1
|
Golestan A, Zareinejad M, Ramezani A. Comprehensive biomarker profiles in hematological malignancies: improving diagnosis, prognosis, and treatment. Biomark Med 2025; 19:223-238. [PMID: 40015744 PMCID: PMC11916375 DOI: 10.1080/17520363.2025.2471745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 02/21/2025] [Indexed: 03/01/2025] Open
Abstract
Hematological malignancies present substantial challenges in clinical practice due to their heterogeneity and complex biological profiles. In these diseases, biomarkers - measurable indicators of biological states - are indispensable for diagnosis, prognosis, and therapeutic decision-making. Emerging biomarkers are significantly improving outcomes in hematological cancers by enhancing early detection, refining prognostic assessments, enabling personalized treatment approaches, and optimizing overall patient management. This progress translates into better clinical outcomes and more effective strategies to treat and manage malignancies. The field of biomarker discovery has developed from basic morphological and cytogenetic markers to advanced molecular techniques, including polymerase chain reaction (PCR) and next-generation sequencing (NGS), which have significantly enhanced diagnostic accuracy and led to the development of targeted therapies. Additionally, the recent advent of technologies like mass spectrometry and single-cell RNA sequencing enables comprehensive molecular profiling and reveals novel biomarkers that were previously undetectable. Our aim in this manuscript is to provide a comprehensive overview of recent and novel immunohematological biomarkers, their diagnostic and therapeutic applications, and the future directions of this field.
Collapse
Affiliation(s)
- Ali Golestan
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Science, Shiraz, Iran
| | - Mohammadrasul Zareinejad
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Science, Shiraz, Iran
| | - Amin Ramezani
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Science, Shiraz, Iran
| |
Collapse
|
2
|
Liu L, Mo W, Chen M, Qu Y, Wang P, Liang Y, Yan X. Targeted inhibition of DHODH is synergistic with BCL2 blockade in HGBCL with concurrent MYC and BCL2 rearrangement. BMC Cancer 2024; 24:761. [PMID: 38918775 PMCID: PMC11197201 DOI: 10.1186/s12885-024-12534-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 06/18/2024] [Indexed: 06/27/2024] Open
Abstract
High-grade B-cell lymphoma (HGBCL), the subtype of non-Hodgkin lymphoma, to be relapsed or refractory in patients after initial therapy or salvage chemotherapy. Dual dysregulation of MYC and BCL2 is one of the important pathogenic mechanisms. Thus, combined targeting of MYC and BCL2 appears to be a promising strategy. Dihydroorotate dehydrogenase (DHODH) is the fourth rate-limiting enzyme for the de novo biosynthesis of pyrimidine. It has been shown to be a potential therapeutic target for multiple diseases. In this study, the DHODH inhibitor brequinar exhibited growth inhibition, cell cycle blockade, and apoptosis promotion in HGBCL cell lines with MYC and BCL2 rearrangements. The combination of brequinar and BCL2 inhibitors venetoclax had a synergistic inhibitory effect on the survival of DHL cells through different pathways. Venetoclax could upregulate MCL-1 and MYC expression, which has been reported as a resistance mechanism of BCL2 inhibitors. Brequinar downregulated MCL-1 and MYC, which could potentially overcome drug resistance to venetoclax in HGBCL cells. Furthermore, brequinar could downregulate a broad range of genes, including ribosome biosynthesis genes, which might contribute to its anti-tumor effects. In vivo studies demonstrated synergetic tumor growth inhibition in xenograft models with brequinar and venetoclax combination treatment. These results provide preliminary evidence for the rational combination of DHODH and BCL2 blockade in HGBCL with abnormal MYC and BCL2.
Collapse
Affiliation(s)
- Lin Liu
- Department of Hematology, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Wenbin Mo
- Department of Hematology, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Miao Chen
- Department of Hematology, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Yi Qu
- Department of Hematology, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Pingping Wang
- Department of Hematology, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Ying Liang
- Department of Hematology, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Xiaojing Yan
- Department of Hematology, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China.
- , No. 155, North Nanjing Road, Heping District, Shenyang, 110001, China.
| |
Collapse
|
3
|
Cortese MJ, Wei W, Cerdeña S, Watkins MP, Olson M, Jodon G, Kaiser J, Haverkos B, Hughes ME, Namoglu E, Grover NS, Snow A, Orellana-Noia V, Rainey M, Sohail M, Rudoni J, Portell C, Voorhees T, Landsburg DJ, Kamdar M, Kahl BS, Hill BT. A multi-center analysis of the impact of DA-EPOCH-R dose-adjustment on clinical outcomes of patients with double/triple-hit lymphoma. Leuk Lymphoma 2023; 64:107-118. [PMID: 36323309 DOI: 10.1080/10428194.2022.2140281] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Patients with double- and triple-hit lymphomas (DHL/THL) have inferior outcomes with rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone (R-CHOP), and higher-intensity regimens such as dose-adjusted (DA)-EPOCH-R are standard. Dose-intensification of DA-EPOCH-R is guided by hematologic toxicity, without conclusive benefit for DHL/THL patients. To determine if cumulative doses of DA-EPOCH-R or compliance with dose adjustment impacts survival, we retrospectively evaluated detailed clinical data from 109 adult (age ≥18 years) patients with DHL/THL treated with ≥4 cycles of induction DA-EPOCH-R from 2014 to 2019 at six centers. A comprehensive multivariate analysis was performed. Survival outcomes for the entire cohort were comparable to historical estimates for DHL/THL treated with this regimen (median follow-up 27.9 months). Overall survival (OS) and progression-free survival (PFS) were not significantly associated with cumulative chemotherapy dose, dose escalation, or compliance with dose adjustment. Heterogeneous dosing practices were observed. Prospective investigation is warranted to evaluate the practice of dose adjustment of R-EPOCH for patients with DHL/THL.
Collapse
Affiliation(s)
- Matthew J Cortese
- Department of Hematology and Medical Oncology, Taussig Cancer Institute, Cleveland, OH, USA
| | - Wei Wei
- Department of Quantitative Health Sciences, Cleveland Clinic Foundation, Lerner Research Institute, Cleveland, OH, USA
| | - Sebastian Cerdeña
- Barnes-Jewish Hospital, Washington University in St. Louis, St. Louis, MO, USA
| | - Marcus P Watkins
- Barnes-Jewish Hospital, Washington University in St. Louis, St. Louis, MO, USA
| | - Marissa Olson
- Barnes-Jewish Hospital, Washington University in St. Louis, St. Louis, MO, USA
| | - Gray Jodon
- University of Colorado Cancer Center, Aurora, CO, USA
| | - Jeff Kaiser
- University of Colorado Cancer Center, Aurora, CO, USA
| | | | - Mitchell E Hughes
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Esin Namoglu
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Natalie S Grover
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Anson Snow
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Victor Orellana-Noia
- Division of Hematology/Oncology, University of Virginia, Charlottesville, VA, USA
| | - Magdalena Rainey
- Lerner College of Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Mohammad Sohail
- Lerner College of Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Joslyn Rudoni
- Department of Pharmacy, Cleveland Clinic, Cleveland, OH, USA
| | - Craig Portell
- Division of Hematology/Oncology, University of Virginia, Charlottesville, VA, USA
| | - Timothy Voorhees
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Daniel J Landsburg
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Manali Kamdar
- University of Colorado Cancer Center, Aurora, CO, USA
| | - Brad S Kahl
- Barnes-Jewish Hospital, Washington University in St. Louis, St. Louis, MO, USA
| | - Brian T Hill
- Department of Hematology and Medical Oncology, Taussig Cancer Institute, Cleveland, OH, USA
| |
Collapse
|
4
|
Deng Y, Diepstraten ST, Potts MA, Giner G, Trezise S, Ng AP, Healey G, Kane SR, Cooray A, Behrens K, Heidersbach A, Kueh AJ, Pal M, Wilcox S, Tai L, Alexander WS, Visvader JE, Nutt SL, Strasser A, Haley B, Zhao Q, Kelly GL, Herold MJ. Generation of a CRISPR activation mouse that enables modelling of aggressive lymphoma and interrogation of venetoclax resistance. Nat Commun 2022; 13:4739. [PMID: 35961968 PMCID: PMC9374748 DOI: 10.1038/s41467-022-32485-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 07/29/2022] [Indexed: 11/25/2022] Open
Abstract
CRISPR technologies have advanced cancer modelling in mice, but CRISPR activation (CRISPRa) methods have not been exploited in this context. We establish a CRISPRa mouse (dCas9a-SAMKI) for inducing gene expression in vivo and in vitro. Using dCas9a-SAMKI primary lymphocytes, we induce B cell restricted genes in T cells and vice versa, demonstrating the power of this system. There are limited models of aggressive double hit lymphoma. Therefore, we transactivate pro-survival BCL-2 in Eµ-MycT/+;dCas9a-SAMKI/+ haematopoietic stem and progenitor cells. Mice transplanted with these cells rapidly develop lymphomas expressing high BCL-2 and MYC. Unlike standard Eµ-Myc lymphomas, BCL-2 expressing lymphomas are highly sensitive to the BCL-2 inhibitor venetoclax. We perform genome-wide activation screens in these lymphoma cells and find a dominant role for the BCL-2 protein A1 in venetoclax resistance. Here we show the potential of our CRISPRa model for mimicking disease and providing insights into resistance mechanisms towards targeted therapies. Modelling of aggressive lymphomas, such as double hit lymphoma, has been challenging. Here the authors engineer a CRISPR activation mouse to enable the generation of these aggressive lymphomas and identify the pro-survival BCL-2 protein A1 as a venetoclax resistance factor.
Collapse
Affiliation(s)
- Yexuan Deng
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China.,The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
| | - Sarah T Diepstraten
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Margaret A Potts
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Göknur Giner
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Stephanie Trezise
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Ashley P Ng
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Gerry Healey
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Serena R Kane
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Amali Cooray
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Kira Behrens
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Amy Heidersbach
- School of Dentistry and Medical Sciences, Charles Sturt University, Wagga Wagga, NSW, Australia
| | - Andrew J Kueh
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Martin Pal
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia.,School of Dentistry and Medical Sciences, Charles Sturt University, Wagga Wagga, NSW, Australia
| | - Stephen Wilcox
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Lin Tai
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
| | - Warren S Alexander
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Jane E Visvader
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Stephen L Nutt
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Andreas Strasser
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Benjamin Haley
- Department of Molecular Biology, Genentech, Inc., South San Francisco, CA, USA
| | - Quan Zhao
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Gemma L Kelly
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Marco J Herold
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia. .,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
5
|
Liu X, Xu S, Zhang J, Fan M, Xie J, Zhang B, Li H, Yu G, Liu Y, Zhang Y, Song J, Horne D, Chan WC, Chu X, Huang W. Targeting MYC and BCL2 by a natural compound for "double-hit" lymphoma. Hematol Oncol 2022; 40:356-369. [PMID: 35482553 PMCID: PMC9378491 DOI: 10.1002/hon.3010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 04/07/2022] [Accepted: 04/24/2022] [Indexed: 11/30/2022]
Abstract
Concurrent translocations of MYC and BCL2 lead to abnormal expression of both oncoproteins, which contribute to the aggressive clinical characteristics of double-hit lymphoma (DHL). An effective therapy for DHL remains an unmet clinical need. In this study, we showed that both Ca2+ /calmodulin-dependent protein kinase II δ (CAMKIIδ) and γ (CAMKIIγ) were highly expressed in DHL. Both isoforms of CAMKII stabilize c-Myc protein by phosphorylating it at Ser62, increase BCL2 expression, and promote DHL tumor growth. Inhibition of CAMKIIδ and CAMKIIγ by either berbamine (BBM) or one of its derivatives (PA4) led to the down regulation of c-Myc and BCL2 proteins. BBM/PA4 also exhibited anti-tumor efficacy in DHL cell lines and NSG xenograft models. Altogether, CAMKIIδ and CAMKIIγ appear to be critical for DHL tumor development and are promising therapeutic targets for DHL.
Collapse
Affiliation(s)
- Xiaoqian Liu
- Department of HematologyThe Affiliated Yantai Yuhuangding Hospital of Qingdao UniversityYantaiShandongChina
- Molecular and Cellular Biology of Cancer Program & Department of Diabetes Complications and MetabolismBeckman Research InstituteCity of HopeDuarteCaliforniaUSA
| | - Senlin Xu
- Molecular and Cellular Biology of Cancer Program & Department of Diabetes Complications and MetabolismBeckman Research InstituteCity of HopeDuarteCaliforniaUSA
| | - Jiawei Zhang
- Molecular and Cellular Biology of Cancer Program & Department of Diabetes Complications and MetabolismBeckman Research InstituteCity of HopeDuarteCaliforniaUSA
| | - Mingjie Fan
- Molecular and Cellular Biology of Cancer Program & Department of Diabetes Complications and MetabolismBeckman Research InstituteCity of HopeDuarteCaliforniaUSA
| | - Jun Xie
- Department of Molecular MedicineCity of Hope National Medical CenterDuarteCaliforniaUSA
| | - Bingfeng Zhang
- Department of Molecular MedicineCity of Hope National Medical CenterDuarteCaliforniaUSA
| | - Hongzhi Li
- Department of Molecular MedicineCity of Hope National Medical CenterDuarteCaliforniaUSA
| | - Guohua Yu
- Department of PathologyThe Affiliated Yantai Yuhuangding Hospital of Qingdao UniversityYantaiShandongChina
| | - Yinghui Liu
- Department of HematologyThe Affiliated Yantai Yuhuangding Hospital of Qingdao UniversityYantaiShandongChina
| | - Yuanfeng Zhang
- Department of HematologyThe Affiliated Yantai Yuhuangding Hospital of Qingdao UniversityYantaiShandongChina
| | - Joo Song
- Department of PathologyCity of Hope National Medical CenterDuarteCaliforniaUSA
| | - David Horne
- Department of Molecular MedicineCity of Hope National Medical CenterDuarteCaliforniaUSA
| | - Wing C. Chan
- Department of PathologyCity of Hope National Medical CenterDuarteCaliforniaUSA
| | - Xiaoxia Chu
- Department of HematologyThe Affiliated Yantai Yuhuangding Hospital of Qingdao UniversityYantaiShandongChina
| | - Wendong Huang
- Molecular and Cellular Biology of Cancer Program & Department of Diabetes Complications and MetabolismBeckman Research InstituteCity of HopeDuarteCaliforniaUSA
| |
Collapse
|
6
|
Ma C, Liu M, Zhang J, Cai H, Wu Y, Zhang Y, Ji Y, Shan H, Zou Z, Yang L, Liu L, Xu H, Lei H, Liu C, Zhou L, Cao Y, Zhou H, Wu Y. ZCL-082, a boron-containing compound, induces apoptosis of non-Hodgkin's lymphoma via targeting p90 ribosomal S6 kinase 1/NF-κB signaling pathway. Chem Biol Interact 2022; 351:109770. [PMID: 34861246 DOI: 10.1016/j.cbi.2021.109770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 10/07/2021] [Accepted: 11/29/2021] [Indexed: 11/17/2022]
Abstract
INTRODUCTION Despite the rapid progress in the diagnosis and treatment, the prognosis of some types of non-Hodgkin's lymphoma (NHL), especially those with double-hit or double-expressor genotypes, remains poor. Novel targets and compounds are needed to improve the prognosis of NHL. METHODS We investigated the effect of ZCL-082, a novel boron-containing compound with anti-proliferating activity against ovarian cancer cells, on NHL cells and human peripheral blood mononuclear cells by CCK-8 assay, Annexin V/PI double staining assay, RH123/PI double staining, Western blot, and immunohistochemistry. NF-κB pathway activity was analyzed using luciferase reporter gene assay and RT-PCR. The location of p65 was detected by immunofluorescence and nuclear/cytoplasmic fractionation assay. Immunoprecipitation and chromatin immunoprecipitation assays were used to detect the binding between p65 and p300. CETSA and molecular docking assay were carried out to test the interaction between ZCL-082 and p90 ribosomal S6 kinase 1 (RSK1). Kinase reaction was conducted to examine the inhibition of RSK1 kinase activity by ZCL-082. RESULTS We found that ZCL-082 can induce the apoptosis of various NHL cell lines in vitro and in vivo. ZCL-082 significantly inhibits TNFα- or LPS-induced NF-κB activation without disturbing TNFα-induced IκBα degradation or the nuclear translocation and DNA-binding ability of p65. However, ZCL-082 markedly suppresses the phosphorylation of p65 on Ser536 and the interaction between p65 and p300. The overexpression of the phosphomimetic mutant of p65 at Ser536 partially abrogates ZCL-082-induced cell death. We further found that ZCL-082 directly binds to and inhibits the activity of RSK1. RSK1 can phosphorylate RelA/p65 on Ser536 and its overexpression is associated with the poor prognosis of lymphoma. The overexpression of RSK1 partially rescues ZCL-082-induced cell death. Molecular docking studies show that ZCL-082 fits well with the N-terminal kinase domain of RSK1. Furthermore, the combination of ZCL-082 and BCL-2 inhibitor ABT-199 has a synergistic apoptosis-inducing effect against double-hit lymphoma cell line OCI-Ly10. DISCUSSION We found that ZCL-082 is a highly promising anti-lymphoma compound that targets RSK1 and interferes with the RSK1/NF-κB signaling pathway. The combination of ZCL-082 with BCL-2 inhibitor may represent a novel strategy to improve the outcome of double-hit or double-expressor lymphoma.
Collapse
Affiliation(s)
- Chunmin Ma
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital / Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China; Department of Rehabilitation, Shanghai General Hospital, Shanghai Jiao Tong University, No. 100, Haining Road, Shanghai, 200080, China
| | - Meng Liu
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital / Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jiong Zhang
- State Key Laboratory of Microbial Metabolism, School of Pharmacy, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Haiyan Cai
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital / Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yunzhao Wu
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital / Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Ying Zhang
- Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Yanjie Ji
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital / Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Huizhuang Shan
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital / Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Zhihui Zou
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital / Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Li Yang
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital / Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Ligen Liu
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital / Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Hanzhang Xu
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital / Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Hu Lei
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital / Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Chuanxu Liu
- Department of Hematology, Xin-Hua Hospital, Shanghai Jiao Tong University School of Medicine, No.197, Ruijin Er Road, Shanghai, China
| | - Li Zhou
- Department of Hematology, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, No.197, Ruijin Er Road, Shanghai, China
| | - Yang Cao
- Department of Hematology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, 213003, PR China
| | - Huchen Zhou
- State Key Laboratory of Microbial Metabolism, School of Pharmacy, Shanghai Jiao Tong University, 200240, Shanghai, China.
| | - Yingli Wu
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital / Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
7
|
Ibrutinib combined with venetoclax for the treatment of relapsed/refractory diffuse large B cell lymphoma. Ann Hematol 2021; 100:1509-1516. [PMID: 33900450 DOI: 10.1007/s00277-021-04535-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 04/16/2021] [Indexed: 10/21/2022]
Abstract
Treatment outcomes of relapsed/refractory diffuse large B cell lymphoma (R/R DLBCL) are far from satisfactory. Certain efficacy of ibrutinib has been observed in non-GCB subtype DLBCL patients. This study aimed to investigate the efficacy and safety of ibrutinib plus BCL2 inhibitor venetoclax in R/R DLBCL patients with non-GCB subtype and BCL2 overexpression. Combinational therapy (ibrutinib 560mg/day; venetoclax started 1 week later, oral dose increased from 100 to 400mg/day in 3 weeks) was conducted, and one cycle was 4 weeks. Both drugs were stopped when disease progress or serious adverse reactions appear. The primary end-point was overall response rate (ORR) at two cycles. From December 2018 to July 2020, a total of 13 patients were treated with the combined therapy. Among them, eleven (84.6%) patients previously received at least two treatment regimens, eight (61.5%) patients were C-myc and BCL2 double expression. The ORR at two cycles was 61.5%, with 3 (23.1%) patients achieved complete remission (CR) and 5 (38.4%) patients achieved partial remission (PR). The ORR at four cycles and six cycles was 53.8% and 46.2%, respectively. The median duration of response was 11 months (range, 1.5-13.6 months). The median progression-free survival and overall survival were 5.6 months (range, 0.4-15.6) and 11.3 months (range, 2.8-17.2), respectively. The most common adverse event was grade 1/2 neutropenia (53.8%), and nonhematologic toxicities included Grade1/2 diarrhea (46.2%) and elevated liver enzymes (30.8%). Combined therapy of ibrutinib and venetoclax showed promising efficacy and synergistic effects in R/R DLBCL patients with non-GCB subtype and BCL2 overexpression, and the toxicities were well-tolerated.
Collapse
|
8
|
Yuan D, Li G, Yu L, Jiang Y, Shi Y, Chen Q, Ma X, Pham LV, Young KH, Deng M, Fang Z, Xu B. CS2164 and Venetoclax Show Synergistic Antitumoral Activities in High Grade B-Cell Lymphomas With MYC and BCL2 Rearrangements. Front Oncol 2021; 11:618908. [PMID: 33777762 PMCID: PMC7988232 DOI: 10.3389/fonc.2021.618908] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 01/25/2021] [Indexed: 01/03/2023] Open
Abstract
High-grade B-cell lymphoma with concurrent MYC and BCL2 rearrangements (HGBL-DHL) is a rare, aggressive mature B-cell malignancy with a high likelihood of treatment failure following front-line immunochemotherapies. Patients with HGBL-DHL who develop a relapsed or refractory disease have little effective therapeutic strategies and show very poor clinical outcomes, thus calling for development of novel therapies for this specific patient population. In this study, we investigated the preclinical anti-lymphoma efficacies and potential mechanism of action of a novel treatment approach, combining the BCL2 inhibitor venetoclax with CS2164, a new orally active multitarget inhibitor, in HGBL-DHL models. This combination therapy exhibited a robust synergistic cytotoxicity against HGBL-DHL cells, evidenced by cooperatively inducing loss of cell viability and promoting cell apoptosis. Moreover, coadministration of CS2164 and venetoclax resulted in significant superior suppression of HGBL-DHL cell growth and remarkably abrogated tumor burden in a HGBL-DHL-xenografted mouse model. The synergistic lethality of CS2164 and venetoclax in HGBL-DHL cells was associated with induction of DNA damage and impairment of DNA repair ability. Of importance, the combined treatment almost abolished the expression of both BCL2 and MYC, two hallmark proteins of HGBL-DHL, and substantially blunted the activity of PI3K/AKT/mTOR signaling cascade. In addition, MCL1 and BCL-XL, two well-characterized contributors for venetoclax resistance, were significantly lessened in the presence of CS2164 and venetoclax, thus leading to the accumulation of proapoptotic proteins BAX and PUMA and then initiating the intrinsic apoptosis pathway. Taken together, these findings suggest that the regimen of CS2164 and venetoclax is highly effective to eliminate HGBL-DHL cells in the preclinical setting, warranting further clinical investigations of this regimen for the treatment of unfavorable HGBL-DHL patients.
Collapse
Affiliation(s)
- Delin Yuan
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, China
- Department of Hematology, Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, Xiamen, China
| | - Genhong Li
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, China
- Department of Hematology, Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, Xiamen, China
| | - Lian Yu
- Department of Hematology and Rheumatology, Longyan First Hospital Affiliated to Fujian Medical University, Longyan, China
| | - Yuelong Jiang
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, China
- Department of Hematology, Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, Xiamen, China
| | - Yuanfei Shi
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, China
- Department of Hematology, Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, Xiamen, China
| | - Qiulin Chen
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, China
- Department of Hematology, Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, Xiamen, China
| | - Xiaomei Ma
- Department of Hematology and Rheumatology, Longyan First Hospital Affiliated to Fujian Medical University, Longyan, China
| | - Lan V. Pham
- Biology, Tumor Dependency, Phamacyclics, Abbvie Company, San Francisco, CA, United States
| | - Ken H. Young
- Division of Hematopathology, Department of Pathology, Duke University Medical Center, Duke University, Durham, NC, United States
| | - Manman Deng
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, China
- Department of Hematology, Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, Xiamen, China
| | - Zhihong Fang
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, China
- Department of Hematology, Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, Xiamen, China
| | - Bing Xu
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, China
- Department of Hematology, Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, Xiamen, China
| |
Collapse
|
9
|
Assi R, Masri N, Abou Dalle I, El-Cheikh J, Bazarbachi A. Post-Transplant Maintenance Therapy for Patients with Acute Myeloid Leukemia: Current Approaches and the Need for More Trials. J Blood Med 2021; 12:21-32. [PMID: 33531851 PMCID: PMC7847363 DOI: 10.2147/jbm.s270015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 01/05/2021] [Indexed: 12/18/2022] Open
Abstract
Relapse rates following allogeneic stem cell transplantation for acute myeloid leukemia remain unacceptably high and a major cause of death. Maintenance therapies post-transplant administered either to patients with impending relapse or at high risk of relapse could present a strategy to improve survival and overall outcomes. With the increasing use of molecular and genomic characterization of the disease, more novel therapies became available as maintenance strategies. These options were, however, hindered by excessive toxicities, mostly hematologic, especially with the use of myeloablative conditioning regimens. Several key questions have also emerged including the efficacy of these therapies, the duration of maintenance, as well as the potential modulation of the graft and the immune microenvironment. These issues are further complicated by the paucity of well-designed prospective randomized clinical trials evaluating these agents. Future directions in this field should include better risk stratification and patient selection based on assays of minimal residual disease, as well as the incorporation of novel targets and pathways of leukemogenesis. In this article, we highlight the current evidence behind the use of post-transplant maintenance therapy, the optimal patient and disease selection, as well as the challenges faced by these strategies in an area that remains quite controversial. We will focus on therapies targeting leukemia stem cells that directly or indirectly modulate the allografted immune microenvironment and augment the graft-versus-leukemia impact.
Collapse
Affiliation(s)
- Rita Assi
- Division of Hematology-Oncology, Lebanese American University and Lebanese American University Medical Center-Rizk Hospital, Beirut, Lebanon
| | - Nohad Masri
- Division of Hematology-Oncology, Lebanese American University and Lebanese American University Medical Center-Rizk Hospital, Beirut, Lebanon
| | - Iman Abou Dalle
- Division of Hematology-Oncology, American University of Beirut Medical Center, Beirut, Lebanon
| | - Jean El-Cheikh
- Division of Hematology-Oncology, American University of Beirut Medical Center, Beirut, Lebanon
| | - Ali Bazarbachi
- Division of Hematology-Oncology, American University of Beirut Medical Center, Beirut, Lebanon
| |
Collapse
|
10
|
Sica A, Sagnelli C, Vitiello P, Franco R, Argenziano G, Ciccozzi M, Sagnelli E, Ronchi A. Rescue Therapy of Refractory Diffuse Large B-Cell Lymphomas BCL2 with Venetoclax: Case Report. Chemotherapy 2021; 65:161-165. [PMID: 33477155 DOI: 10.1159/000512541] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 10/23/2020] [Indexed: 11/19/2022]
Abstract
Eleven years ago, a 64-year-old Caucasian man had LNH Follicular 3a, IV A stage, FLIPI 2 as a prognostic index of follicular lymphoma. He received 8 cycles of RCHOP followed by rituximab maintenance, with complete remission. Due to a systemic recurrence, a new treatment schedule (RCOMP, 6 cycles) was introduced with partial remission persisting during a long-term maintenance treatment with rituximab. Three years ago, LNH Follicular 3a progressed into GC type diffuse large B-cell lymphomas (DLBCL); 6 cycles of rituximab and bendamustine were followed by R-ICE and R OXALI DHAP treatments without beneficial effect. Due to the worse general condition (ECOG 3-4), the patient was treated with pixantrone (6 cycles) until July 10, 2019, with a partial response. On Jan 13, 2020, an extreme compassioned treatment with venetoclax alone was started; this drug was well tolerated and provided a satisfactory clinical and laboratory improvement. In June 2020, however, he developed bone marrow toxicity and septic fever. Nasal and pharyngeal secretions were SARS-CoV-2 RNA negative. Blood cultures for mycotic agents and Gram-positive, Gram-negative, and anaerobic bacteria were negative, but few days later, the patients died of sepsis due to unidentified agents. The use of venetoclax as a single drug to treat DLBCL BCL2 patients deserves further investigation.
Collapse
Affiliation(s)
- Antonello Sica
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Caterina Sagnelli
- Department of Mental Health and Public Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy,
| | - Paola Vitiello
- Dermatology Unit, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Renato Franco
- Department of Mental and Physical Health and Preventive Medicine, Pathology Unit, University of Campania "Luigi Vanvitelli", Naples, Italy
| | | | - Massimo Ciccozzi
- Medical Statistics and Molecular Epidemiology, Campus Bio-Medico University, Rome, Italy
| | - Evangelista Sagnelli
- Department of Mental Health and Public Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Andrea Ronchi
- Department of Mental and Physical Health and Preventive Medicine, Pathology Unit, University of Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
11
|
Shi W, Jin W, Xia L, Hu Y. Novel agents targeting leukemia cells and immune microenvironment for prevention and treatment of relapse of acute myeloid leukemia after allogeneic hematopoietic stem cell transplantation. Acta Pharm Sin B 2020; 10:2125-2139. [PMID: 32837873 PMCID: PMC7326461 DOI: 10.1016/j.apsb.2020.06.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/27/2020] [Accepted: 06/05/2020] [Indexed: 12/20/2022] Open
Abstract
Relapse remains the worst life-threatening complications after allogeneic hematopoietic stem cell transplantation (allo-HSCT) in patients with acute myeloid leukemia (AML), whose prognosis has been historically dismal. Given the rapid development of genomics and immunotherapies, the interference strategies for AML recurrence have been changing these years. More and more novel targeting agents that have received the U.S. Food and Drug Administration (FDA) approval for de novo AML treatment have been administrated in the salvage or maintenance therapy of post-HSCT relapse. Targeted strategies that regulate the immune microenvironment of and optimize the graft versus leukemia (GVL) effect of immune cells are gradually improved. Such agents not only have been proven to achieve clinical benefits from a single drug, but if combined with classic therapies, can significantly improve the poor prognosis of AML patients who relapse after allo-HSCT. This review will focus on currently available and promising upcoming agents and also discuss the challenges and limitations of targeted therapies in the allogeneic hematopoietic stem cell transplantation community.
Collapse
Affiliation(s)
- Wei Shi
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109-1024, USA
| | - Weiwei Jin
- Department of Cardiovascular, Optical Valley School District, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan 430061, China
- Hubei Province Academy of Traditional Chinese Medicine, Wuhan 430074, China
| | - Linghui Xia
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yu Hu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
12
|
Dwivedi N, Mondal S, P. K. S, T. S, Sachdeva K, Bathula C, K. V, K. S. N, Damodar S, Dhar SK, Das M. Relative quantification of BCL2 mRNA for diagnostic usage needs stable uncontrolled genes as reference. PLoS One 2020; 15:e0236338. [PMID: 32785215 PMCID: PMC7423076 DOI: 10.1371/journal.pone.0236338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 07/02/2020] [Indexed: 01/21/2023] Open
Abstract
Dysregulation of BCL2 is a pathophysiology observed in haematological malignancies. For implementation of available treatment-options it is preferred to know the relative quantification of BCL2 mRNA with appropriate reference genes. For the choice of reference genes-(i) Reference Genes were selected by assessing variation of >60,000 genes from 4 RNA-seq datasets of haematological malignancies followed by filtering based on their GO biological process annotations and proximity of their chromosomal locations to known disease translocations. Selected genes were experimentally validated across various haematological malignancy samples followed by stability comparison using geNorm, NormFinder, BestKeeper and RefFinder. (ii) 43 commonly used Reference Genes were obtained from literature through extensive systematic review. Levels of BCL2 mRNA was assessed by qPCR normalized either by novel reference genes from this study or GAPDH, the most cited reference gene in literature and compared. The analysis showed PTCD2, PPP1R3B and FBXW9 to be the most unregulated genes across lymph-nodes, bone marrow and PBMC samples unlike the Reference Genes used in literature. BCL2 mRNA level shows a consistent higher expression in haematological malignancy patients when normalized by these novel Reference Genes as opposed to GAPDH, the most cited Reference Gene. These reference genes should also be applicable in qPCR platforms using Taqman probes and other model systems including cell lines and rodent models. Absence of sample from healthy-normal individual in diagnostic cases call for careful selection of Reference Genes for relative quantification of a biomarker by qPCR.BCL2 can be used as molecular diagnostics only if normalized with a set of reference genes with stable yet low levels of expression across different types of haematological malignancies.
Collapse
MESH Headings
- Animals
- Biomarkers, Tumor/blood
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/isolation & purification
- Bone Marrow/pathology
- Cell Line, Tumor
- Datasets as Topic
- Disease Models, Animal
- Feasibility Studies
- Gene Expression Regulation, Neoplastic
- Genes, Essential
- Hematologic Neoplasms/blood
- Hematologic Neoplasms/diagnosis
- Hematologic Neoplasms/genetics
- Hematologic Neoplasms/pathology
- Humans
- Leukocytes, Mononuclear
- Proto-Oncogene Proteins c-bcl-2/blood
- Proto-Oncogene Proteins c-bcl-2/genetics
- Proto-Oncogene Proteins c-bcl-2/isolation & purification
- RNA, Messenger/blood
- RNA, Messenger/genetics
- RNA, Messenger/isolation & purification
- RNA-Seq/standards
- Real-Time Polymerase Chain Reaction/standards
- Reference Standards
Collapse
Affiliation(s)
- Nehanjali Dwivedi
- Tumor Immunology Program, MSMF, MSMC, Narayana Health City, Bangalore, India
- MAHE, Manipal, India
| | - Sreejeta Mondal
- Tumor Immunology Program, MSMF, MSMC, Narayana Health City, Bangalore, India
| | - Smitha P. K.
- Tumor Immunology Program, MSMF, MSMC, Narayana Health City, Bangalore, India
| | - Sowmya T.
- Tumor Immunology Program, MSMF, MSMC, Narayana Health City, Bangalore, India
| | - Kartik Sachdeva
- Tumor Immunology Program, MSMF, MSMC, Narayana Health City, Bangalore, India
| | - Christopher Bathula
- Tumor Immunology Program, MSMF, MSMC, Narayana Health City, Bangalore, India
| | - Vishnupriyan K.
- Tumor Immunology Program, MSMF, MSMC, Narayana Health City, Bangalore, India
| | - Nataraj K. S.
- Department of Haematology, MSMF, MSMC, Narayana Health City, Bangalore, India
| | - Sharat Damodar
- Department of Haematology, MSMF, MSMC, Narayana Health City, Bangalore, India
| | - Sujan K. Dhar
- Beyond Antibody, InCite Labs, MSMF, MSMC, Narayana Health City, Bangalore, India
| | - Manjula Das
- Tumor Immunology Program, MSMF, MSMC, Narayana Health City, Bangalore, India
- Beyond Antibody, InCite Labs, MSMF, MSMC, Narayana Health City, Bangalore, India
| |
Collapse
|
13
|
A practical approach to FISH testing for MYC rearrangements and brief review of MYC in aggressive B-cell lymphomas. J Hematop 2020. [DOI: 10.1007/s12308-020-00404-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
14
|
Molecular Complexity of Diffuse Large B-Cell Lymphoma: Can It Be a Roadmap for Precision Medicine? Cancers (Basel) 2020; 12:cancers12010185. [PMID: 31940809 PMCID: PMC7017344 DOI: 10.3390/cancers12010185] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/07/2020] [Accepted: 01/09/2020] [Indexed: 12/11/2022] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is the most common non-Hodgkin lymphoma; it features extreme molecular heterogeneity regardless of the classical cell-of-origin (COO) classification. Despite this, the standard therapeutic approach is still immunochemotherapy (rituximab plus cyclophosphamide, doxorubicin, vincristine, and prednisone-R-CHOP), which allows a 60% overall survival (OS) rate, but up to 40% of patients experience relapse or refractory (R/R) disease. With the purpose of searching for new clinical parameters and biomarkers helping to make a better DLBCL patient characterization and stratification, in the last years a series of large discovery genomic and transcriptomic studies has been conducted, generating a wealth of information that needs to be put in order. We reviewed these researches, trying ultimately to understand if there are bases offering a roadmap toward personalized and precision medicine also for DLBCL.
Collapse
|
15
|
Phuoc V, Sandoval-Sus J, Chavez JC. Drug therapy for double-hit lymphoma. Drugs Context 2019; 8:dic-8-2019-8-1. [PMID: 31844420 PMCID: PMC6905641 DOI: 10.7573/dic.2019-8-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/15/2019] [Accepted: 10/17/2019] [Indexed: 12/19/2022] Open
Abstract
Double-hit lymphoma (DHL) is a rare type of aggressive B-cell lymphoma defined as a high-grade B-cell lymphoma (HGBCL) with the presence of MYC, BCL2 and/or BCL6 rearrangements. Patients usually present with rapidly progressive and advanced stage of disease and, commonly, with extranodal involvement. Typically, patients become refractory to standard R-CHOP, and more aggressive regimens such as DA-EPOCH-R, R-hyperCVAD or CODOX-R regimens are typically needed. MYC is considered an “undruggable” mutation. Recent evidence suggests that pathogenic mechanisms associated with MYC could be potential targets. In this review, we also discuss the role of hematopoietic stem cell transplantation (HCT) and chimeric antigen receptor (CAR) T-cell therapy in DHL. We also discuss the role of potential novel agents such as BCL2 inhibitors, checkpoint inhibitors, bromodomain and extraterminal (BET) family inhibitors, Pi3K inhibitors, and others.
Collapse
Affiliation(s)
- Vania Phuoc
- Division Hematology/Oncology, University of South Florida, Tampa, FL, USA
| | - Jose Sandoval-Sus
- Department of Malignant Hematology and Cellular Therapy at Memorial Healthcare System, Pembroke Pines, FL, USA
| | - Julio C Chavez
- Department of Malignant Hematology, Moffitt Cancer Center, Tampa FL, USA
| |
Collapse
|
16
|
de Jong MRW, Langendonk M, Reitsma B, Nijland M, van den Berg A, Ammatuna E, Visser L, van Meerten T. Heterogeneous Pattern of Dependence on Anti-Apoptotic BCL-2 Family Proteins upon CHOP Treatment in Diffuse Large B-Cell Lymphoma. Int J Mol Sci 2019; 20:ijms20236036. [PMID: 31801186 PMCID: PMC6928684 DOI: 10.3390/ijms20236036] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 11/28/2019] [Accepted: 11/29/2019] [Indexed: 12/20/2022] Open
Abstract
Expression of the anti-apoptotic B-cell lymphoma 2 (BCL-2) protein in patients with diffuse large B-cell lymphoma (DLBCL) strongly correlates with resistance to standard therapy with cyclophosphamide, vincristine, doxorubicin, prednisolone, and rituximab (R-CHOP). Although studies focus mainly on the contribution of BCL-2, here we also investigate the contribution of other anti-apoptotic proteins to CHOP-therapy resistance in DLBCL. Functional dynamic BCL-2 homology (BH)3 profiling was applied to DLBCL cell lines upon CHOP treatment or single CHOP compounds. Cell-specific anti-apoptotic dependencies were validated with corresponding BH3-mimetics. We found high expression of anti-apoptotic BCL-2, MCL-1, and BCL-XL in DLBCL cell lines and patients. CHOP treatment resulted in both enhanced and altered anti-apoptotic dependency. Enhanced sensitivity to different BH3-mimetics after CHOP treatment was confirmed in specific cell lines, indicating heterogeneity of CHOP-induced resistance in DLBCL. Analysis of single CHOP compounds demonstrated that similar changes could also be induced by doxorubicin or vincristine, providing evidence for clinical combination therapies of doxorubicin or vincristine with BH3-mimetics in DLBCL. In conclusion, we show for the first time that CHOP treatment induces increased anti-apoptotic dependency on MCL-1 and BCL-XL, and not just BCL-2. These results provide new perspectives for the treatment of CHOP-resistant DLBCL and underline the potential of BH3 profiling in predicting therapy outcomes.
Collapse
MESH Headings
- Aniline Compounds/pharmacology
- Antineoplastic Agents/pharmacology
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Bcl-2-Like Protein 11/genetics
- Bcl-2-Like Protein 11/metabolism
- Bridged Bicyclo Compounds, Heterocyclic/pharmacology
- Cell Line, Tumor
- Cell Survival/drug effects
- Cyclophosphamide/therapeutic use
- Doxorubicin/therapeutic use
- Drug Resistance, Neoplasm/genetics
- Gene Expression Regulation, Neoplastic
- Humans
- Lymphoma, Large B-Cell, Diffuse/drug therapy
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/metabolism
- Lymphoma, Large B-Cell, Diffuse/pathology
- Myeloid Cell Leukemia Sequence 1 Protein/antagonists & inhibitors
- Myeloid Cell Leukemia Sequence 1 Protein/genetics
- Myeloid Cell Leukemia Sequence 1 Protein/metabolism
- Prednisone/therapeutic use
- Prognosis
- Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors
- Proto-Oncogene Proteins c-bcl-2/genetics
- Proto-Oncogene Proteins c-bcl-2/metabolism
- Pyrimidines/pharmacology
- Rituximab/therapeutic use
- Signal Transduction
- Sulfonamides/pharmacology
- Thiophenes/pharmacology
- Treatment Outcome
- Vincristine/therapeutic use
- bcl-X Protein/antagonists & inhibitors
- bcl-X Protein/genetics
- bcl-X Protein/metabolism
Collapse
Affiliation(s)
- Mathilde Rikje Willemijn de Jong
- Department of Hematology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (M.R.W.d.J.); (M.L.); (B.R.); (M.N.); (E.A.)
| | - Myra Langendonk
- Department of Hematology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (M.R.W.d.J.); (M.L.); (B.R.); (M.N.); (E.A.)
| | - Bart Reitsma
- Department of Hematology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (M.R.W.d.J.); (M.L.); (B.R.); (M.N.); (E.A.)
| | - Marcel Nijland
- Department of Hematology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (M.R.W.d.J.); (M.L.); (B.R.); (M.N.); (E.A.)
| | - Anke van den Berg
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, the Netherlands; (A.v.d.B.); (L.V.)
| | - Emanuele Ammatuna
- Department of Hematology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (M.R.W.d.J.); (M.L.); (B.R.); (M.N.); (E.A.)
| | - Lydia Visser
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, the Netherlands; (A.v.d.B.); (L.V.)
| | - Tom van Meerten
- Department of Hematology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (M.R.W.d.J.); (M.L.); (B.R.); (M.N.); (E.A.)
- Correspondence: ; Tel.: +31-50-361-1761
| |
Collapse
|
17
|
Girmenia C. New hematologic populations at risk of invasive aspergillosis: focus on new targeted, biological, and cellular therapies. F1000Res 2019; 8. [PMID: 31372213 PMCID: PMC6662679 DOI: 10.12688/f1000research.17836.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/17/2019] [Indexed: 12/14/2022] Open
Abstract
The introduction of new targeted, biological, and cellular therapies in patients with hematologic malignancies has improved the outcomes of patients but in parallel has changed the frequency and epidemiology of infections, including invasive aspergillosis (IA). In this article, recent literature on the epidemiology and clinical findings of IA in patients who have lymphoproliferative and myeloproliferative diseases and are undergoing novel targeted treatment with kinase inhibitors, agents targeting cell surface antigens, chimeric antigen receptor-modified T cells, and antibodies to immune checkpoint molecules is reviewed and the clinical impact of IA on the overall management of the underlying disease is discussed. Overall, IA represents a variable and uncommon complication in these populations, but given the increasing eligibility criteria of these novel treatments (particularly in patients with relapsed or refractory hematologic malignancies) and the prolonged periods of therapy, a considerable number of unusual cases of
Aspergillus infections can be expected in clinical practice.
Collapse
Affiliation(s)
- Corrado Girmenia
- Dipartimento di Ematologia, Oncologia, e Dermatologia, Azienda Policlinico Umberto I, Sapienza University of Rome, Rome, Italy
| |
Collapse
|