, France.,CHU de Tours, Service d'Hématologie Biologique, Tours, France
| | - Myriam Koubi
- CNRS EMR 7001 LNOx "Leukemic niche & redox metabolism", Tours, France.,EA 7501 GICC, université de Tours, Tours, France
| | - Nathalie Gallay
- CNRS EMR 7001 LNOx "Leukemic niche & redox metabolism", Tours, France.,EA 7501 GICC, université de Tours, Tours, France.,CHU de Tours, Service d'Hématologie Biologique, Tours, France
| | - Pierre Hirsch
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Hôpital Saint-Antoine, Service d'Hématologie Biologique, Paris, France
| | - Noémie Ravalet
- CNRS EMR 7001 LNOx "Leukemic niche & redox metabolism", Tours, France.,EA 7501 GICC, université de Tours, Tours, France.,CHU de Tours, Service d'Hématologie Biologique, Tours, France
| | - Marie C Béné
- CHU de Nantes, Service d'Hématologie Biologique, CRCINA, Nantes, France.,FHU GOAL, Angers, France
| | | | - Mathilde Hunault
- FHU GOAL, Angers, France.,CHU d'Angers, Service d'Hématologie, Angers, France
| | - Jean Mosser
- CHU de Rennes, Service de Génétique Moléculaire et Génomique, Rennes, France.,Cancéropôle Grand Ouest, Nantes, France
| | - Amandine Etcheverry
- CHU de Rennes, Service de Génétique Moléculaire et Génomique, Rennes, France
| | - Emmanuel Gyan
- CNRS EMR 7001 LNOx "Leukemic niche & redox metabolism", Tours, France.,EA 7501 GICC, université de Tours, Tours, France.,CHU de Tours, Service d'Hématologie et Thérapie Cellulaire, Tours, France
| | - François Delhommeau
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Hôpital Saint-Antoine, Service d'Hématologie Biologique, Paris, France.,CNRS GDR 3697 Micronit "Microenvironment of tumor niches", Tours, France.,OPALE Carnot Institute, The Organization for Partnerships in Leukemia, Hôpital Saint-Louis, Paris, France
| | - Jorge Domenech
- CNRS EMR 7001 LNOx "Leukemic niche & redox metabolism", Tours, France.,EA 7501 GICC, université de Tours, Tours, France.,CHU de Tours, Service d'Hématologie Biologique, Tours, France
| | - Olivier Herault
- CNRS EMR 7001 LNOx "Leukemic niche & redox metabolism", Tours, France. .,EA 7501 GICC, université de Tours, Tours, France. .,CHU de Tours, Service d'Hématologie Biologique, Tours, France. .,FHU GOAL, Angers, France. .,Cancéropôle Grand Ouest, Nantes, France. .,CNRS GDR 3697 Micronit "Microenvironment of tumor niches", Tours, France. .,OPALE Carnot Institute, The Organization for Partnerships in Leukemia, Hôpital Saint-Louis, Paris, France.
| |
Collapse
|
12
|
Cao C, Ma Q, Mo S, Shu G, Liu Q, Ye J, Gui Y. Single-Cell RNA Sequencing Defines the Regulation of Spermatogenesis by Sertoli-Cell Androgen Signaling. Front Cell Dev Biol 2021; 9:763267. [PMID: 34869354 PMCID: PMC8634442 DOI: 10.3389/fcell.2021.763267] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 10/13/2021] [Indexed: 12/13/2022] Open
Abstract
Androgen receptor (AR) signaling is essential for maintaining spermatogenesis and male fertility. However, the molecular mechanisms by which AR acts between male germ cells and somatic cells during spermatogenesis have not begun to be revealed until recently. With the advances obtained from the use of transgenic mice lacking AR in Sertoli cells (SCARKO) and single-cell transcriptomic sequencing (scRNA-seq), the cell specific targets of AR action as well as the genes and signaling pathways that are regulated by AR are being identified. In this study, we collected scRNA-seq data from wild-type (WT) and SCARKO mice testes at p20 and identified four somatic cell populations and two male germ cell populations. Further analysis identified that the distribution of Sertoli cells was completely different and uncovered the cellular heterogeneity and transcriptional changes between WT and SCARKO Sertoli cells. In addition, several differentially expressed genes (DEGs) in SCARKO Sertoli cells, many of which have been previously implicated in cell cycle, apoptosis and male infertility, have also been identified. Together, our research explores a novel perspective on the changes in the transcription level of various cell types between WT and SCARKO mice testes, providing new insights for the investigations of the molecular and cellular processes regulated by AR signaling in Sertoli cells.
Collapse
Affiliation(s)
- Congcong Cao
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Institute of Urology, Shenzhen-Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Qian Ma
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Institute of Urology, Shenzhen-Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Shaomei Mo
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Institute of Urology, Shenzhen-Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Ge Shu
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Institute of Urology, Shenzhen-Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Qunlong Liu
- Department of Reproductive Medicine, Peking University Shenzhen Hospital, Shenzhen, China
| | - Jing Ye
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Institute of Urology, Shenzhen-Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Yaoting Gui
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Institute of Urology, Shenzhen-Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| |
Collapse
|
13
|
Kaehler M, Dworschak M, Rodin JP, Ruemenapp J, Vater I, Penas EMM, Liu C, Cascorbi I, Nagel I. ZFP36L1 plays an ambiguous role in the regulation of cell expansion and negatively regulates CDKN1A in chronic myeloid leukemia cells. Exp Hematol 2021; 99:54-64.e7. [PMID: 34090970 DOI: 10.1016/j.exphem.2021.05.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/26/2021] [Accepted: 05/31/2021] [Indexed: 12/20/2022]
Abstract
The mRNA-destabilizing proteins ZFP36L1 and ZFP36L2 are described as mediators of quiescence and play a pivotal role in hematopoietic malignancies. Both genes are mainly classified as tumor suppressor genes as they posttranscriptionally downregulate the expression of oncogenes and contribute to cellular quiescence. Here, we analyzed the role of ZFP36L1 and ZFP36L2 in chronic myeloid leukemia (CML). We found ZFP36L1 and ZFP36L2 expression to be deregulated in patients with CML. By use of in vitro models of tyrosine kinase inhibitor resistance, an increase in ZFP36L1 and ZFP36L2 expression was detected during the development of imatinib resistance. CRISPR/Cas9-derived knockout of ZFP36L1, but not of ZFP36L2, in imatinib-sensitive cells led to decreased proliferation rates in response to tyrosine kinase inhibitor treatment. This effect was also observed in untreated ZFP36L1 knockout cells, albeit to a lower extent. Genomewide gene expression analyses of ZFP36L1 knockout cells revealed differential expression of cell cycle regulators, in particular upregulation of the cell cycle inhibitor CDKN1A. In addition, the 3' untranslated region of CDKN1A was proven to be a direct target of ZFP36L1. This indicates that tumor suppressor genes can also be targeted by ZFP36L1. Hence, ZFP36L1 cannot unambiguously be regarded as a tumor suppressor gene.
Collapse
Affiliation(s)
- Meike Kaehler
- Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Maike Dworschak
- Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Julian Phillip Rodin
- Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Johanna Ruemenapp
- Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Inga Vater
- Institute of Human Genetics, University Hospital Schleswig-Holstein, Campus Kiel, Kiel Germany
| | - Eva Maria Murga Penas
- Institute of Human Genetics, University Hospital Schleswig-Holstein, Campus Kiel, Kiel Germany
| | - Catherine Liu
- Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Ingolf Cascorbi
- Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany.
| | - Inga Nagel
- Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany; Institute of Human Genetics, University Hospital Schleswig-Holstein, Campus Kiel, Kiel Germany
| |
Collapse
|
14
|
Abstract
This article reviews the genetic data on epigenetic modifying mutations in myeloproliferative neoplasms and their clinical implications, preclinical studies exploring our current understanding of how mutations in epigenetic modifying proteins cooperate with myeloproliferative neoplasms drivers to promote disease progression, and recent advances in novel therapeutics supporting the role of targeting epigenetic pathways to treat fibrotic progression.
Collapse
Affiliation(s)
- Andrew Dunbar
- Department of Medicine, Leukemia Service, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 20, New York, NY 10065, USA; Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 20, New York, NY 10065, USA
| | - Young Park
- Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 20, New York, NY 10065, USA
| | - Ross Levine
- Department of Medicine, Leukemia Service, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 20, New York, NY 10065, USA; Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 20, New York, NY 10065, USA; Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 20, New York, NY 10065, USA; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 20, New York, NY 10065, USA.
| |
Collapse
|
15
|
Lehmann U, Stark H, Bartels S, Schlue J, Büsche G, Kreipe H. Genome-wide DNA methylation profiling is able to identify prefibrotic PMF cases at risk for progression to myelofibrosis. Clin Epigenetics 2021; 13:28. [PMID: 33541399 PMCID: PMC7860011 DOI: 10.1186/s13148-021-01010-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 01/11/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Patients suffering from the BCR-ABL1-negative myeloproliferative disease prefibrotic primary myelofibrosis (pre-PMF) have a certain risk for progression to myelofibrosis. Accurate risk estimation for this fibrotic progression is of prognostic importance and clinically relevant. Commonly applied risk scores are based on clinical, cytogenetic, and genetic data but do not include epigenetic modifications. Therefore, we evaluated the assessment of genome-wide DNA methylation patterns for their ability to predict fibrotic progression in PMF patients. RESULTS For this purpose, the DNA methylation profile was analyzed genome-wide in a training set of 22 bone marrow trephines from patients with either fibrotic progression (n = 12) or stable disease over several years (n = 10) using the 850 k EPIC array from Illumina. The DNA methylation classifier constructed from this data set was validated in an independently measured test set of additional 11 bone marrow trephines (7 with stable disease, 4 with fibrotic progress). Hierarchical clustering of methylation β-values and linear discriminant classification yielded very good discrimination between both patient groups. By gene ontology analysis, the most differentially methylated CpG sites are primarily associated with genes involved in cell-cell and cell-matrix interactions. CONCLUSIONS In conclusion, we could show that genome-wide DNA methylation profiling of bone marrow trephines is feasible under routine diagnostic conditions and, more importantly, is able to predict fibrotic progression in pre-fibrotic primary myelofibrosis with high accuracy.
Collapse
Affiliation(s)
- Ulrich Lehmann
- Institute of Pathology, Medical School Hannover, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
| | - Helge Stark
- Institute of Pathology, Medical School Hannover, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Stephan Bartels
- Institute of Pathology, Medical School Hannover, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Jerome Schlue
- Institute of Pathology, Medical School Hannover, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Guntram Büsche
- Institute of Pathology, Medical School Hannover, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Hans Kreipe
- Institute of Pathology, Medical School Hannover, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| |
Collapse
|
16
|
The Tristetraprolin Family of RNA-Binding Proteins in Cancer: Progress and Future Prospects. Cancers (Basel) 2020; 12:cancers12061539. [PMID: 32545247 PMCID: PMC7352335 DOI: 10.3390/cancers12061539] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/07/2020] [Accepted: 06/09/2020] [Indexed: 12/12/2022] Open
Abstract
Post-transcriptional regulation of gene expression plays a key role in cellular proliferation, differentiation, migration, and apoptosis. Increasing evidence suggests dysregulated post-transcriptional gene expression as an important mechanism in the pathogenesis of cancer. The tristetraprolin family of RNA-binding proteins (RBPs), which include Zinc Finger Protein 36 (ZFP36; commonly referred to as tristetraprolin (TTP)), Zinc Finger Protein 36 like 1 (ZFP36L1), and Zinc Finger Protein 36 like 2 (ZFP36L2), play key roles in the post-transcriptional regulation of gene expression. Mechanistically, these proteins function by binding to the AU-rich elements within the 3′-untranslated regions of their target mRNAs and, in turn, increasing mRNA turnover. The TTP family RBPs are emerging as key regulators of multiple biological processes relevant to cancer and are aberrantly expressed in numerous human cancers. The TTP family RBPs have tumor-suppressive properties and are also associated with cancer prognosis, metastasis, and resistance to chemotherapy. Herein, we summarize the various hallmark molecular traits of cancers that are reported to be regulated by the TTP family RBPs. We emphasize the role of the TTP family RBPs in the regulation of trait-associated mRNA targets in relevant cancer types/cell lines. Finally, we highlight the potential of the TTP family RBPs as prognostic indicators and discuss the possibility of targeting these TTP family RBPs for therapeutic benefits.
Collapse
|
17
|
Kramer F, Dernedde J, Mezheyeuski A, Tauber R, Micke P, Kappert K. Platelet-derived growth factor receptor β activation and regulation in murine myelofibrosis. Haematologica 2019; 105:2083-2094. [PMID: 31672904 PMCID: PMC7395273 DOI: 10.3324/haematol.2019.226332] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 10/29/2019] [Indexed: 12/17/2022] Open
Abstract
There is prevailing evidence to suggest a decisive role for platelet-derived growth factors (PDGF) and their receptors in primary myelofibrosis. While PDGF receptor β (PDGFRβ) expression is increased in bone marrow stromal cells of patients correlating with the grade of myelofibrosis, knowledge on the precise role of PDGFRβ signaling in myelofibrosis is sparse. Using the Gata-1low mouse model for myelofibrosis, we applied RNA sequencing, protein expression analyses, multispectral imaging and, as a novel approach in bone marrow tissue, an in situ proximity ligation assay to provide a detailed characterization of PDGFRβ signaling and regulation during development of myelofibrosis. We observed an increase in PDGFRβ and PDGF-B protein expression in overt fibrotic bone marrow, along with an increase in PDGFRβ–PDGF-B interaction, analyzed by proximity ligation assay. However, PDGFRβ tyrosine phosphorylation levels were not increased. We therefore focused on regulation of PDGFRβ by protein tyrosine phosphatases as endogenous PDGFRβ antagonists. Gene expression analyses showed distinct expression dynamics among PDGFRβ-targeting phosphatases. In particular, we observed enhanced T-cell protein tyrosine phosphatase protein expression and PDGFRβ–T-cell protein tyrosine phosphatase interaction in early and overt fibrotic bone marrow of Gata-1low mice. In vitro, T-cell protein tyrosine phosphatase (Ptpn2) knockdown increased PDGFRβ phosphorylation at Y751 and Y1021, leading to enhanced downstream signaling in fibroblasts. Furthermore, Ptpn2 knockdown cells showed increased growth rates when exposed to low-serum growth medium. Taken together, PDGF signaling is differentially regulated during myelofibrosis. Protein tyrosine phosphatases, which have so far not been examined during disease progression, are novel and hitherto unrecognized components in myelofibrosis.
Collapse
Affiliation(s)
- Frederike Kramer
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Berlin, Germany.,Charité -Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Center for Cardiovascular Research (CCR), Berlin, Germany
| | - Jens Dernedde
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Berlin, Germany
| | - Artur Mezheyeuski
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Rudolf Tauber
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Berlin, Germany
| | - Patrick Micke
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Kai Kappert
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Berlin, Germany .,Charité -Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Center for Cardiovascular Research (CCR), Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
| |
Collapse
|
18
|
Ordoñez R, Martínez-Calle N, Agirre X, Prosper F. DNA Methylation of Enhancer Elements in Myeloid Neoplasms: Think Outside the Promoters? Cancers (Basel) 2019; 11:cancers11101424. [PMID: 31554341 PMCID: PMC6827153 DOI: 10.3390/cancers11101424] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 09/15/2019] [Accepted: 09/18/2019] [Indexed: 12/19/2022] Open
Abstract
Gene regulation through DNA methylation is a well described phenomenon that has a prominent role in physiological and pathological cell-states. This epigenetic modification is usually grouped in regions denominated CpG islands, which frequently co-localize with gene promoters, silencing the transcription of those genes. Recent genome-wide DNA methylation studies have challenged this paradigm, demonstrating that DNA methylation of regulatory regions outside promoters is able to influence cell-type specific gene expression programs under physiologic or pathologic conditions. Coupling genome-wide DNA methylation assays with histone mark annotation has allowed for the identification of specific epigenomic changes that affect enhancer regulatory regions, revealing an additional layer of complexity to the epigenetic regulation of gene expression. In this review, we summarize the novel evidence for the molecular and biological regulation of DNA methylation in enhancer regions and the dynamism of these changes contributing to the fine-tuning of gene expression. We also analyze the contribution of enhancer DNA methylation on the expression of relevant genes in acute myeloid leukemia and chronic myeloproliferative neoplasms. The characterization of the aberrant enhancer DNA methylation provides not only a novel pathogenic mechanism for different tumors but also highlights novel potential therapeutic targets for myeloid derived neoplasms.
Collapse
Affiliation(s)
- Raquel Ordoñez
- Área de Hemato-Oncología, Centro de Investigación Médica Aplicada, IDISNA, Universidad de Navarra, Avenida Pío XII-55, 31008 Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Nicolás Martínez-Calle
- Área de Hemato-Oncología, Centro de Investigación Médica Aplicada, IDISNA, Universidad de Navarra, Avenida Pío XII-55, 31008 Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Xabier Agirre
- Área de Hemato-Oncología, Centro de Investigación Médica Aplicada, IDISNA, Universidad de Navarra, Avenida Pío XII-55, 31008 Pamplona, Spain.
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain.
| | - Felipe Prosper
- Área de Hemato-Oncología, Centro de Investigación Médica Aplicada, IDISNA, Universidad de Navarra, Avenida Pío XII-55, 31008 Pamplona, Spain.
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain.
- Departamento de Hematología, Clínica Universidad de Navarra, Universidad de Navarra, Avenida Pío XII-36, 31008 Pamplona, Spain.
| |
Collapse
|
19
|
Loh XY, Sun QY, Ding LW, Mayakonda A, Venkatachalam N, Yeo MS, Silva TC, Xiao JF, Doan NB, Said JW, Ran XB, Zhou SQ, Dakle P, Shyamsunder P, Koh APF, Huang RYJ, Berman BP, Tan SY, Yang H, Lin DC, Koeffler HP. RNA-Binding Protein ZFP36L1 Suppresses Hypoxia and Cell-Cycle Signaling. Cancer Res 2019; 80:219-233. [PMID: 31551365 DOI: 10.1158/0008-5472.can-18-2796] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 06/28/2019] [Accepted: 09/16/2019] [Indexed: 11/16/2022]
Abstract
ZFP36L1 is a tandem zinc-finger RNA-binding protein that recognizes conserved adenylate-uridylate-rich elements (ARE) located in 3'untranslated regions (UTR) to mediate mRNA decay. We hypothesized that ZFP36L1 is a negative regulator of a posttranscriptional hub involved in mRNA half-life regulation of cancer-related transcripts. Analysis of in silico data revealed that ZFP36L1 was significantly mutated, epigenetically silenced, and downregulated in a variety of cancers. Forced expression of ZFP36L1 in cancer cells markedly reduced cell proliferation in vitro and in vivo, whereas silencing of ZFP36L1 enhanced tumor cell growth. To identify direct downstream targets of ZFP36L1, systematic screening using RNA pull-down of wild-type and mutant ZFP36L1 as well as whole transcriptome sequencing of bladder cancer cells {plus minus} tet-on ZFP36L1 was performed. A network of 1,410 genes was identified as potential direct targets of ZFP36L1. These targets included a number of key oncogenic transcripts such as HIF1A, CCND1, and E2F1. ZFP36L1 specifically bound to the 3'UTRs of these targets for mRNA degradation, thus suppressing their expression. Dual luciferase reporter assays and RNA electrophoretic mobility shift assays showed that wild-type, but not zinc-finger mutant ZFP36L1, bound to HIF1A 3'UTR and mediated HIF1A mRNA degradation, leading to reduced expression of HIF1A and its downstream targets. Collectively, our findings reveal an indispensable role of ZFP36L1 as a posttranscriptional safeguard against aberrant hypoxic signaling and abnormal cell-cycle progression. SIGNIFICANCE: RNA-binding protein ZFP36L1 functions as a tumor suppressor by regulating the mRNA stability of a number of mRNAs involved in hypoxia and cell-cycle signaling.
Collapse
Affiliation(s)
- Xin-Yi Loh
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Qiao-Yang Sun
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Ling-Wen Ding
- Cancer Science Institute of Singapore, National University of Singapore, Singapore.
| | - Anand Mayakonda
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | | | - Mei-Shi Yeo
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Tiago C Silva
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Center for Bioinformatics and Functional Genomics, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California
| | - Jin-Fen Xiao
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Ngan B Doan
- Pathology and Laboratory Medicine, Ronald Reagan UCLA Medical Center, Los Angeles, California
| | - Jonathan W Said
- Pathology and Laboratory Medicine, Ronald Reagan UCLA Medical Center, Los Angeles, California
| | - Xue-Bin Ran
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Si-Qin Zhou
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Pushkar Dakle
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Pavithra Shyamsunder
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Angele Pei-Fern Koh
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Ruby Yun-Ju Huang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Benjamin P Berman
- Center for Bioinformatics and Functional Genomics, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California.,Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Soo-Yong Tan
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Henry Yang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - De-Chen Lin
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - H Phillip Koeffler
- Cancer Science Institute of Singapore, National University of Singapore, Singapore.,Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California.,National University Cancer Institute of Singapore, National University Hospital, Singapore
| |
Collapse
|