1
|
Bolideei M, Barzigar R, Gahrouei RB, Mohebbi E, Haider KH, Paul S, Paul MK, Mehran MJ. Applications of Gene Editing and Nanotechnology in Stem Cell-Based Therapies for Human Diseases. Stem Cell Rev Rep 2025:10.1007/s12015-025-10857-0. [PMID: 40014250 DOI: 10.1007/s12015-025-10857-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2025] [Indexed: 02/28/2025]
Abstract
Stem cell research is a dynamic and fast-advancing discipline with great promise for the treatment of diverse human disorders. The incorporation of gene editing technologies, including ZFNs, TALENs, and the CRISPR/Cas system, in conjunction with progress in nanotechnology, is fundamentally transforming stem cell therapy and research. These innovations not only provide a glimmer of optimism for patients and healthcare practitioners but also possess the capacity to radically reshape medical treatment paradigms. Gene editing and nanotechnology synergistically enhance stem cell-based therapies' precision, efficiency, and applicability, offering transformative potential for treating complex diseases and advancing regenerative medicine. Nevertheless, it is important to acknowledge that these technologies also give rise to ethical considerations and possible hazards, such as inadvertent genetic modifications and the development of genetically modified organisms, therefore creating a new age of designer infants. This review emphasizes the crucial significance of gene editing technologies and nanotechnology in the progress of stem cell treatments, particularly for degenerative pathologies and injuries. It emphasizes their capacity to restructure and comprehensively revolutionize medical treatment paradigms, providing fresh hope and optimism for patients and healthcare practitioners.
Collapse
Affiliation(s)
- Mansoor Bolideei
- Department of Respiratory and Critical Care Medicine, the Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Rambod Barzigar
- Department of Biotechnology, SJCE Technical Campus, JSS Research Foundation, University of Mysore, Mysore, 570006, Karnataka, India
| | - Razieh Bahrami Gahrouei
- Department of Pharmacy PES College, Rajiv Gandhi University of Health Sciences, Bangalore, Karnataka, India
| | - Elham Mohebbi
- Department of Medical Microbiology, Immunology, and Cell Biology, Southern Illinois School of Medicine, Springfield, IL, USA
| | - Khawaja Husnain Haider
- Sulaiman AlRajhi Medical School, Al Bukayriyah, AlQaseem, 52726, Kingdom of Saudi Arabia
| | - Sayan Paul
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch at Galveston, Galveston, TX, 77555, USA.
| | - Manash K Paul
- Department of Radiation Biology and Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| | - Mohammad Javad Mehran
- Department of Biotechnology, SJCE Technical Campus, JSS Research Foundation, University of Mysore, Mysore, 570006, Karnataka, India.
| |
Collapse
|
2
|
Zanganeh S, Zahedi AM, Sattarzadeh Bardsiri M, Bazi A, Bastanifard M, Shool S, Kouhbananinejad SM, Farsinejad A, Afgar A, Shahabi A, Mirzaei-Parsa MJ. Recent advances and applications of the CRISPR-Cas system in the gene therapy of blood disorders. Gene 2024; 931:148865. [PMID: 39168259 DOI: 10.1016/j.gene.2024.148865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/11/2024] [Accepted: 08/14/2024] [Indexed: 08/23/2024]
Affiliation(s)
- Saeed Zanganeh
- Stem Cells and Regenerative Medicine Innovation Center, Kerman University of Medical Sciences, Kerman, Iran; Research Center for Hydatid Disease in Iran, Kerman University of Medical Sciences, Kerman, Iran.
| | - Amir Mohammad Zahedi
- Stem Cells and Regenerative Medicine Innovation Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Mahla Sattarzadeh Bardsiri
- Stem Cells and Regenerative Medicine Innovation Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Ali Bazi
- Department of Hematology and Medical Laboratory Sciences, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mahdieh Bastanifard
- Stem Cells and Regenerative Medicine Innovation Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Sanaz Shool
- Stem Cells and Regenerative Medicine Innovation Center, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Alireza Farsinejad
- Stem Cells and Regenerative Medicine Innovation Center, Kerman University of Medical Sciences, Kerman, Iran; Department of Hematology and Medical Laboratory Sciences, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Ali Afgar
- Research Center for Hydatid Disease in Iran, Kerman University of Medical Sciences, Kerman, Iran
| | - Arman Shahabi
- Stem Cells and Regenerative Medicine Innovation Center, Kerman University of Medical Sciences, Kerman, Iran
| | | |
Collapse
|
3
|
De Castro V, Galaine J, Loyon R, Godet Y. CRISPR-Cas gene knockouts to optimize engineered T cells for cancer immunotherapy. Cancer Gene Ther 2024; 31:1124-1134. [PMID: 38609574 DOI: 10.1038/s41417-024-00771-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024]
Abstract
While CAR-T and tgTCR-T therapies have exhibited noteworthy and promising outcomes in hematologic and solid tumors respectively, a set of distinct challenges remains. Consequently, the quest for novel strategies has become imperative to safeguard and more effectively release the full functions of engineered T cells. These factors are intricately linked to the success of adoptive cell therapy. Recently, CRISPR-based technologies have emerged as a major breakthrough for maintaining T cell functions. These technologies have allowed the discovery of T cells' negative regulators such as specific cell-surface receptors, cell-signaling proteins, and transcription factors that are involved in the development or maintenance of T cell dysfunction. By employing a CRISPR-genic invalidation approach to target these negative regulators, it has become possible to prevent the emergence of hypofunctional T cells. This review revisits the establishment of the dysfunctional profile of T cells before delving into a comprehensive summary of recent CRISPR-gene invalidations, with each invalidation contributing to the enhancement of engineered T cells' antitumor capacities. The narrative unfolds as we explore how these advancements were discovered and identified, marking a significant advancement in the pursuit of superior adoptive cell therapy.
Collapse
Affiliation(s)
- Valentine De Castro
- Université de Franche-Comté, EFS, INSERM, UMR RIGHT, F-25000, Besançon, France
| | - Jeanne Galaine
- Université de Franche-Comté, EFS, INSERM, UMR RIGHT, F-25000, Besançon, France
| | - Romain Loyon
- Université de Franche-Comté, EFS, INSERM, UMR RIGHT, F-25000, Besançon, France
| | - Yann Godet
- Université de Franche-Comté, EFS, INSERM, UMR RIGHT, F-25000, Besançon, France.
| |
Collapse
|
4
|
Alayoubi AM, Khawaji ZY, Mohammed MA, Mercier FE. CRISPR-Cas9 system: a novel and promising era of genotherapy for beta-hemoglobinopathies, hematological malignancy, and hemophilia. Ann Hematol 2024; 103:1805-1817. [PMID: 37736806 DOI: 10.1007/s00277-023-05457-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/15/2023] [Indexed: 09/23/2023]
Abstract
Gene therapy represents a significant potential to revolutionize the field of hematology with applications in correcting genetic mutations, generating cell lines and animal models, and improving the feasibility and efficacy of cancer immunotherapy. Compared to different genetic engineering tools, clustered regularly interspaced short palindromic repeats (CRISPR) CRISPR-associated protein 9 (Cas9) emerged as an effective and versatile genetic editor with the ability to precisely modify the genome. The applications of genetic engineering in various hematological disorders have shown encouraging results. Monogenic hematological disorders can conceivably be corrected with single gene modification. Through the use of CRISPR-CAS9, restoration of functional red blood cells and hemostasis factors were successfully attained in sickle cell anemia, beta-thalassemia, and hemophilia disorders. Our understanding of hemato-oncology has been advanced via CRIPSR-CAS9 technology. CRISPR-CAS9 aided to build a platform of mutated genes responsible for cell survival and proliferation in leukemia. Therapeutic application of CRISPR-CAS9 when combined with chimeric antigen receptor (CAR) T cell therapy in multiple myeloma and acute lymphoblastic leukemia was feasible with attenuation of CAR T cell therapy pitfalls. Our review outlines the latest literature on the utilization of CRISPR-Cas9 in the treatment of beta-hemoglobinopathies and hemophilia disorders. We present the strategies that were employed and the findings of preclinical and clinical trials. Also, the review will discuss gene engineering in the field of hemato-oncology as a proper tool to facilitate and overcome the drawbacks of chimeric antigen receptor T cell therapy (CAR-T).
Collapse
Affiliation(s)
- Abdulfatah M Alayoubi
- Department of Biochemistry and Molecular Medicine, College of Medicine, Taibah University, Madinah, Saudi Arabia
| | | | | | - François E Mercier
- Divisions of Experimental Medicine & Hematology, Department of Medicine, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
5
|
Assis AJB, Santana BLDO, Gualberto ACM, Pittella-Silva F. Therapeutic applications of CRISPR/Cas9 mediated targeted gene editing in acute lymphoblastic leukemia: current perspectives, future challenges, and clinical implications. Front Pharmacol 2023; 14:1322937. [PMID: 38130408 PMCID: PMC10733529 DOI: 10.3389/fphar.2023.1322937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 11/23/2023] [Indexed: 12/23/2023] Open
Abstract
Acute Lymphoblastic Leukemia (ALL) is the predominant hematological malignancy in pediatric populations, originating from B- or T-cell precursors within the bone marrow. The disease exhibits a high degree of heterogeneity, both at the molecular level and in terms of clinical presentation. A complex interplay between inherited and acquired genetic alterations contributes to disease pathogenesis, often resulting in the disruption of cellular functions integral to the leukemogenic process. The advent of CRISPR/Cas9 as a gene editing tool has revolutionized biological research, underscoring its potential to modify specific genomic loci implicated in cancer. Enhanced understanding of molecular alterations in ALL has facilitated significant advancements in therapeutic strategies. In this review, we scrutinize the application of CRISPR/Cas9 as a tool for identifying genetic targets to improve therapy, circumvent drug resistance, and facilitate CAR-T cell-based immunotherapy. Additionally, we discuss the challenges and future prospects of CRISPR/Cas9 applications in ALL.
Collapse
Affiliation(s)
| | | | | | - Fabio Pittella-Silva
- Laboratory of Molecular Pathology of Cancer, Faculty of Health Sciences and Medicine, University of Brasília, Brasília, Brazil
| |
Collapse
|
6
|
González-Romero E, Martínez-Valiente C, García-García G, Rosal-Vela A, Millán JM, Sanz MÁ, Sanz G, Liquori A, Cervera JV, Vázquez-Manrique RP. PCR-Based Strategy for Introducing CRISPR/Cas9 Machinery into Hematopoietic Cell Lines. Cancers (Basel) 2023; 15:4263. [PMID: 37686539 PMCID: PMC10487029 DOI: 10.3390/cancers15174263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/17/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
Acute myeloid leukemia is a complex heterogeneous disease characterized by the clonal expansion of undifferentiated myeloid precursors. Due to the difficulty in the transfection of blood cells, several hematological models have recently been developed with CRISPR/Cas9, using viral vectors. In this study, we developed an alternative strategy in order to generate CRISPR constructs by fusion PCR, which any lab equipped with basic equipment can implement. Our PCR-generated constructs were easily introduced into hard-to-transfect leukemic cells, and their function was dually validated with the addition of MYBL2 and IDH2 genes into HEK293 cells. We then successfully modified the MYBL2 gene and introduced the R172 mutation into the IDH2 gene within NB4 and HL60 cells that constitutively expressed the Cas9 nuclease. The efficiency of mutation introduction with our methodology was similar to that of ribonucleoprotein strategies, and no off-target events were detected. Overall, our strategy represents a valid and intuitive alternative for introducing desired mutations into hard-to-transfect leukemic cells without viral transduction.
Collapse
Affiliation(s)
- Elisa González-Romero
- Hematology Research Group, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain; (E.G.-R.); (C.M.-V.); (A.R.-V.); (M.Á.S.); (G.S.); (A.L.)
| | - Cristina Martínez-Valiente
- Hematology Research Group, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain; (E.G.-R.); (C.M.-V.); (A.R.-V.); (M.Á.S.); (G.S.); (A.L.)
- CIBERONC, 28029 Madrid, Spain
| | - Gema García-García
- Laboratory of Molecular, Cellular and Genomic Biomedicine, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain (J.M.M.)
- CIBERER, 46010 Valencia, Spain
- Joint Unit for Rare Diseases IIS La Fe-CIPF, 46012 Valencia, Spain
| | - Antonio Rosal-Vela
- Hematology Research Group, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain; (E.G.-R.); (C.M.-V.); (A.R.-V.); (M.Á.S.); (G.S.); (A.L.)
- Biomedicine, Biotechnology and Public Health Department, Cádiz University, 11002 Cádiz, Spain
- Institute of Research and Innovation in Biomedical Sciences of Cadiz (INIBICA), 11009 Cádiz, Spain
| | - José María Millán
- Laboratory of Molecular, Cellular and Genomic Biomedicine, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain (J.M.M.)
- CIBERER, 46010 Valencia, Spain
- Joint Unit for Rare Diseases IIS La Fe-CIPF, 46012 Valencia, Spain
| | - Miguel Ángel Sanz
- Hematology Research Group, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain; (E.G.-R.); (C.M.-V.); (A.R.-V.); (M.Á.S.); (G.S.); (A.L.)
| | - Guillermo Sanz
- Hematology Research Group, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain; (E.G.-R.); (C.M.-V.); (A.R.-V.); (M.Á.S.); (G.S.); (A.L.)
- CIBERONC, 28029 Madrid, Spain
- Hematology Department, Hospital Universitari i Politècnic La Fe, 46026 Valencia, Spain
| | - Alessandro Liquori
- Hematology Research Group, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain; (E.G.-R.); (C.M.-V.); (A.R.-V.); (M.Á.S.); (G.S.); (A.L.)
- CIBERONC, 28029 Madrid, Spain
| | - José Vicente Cervera
- Hematology Research Group, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain; (E.G.-R.); (C.M.-V.); (A.R.-V.); (M.Á.S.); (G.S.); (A.L.)
- CIBERONC, 28029 Madrid, Spain
- Hematology Department, Hospital Universitari i Politècnic La Fe, 46026 Valencia, Spain
- Genetics Unit, Hospital Universitari i Politècnic La Fe, 46026 Valencia, Spain
| | - Rafael P. Vázquez-Manrique
- Laboratory of Molecular, Cellular and Genomic Biomedicine, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain (J.M.M.)
- CIBERER, 46010 Valencia, Spain
- Joint Unit for Rare Diseases IIS La Fe-CIPF, 46012 Valencia, Spain
| |
Collapse
|
7
|
Ureña-Bailén G, Block M, Grandi T, Aivazidou F, Quednau J, Krenz D, Daniel-Moreno A, Lamsfus-Calle A, Epting T, Handgretinger R, Wild S, Mezger M. Automated Good Manufacturing Practice-Compatible CRISPR-Cas9 Editing of Hematopoietic Stem and Progenitor Cells for Clinical Treatment of β-Hemoglobinopathies. CRISPR J 2023; 6:5-16. [PMID: 36662546 PMCID: PMC9986018 DOI: 10.1089/crispr.2022.0086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Cellular therapies hold enormous potential for the cure of severe hematological and oncological disorders. The forefront of innovative gene therapy approaches including therapeutic gene editing and hematopoietic stem cell transplantation needs to be processed by good manufacturing practice to ensure safe application in patients. In the present study, an effective transfection protocol for automated clinical-scale production of genetically modified hematopoietic stem and progenitor cells (HSPCs) using the CliniMACS Prodigy® system including the CliniMACS Electroporator (Miltenyi Biotec) was established. As a proof-of-concept, the enhancer of the BCL11A gene, clustered regularly interspaced short palindromic repeat (CRISPR) target in ongoing clinical trials for β-thalassemia and sickle-cell disease treatment, was disrupted by the CRISPR-Cas9 system simulating a large-scale clinical scenario, yielding 100 million HSPCs with high editing efficiency. In vitro erythroid differentiation and high-performance liquid chromatography analyses corroborated fetal hemoglobin resurgence in edited samples, supporting the feasibility of running the complete process of HSPC gene editing in an automated closed system.
Collapse
Affiliation(s)
- Guillermo Ureña-Bailén
- Department of General Pediatrics, Oncology and Hematology, University Children's Hospital, Tübingen, Germany
| | - Milena Block
- Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany
| | - Tommaso Grandi
- Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany
| | | | - Jona Quednau
- Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany
| | - Dariusz Krenz
- Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany
| | - Alberto Daniel-Moreno
- Department of General Pediatrics, Oncology and Hematology, University Children's Hospital, Tübingen, Germany
| | - Andrés Lamsfus-Calle
- Department of General Pediatrics, Oncology and Hematology, University Children's Hospital, Tübingen, Germany
| | - Thomas Epting
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital, Freiburg, Germany
| | - Rupert Handgretinger
- Department of General Pediatrics, Oncology and Hematology, University Children's Hospital, Tübingen, Germany.,Abu Dhabi Stem Cells Center, Abu Dhabi, United Arab Emirates
| | - Stefan Wild
- Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany
| | - Markus Mezger
- Department of General Pediatrics, Oncology and Hematology, University Children's Hospital, Tübingen, Germany
| |
Collapse
|
8
|
Singh M, Agarwal V, Jindal D, Pancham P, Agarwal S, Mani S, Tiwari RK, Das K, Alghamdi BS, Abujamel TS, Ashraf GM, Jha SK. Recent Updates on Corticosteroid-Induced Neuropsychiatric Disorders and Theranostic Advancements through Gene Editing Tools. Diagnostics (Basel) 2023; 13:diagnostics13030337. [PMID: 36766442 PMCID: PMC9914305 DOI: 10.3390/diagnostics13030337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/28/2022] [Accepted: 10/16/2022] [Indexed: 01/19/2023] Open
Abstract
The vast use of corticosteroids (CCSs) globally has led to an increase in CCS-induced neuropsychiatric disorders (NPDs), a very common manifestation in patients after CCS consumption. These neuropsychiatric disorders range from depression, insomnia, and bipolar disorders to panic attacks, overt psychosis, and many other cognitive changes in such subjects. Though their therapeutic importance in treating and improving many clinical symptoms overrides the complications that arise after their consumption, still, there has been an alarming rise in NPD cases in recent years, and they are seen as the greatest public health challenge globally; therefore, these potential side effects cannot be ignored. It has also been observed that many of the neuronal functional activities are regulated and controlled by genomic variants with epigenetic factors (DNA methylation, non-coding RNA, and histone modeling, etc.), and any alterations in these regulatory mechanisms affect normal cerebral development and functioning. This study explores a general overview of emerging concerns of CCS-induced NPDs, the effective molecular biology approaches that can revitalize NPD therapy in an extremely specialized, reliable, and effective manner, and the possible gene-editing-based therapeutic strategies to either prevent or cure NPDs in the future.
Collapse
Affiliation(s)
- Manisha Singh
- Department of Biotechnology, Jaypee Institute of Information Technology (JIIT), Noida 201309, India
- Correspondence: (M.S.); (S.K.J.)
| | - Vinayak Agarwal
- Department of Biotechnology, Jaypee Institute of Information Technology (JIIT), Noida 201309, India
| | - Divya Jindal
- Department of Biotechnology, Jaypee Institute of Information Technology (JIIT), Noida 201309, India
| | - Pranav Pancham
- Department of Biotechnology, Jaypee Institute of Information Technology (JIIT), Noida 201309, India
| | - Shriya Agarwal
- Department of Molecular Sciences, Macquarie University, Macquarie Park, NSW 2109, Australia
| | - Shalini Mani
- Department of Biotechnology, Jaypee Institute of Information Technology (JIIT), Noida 201309, India
| | - Raj Kumar Tiwari
- School of Health Sciences, Pharmaceutical Sciences, UPES, Dehradun 248007, India
| | - Koushik Das
- School of Health Sciences, Pharmaceutical Sciences, UPES, Dehradun 248007, India
| | - Badrah S. Alghamdi
- Department of Physiology, Neuroscience Unit, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Pre-Clinical Research Unit, King Fahd Medical Research Centre, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Tukri S. Abujamel
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ghulam Md. Ashraf
- Pre-Clinical Research Unit, King Fahd Medical Research Centre, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Medical Laboratory Sciences, College of Health Sciences, University of Sharjah, University City, Sharjah 27272, United Arab Emirates
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering & Technology, Sharda University, Greater Noida 201310, India
- Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun 248007, India
- Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali 140413, India
- Correspondence: (M.S.); (S.K.J.)
| |
Collapse
|
9
|
Mohammadian Gol T, Ureña-Bailén G, Hou Y, Sinn R, Antony JS, Handgretinger R, Mezger M. CRISPR medicine for blood disorders: Progress and challenges in delivery. Front Genome Ed 2023; 4:1037290. [PMID: 36687779 PMCID: PMC9853164 DOI: 10.3389/fgeed.2022.1037290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 12/22/2022] [Indexed: 01/09/2023] Open
Abstract
Blood disorders are a group of diseases including hematological neoplasms, clotting disorders and orphan immune deficiency diseases that affects human health. Current improvements in genome editing based therapeutics demonstrated preclinical and clinical proof to treat different blood disorders. Genome editing components such as Cas nucleases, guide RNAs and base editors are supplied in the form of either a plasmid, an mRNA, or a ribonucleoprotein complex. The most common delivery vehicles for such components include viral vectors (e.g., AAVs and RV), non-viral vectors (e.g., LNPs and polymers) and physical delivery methods (e.g., electroporation and microinjection). Each of the delivery vehicles specified above has its own advantages and disadvantages and the development of a safe transferring method for ex vivo and in vivo application of genome editing components is still a big challenge. Moreover, the delivery of genome editing payload to the target blood cells possess key challenges to provide a possible cure for patients with inherited monogenic blood diseases and hematological neoplastic tumors. Here, we critically review and summarize the progress and challenges related to the delivery of genome editing elements to relevant blood cells in an ex vivo or in vivo setting. In addition, we have attempted to provide a future clinical perspective of genome editing to treat blood disorders with possible clinical grade improvements in delivery methods.
Collapse
Affiliation(s)
- Tahereh Mohammadian Gol
- Department of Hematology and Oncology, University Children’s Hospital, University of Tübingen, Tübingen, Germany
| | - Guillermo Ureña-Bailén
- Department of Hematology and Oncology, University Children’s Hospital, University of Tübingen, Tübingen, Germany
| | - Yujuan Hou
- Department of Hematology and Oncology, University Children’s Hospital, University of Tübingen, Tübingen, Germany
| | - Ralph Sinn
- Department of Hematology and Oncology, University Children’s Hospital, University of Tübingen, Tübingen, Germany
| | - Justin S. Antony
- Department of Hematology and Oncology, University Children’s Hospital, University of Tübingen, Tübingen, Germany
| | - Rupert Handgretinger
- Department of Hematology and Oncology, University Children’s Hospital, University of Tübingen, Tübingen, Germany,Abu Dhabi Stem Cells Center, Abu Dhabi, United Arab Emirates
| | - Markus Mezger
- Department of Hematology and Oncology, University Children’s Hospital, University of Tübingen, Tübingen, Germany,*Correspondence: Markus Mezger,
| |
Collapse
|
10
|
Lin Y, Wagner E, Lächelt U. Non-viral delivery of the CRISPR/Cas system: DNA versus RNA versus RNP. Biomater Sci 2022; 10:1166-1192. [DOI: 10.1039/d1bm01658j] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Since its discovery, the CRISPR/Cas technology has rapidly become an essential tool in modern biomedical research. The opportunities to specifically modify and correct genomic DNA has also raised big hope...
Collapse
|
11
|
Jair Lara-Navarro I, Rebeca Jaloma-Cruz A. Current Therapies in Hemophilia: From Plasma-Derived Factor Modalities to CRISPR/Cas Alternatives. TOHOKU J EXP MED 2022; 256:197-207. [DOI: 10.1620/tjem.256.197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Irving Jair Lara-Navarro
- División de Genética, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social
| | - Ana Rebeca Jaloma-Cruz
- División de Genética, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social
| |
Collapse
|
12
|
Cool T, Baena ARY, Forsberg EC. Clearing the Haze: How Does Nicotine Affect Hematopoiesis before and after Birth? Cancers (Basel) 2021; 14:184. [PMID: 35008347 PMCID: PMC8750289 DOI: 10.3390/cancers14010184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 12/24/2021] [Accepted: 12/28/2021] [Indexed: 11/24/2022] Open
Abstract
Hematopoiesis is a tightly regulated process orchestrated by cell-intrinsic and cell-extrinsic cues. Over the past several decades, much effort has been focused on understanding how these cues regulate hematopoietic stem cell (HSC) function. Many endogenous key regulators of hematopoiesis have been identified and extensively characterized. Less is known about the mechanisms of long-term effects of environmental toxic compounds on hematopoietic stem and progenitor cells (HSPCs) and their mature immune cell progeny. Research over the past several decades has demonstrated that tobacco products are extremely toxic and pose huge risks to human health by causing diseases like cancer, respiratory illnesses, strokes, and more. Recently, electronic cigarettes have been promoted as a safer alternative to traditional tobacco products and have become increasingly popular among younger generations. Nicotine, the highly toxic compound found in many traditional tobacco products, is also found in most electronic cigarettes, calling into question their purported "safety". Although it is known that nicotine is toxic, the pathophysiology of disease in exposed people remains under investigation. One plausible contributor to altered disease susceptibility is altered hematopoiesis and associated immune dysfunction. In this review, we focus on research that has addressed how HSCs and mature blood cells respond to nicotine, as well as identify remaining questions.
Collapse
Affiliation(s)
- Taylor Cool
- Program in Molecular, Cell, and Developmental Biology, Institute for the Biology of Stem Cells, University of California Santa Cruz, Santa Cruz, CA 95064, USA; (T.C.); (A.R.y.B.)
| | - Alessandra Rodriguez y Baena
- Program in Molecular, Cell, and Developmental Biology, Institute for the Biology of Stem Cells, University of California Santa Cruz, Santa Cruz, CA 95064, USA; (T.C.); (A.R.y.B.)
| | - E. Camilla Forsberg
- Institute for the Biology of Stem Cells, Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| |
Collapse
|
13
|
Balla B, Tripon F, Banescu C. From Descriptive to Functional Genomics of Leukemias Focusing on Genome Engineering Techniques. Int J Mol Sci 2021; 22:10065. [PMID: 34576226 PMCID: PMC8470190 DOI: 10.3390/ijms221810065] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/10/2021] [Accepted: 09/15/2021] [Indexed: 12/17/2022] Open
Abstract
Genome engineering makes the precise manipulation of DNA sequences possible in a cell. Therefore, it is essential for understanding gene function. Meganucleases were the start of genome engineering, and it continued with the discovery of Zinc finger nucleases (ZFNs), followed by Transcription activator-like effector nucleases (TALENs). They can generate double-strand breaks at a desired target site in the genome, and therefore can be used to knock in mutations or knock out genes in the same way. Years later, genome engineering was transformed by the discovery of clustered regularly interspaced short palindromic repeats (CRISPR). Implementation of CRISPR systems involves recognition guided by RNA and the precise cleaving of DNA molecules. This property proves its utility in epigenetics and genome engineering. CRISPR has been and is being continuously successfully used to model mutations in leukemic cell lines and control gene expression. Furthermore, it is used to identify targets and discover drugs for immune therapies. The descriptive and functional genomics of leukemias is discussed in this study, with an emphasis on genome engineering methods. The CRISPR/Cas9 system's challenges, viewpoints, limits, and solutions are also explored.
Collapse
Affiliation(s)
- Beata Balla
- Genetics Department, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, Strada Gheorghe Marinescu 38, 540139 Târgu Mureș, Romania; (B.B.); (C.B.)
- Center for Advanced Medical and Pharmaceutical Research, Genetics Laboratory, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, Strada Gheorghe Marinescu 38, 540139 Târgu Mureș, Romania
| | - Florin Tripon
- Genetics Department, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, Strada Gheorghe Marinescu 38, 540139 Târgu Mureș, Romania; (B.B.); (C.B.)
- Center for Advanced Medical and Pharmaceutical Research, Genetics Laboratory, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, Strada Gheorghe Marinescu 38, 540139 Târgu Mureș, Romania
| | - Claudia Banescu
- Genetics Department, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, Strada Gheorghe Marinescu 38, 540139 Târgu Mureș, Romania; (B.B.); (C.B.)
- Center for Advanced Medical and Pharmaceutical Research, Genetics Laboratory, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, Strada Gheorghe Marinescu 38, 540139 Târgu Mureș, Romania
- Clinical and Emergency County Hospital of Târgu Mureș, Strada Gheorghe Marinescu 50, 540136 Târgu Mureș, Romania
| |
Collapse
|
14
|
Sun J, Wang J, Zheng D, Hu X. Advances in therapeutic application of CRISPR-Cas9. Brief Funct Genomics 2021; 19:164-174. [PMID: 31769791 DOI: 10.1093/bfgp/elz031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/04/2019] [Accepted: 10/03/2019] [Indexed: 02/06/2023] Open
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein 9 (Cas9) is one of the most versatile and efficient gene editing technologies, which is derived from adaptive immune strategies for bacteria and archaea. With the remarkable development of programmable nuclease-based genome engineering these years, CRISPR-Cas9 system has developed quickly in recent 5 years and has been widely applied in countless areas, including genome editing, gene function investigation and gene therapy both in vitro and in vivo. In this paper, we briefly introduce the mechanisms of CRISPR-Cas9 tool in genome editing. More importantly, we review the recent therapeutic application of CRISPR-Cas9 in various diseases, including hematologic diseases, infectious diseases and malignant tumor. Finally, we discuss the current challenges and consider thoughtfully what advances are required in order to further develop the therapeutic application of CRISPR-Cas9 in the future.
Collapse
Affiliation(s)
- Jinyu Sun
- Sparkfire Scientific Research Group, Nanjing Medical University, China
| | - Jianchu Wang
- Department of Hepatobiliary Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, No. 18 Zhongshan Road, Baise 533000, Guangxi Zhuang Autonomous Region, China
| | - Donghui Zheng
- Department of Nephrology, Huai'an Second People's Hospital and The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, China
| | - Xiaorong Hu
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| |
Collapse
|
15
|
Elliott EK, Haupt LM, Griffiths LR. Mini review: genome and transcriptome editing using CRISPR-cas systems for haematological malignancy gene therapy. Transgenic Res 2021; 30:129-141. [PMID: 33609253 DOI: 10.1007/s11248-020-00232-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 12/19/2020] [Indexed: 12/26/2022]
Abstract
The recent introduction of clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR associated protein (Cas) systems, offer an array of genome and transcriptome editing tools for clinical repair strategies. These include Cas9, Cas12a, dCas9 and more recently Cas13 effectors. RNA targeting CRISPR-Cas13 complexes show unique characteristics with the capability to engineer transcriptomes and modify gene expression, providing a potential clinical cancer therapy tool across various tissue types. Cas13 effectors such as RNA base editing for A to I replacement allows for precise transcript modification. Further applications of Cas13a highlights its capability of producing rapid diagnostic results in a mobile platform. This review will focus on the adaptions of existing CRISPR-Cas systems, along with new Cas effectors for transcriptome or RNA modifications used in disease modelling and gene therapy for haematological malignancy. We also address the current diagnostic and therapeutic potential of CRISPR-Cas systems for personalised haematological malignancy.
Collapse
Affiliation(s)
- Esther K Elliott
- Centre for Genomics and Personalised Health, Genomics Research Centre, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), 60 Musk Ave, Kelvin Grove, QLD, 4059, Australia
| | - Larisa M Haupt
- Centre for Genomics and Personalised Health, Genomics Research Centre, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), 60 Musk Ave, Kelvin Grove, QLD, 4059, Australia
| | - Lyn R Griffiths
- Centre for Genomics and Personalised Health, Genomics Research Centre, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), 60 Musk Ave, Kelvin Grove, QLD, 4059, Australia.
| |
Collapse
|
16
|
Banjanin B, Schneider RK. Mesenchymal Stromal Cells as a Cellular Target in Myeloid Malignancy: Chances and Challenges in the Genome Editing of Stromal Alterations. Front Genome Ed 2021; 2:618308. [PMID: 34713241 PMCID: PMC8525402 DOI: 10.3389/fgeed.2020.618308] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/22/2020] [Indexed: 11/13/2022] Open
Abstract
The contribution of bone marrow stromal cells to the pathogenesis and therapy response of myeloid malignancies has gained significant attention over the last decade. Evidence suggests that the bone marrow stroma should not be neglected in the design of novel, targeted-therapies. In terms of gene-editing, the focus of gene therapies has mainly been on correcting mutations in hematopoietic cells. Here, we outline why alterations in the stroma should also be taken into consideration in the design of novel therapeutic strategies but also outline the challenges in specifically targeting mesenchymal stromal cells in myeloid malignancies caused by somatic and germline mutations.
Collapse
Affiliation(s)
- Bella Banjanin
- Department of Hematology, Erasmus Medical Center Cancer Institute, Rotterdam, Netherlands
- Oncode Institute, Erasmus Medical Center Cancer Institute, Rotterdam, Netherlands
| | - Rebekka K. Schneider
- Department of Hematology, Erasmus Medical Center Cancer Institute, Rotterdam, Netherlands
- Oncode Institute, Erasmus Medical Center Cancer Institute, Rotterdam, Netherlands
- Department of Cell Biology, Faculty of Medicine, Institute for Biomedical Engineering, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany
| |
Collapse
|
17
|
Khaled M, Moustafa AS, El-Khazragy N, Ahmed MI, Abd Elkhalek MA, El_Salahy EM. CRISPR/Cas9 mediated knock-out of VPREB1 gene induces a cytotoxic effect in myeloma cells. PLoS One 2021; 16:e0245349. [PMID: 33418558 PMCID: PMC7794028 DOI: 10.1371/journal.pone.0245349] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 12/22/2020] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Multiple Myeloma (MM) is a heterogeneous, hematological neoplasm that accounts 2% of all cancers. Although, autologous stem cell transplantation and chemotherapy are currently the most effective therapy, it carries a notable hazards, in addition for being non curative. Recently, the Clustered Regular Interspaced Short Palindromic Repeats (CRISPR-cas9) has been successfully tried at the experimental level, for the treatment of several hematological malignancies. OBJECTIVES We aimed to investigate the in-vitro effect of CRISPR-cas9-mediated knock-out of V-set pre B-cell surrogate light chain 1"VPREB1" gene on the malignant proliferation of primary cultured myeloma cells. METHODS Bioinformatics' analysis was performed to explore the gene expression profile of MM, and the VPREB1 gene was selected as a target gene for this study. We knocked-out the VPREB1 gene in primary cultured myeloma cells using CRISPR-cas9, the VPREB1 gene editing efficacy was verified by determining VPREB1 gene expression at both the mRNA and protein levels by qPCR and immunofluorescence, respectively. Furthermore, the cytotoxic effect on primary myeloma cells proliferation was evaluated using cytotoxicity assay. RESULTS There was a statistically significant reduction of both VPREB1 mRNA and protein expression levels (p<0.01). knock-out of VPREB1 gene in myeloma cell line resulted in a statistically significant reduction of myeloma cell proliferation. CONCLUSION CRISPR-cas9-mediated knock-out of VPREB1 gene is effective for inhibiting the proliferation of primary myeloma cells. This would provide a basis for a promising therapeutic strategy for patients with multiple myeloma.
Collapse
Affiliation(s)
- Mai Khaled
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Amr S. Moustafa
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Nashwa El-Khazragy
- Clinical Pathology-Hematology & AinShams Medical Research Institute (MASRI), Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Maha Imam Ahmed
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Marwa Ali Abd Elkhalek
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Eman M. El_Salahy
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| |
Collapse
|
18
|
Mehravar M, Roshandel E, Salimi M, Chegeni R, Gholizadeh M, Mohammadi MH, Hajifathali A. Utilization of CRISPR/Cas9 gene editing in cellular therapies for lymphoid malignancies. Immunol Lett 2020; 226:71-82. [DOI: 10.1016/j.imlet.2020.07.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 02/06/2023]
|
19
|
Rahimi H, Salehiabar M, Charmi J, Barsbay M, Ghaffarlou M, Roohi Razlighi M, Davaran S, Khalilov R, Sugiyama M, Nosrati H, Kaboli S, Danafar H, Webster TJ. Harnessing nanoparticles for the efficient delivery of the CRISPR/Cas9 system. NANO TODAY 2020; 34:100895. [DOI: 10.1016/j.nantod.2020.100895] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
20
|
Kenderian SS, Badley AD. CRISPR Taking the Front Seat in Immunotherapy. JOURNAL OF CELLULAR IMMUNOLOGY 2020; 2:143-148. [PMID: 32776020 PMCID: PMC7406201 DOI: 10.33696/immunology.2.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Saad S Kenderian
- T Cell Engineering, Mayo Clinic, Rochester, MN, USA.,Division of Hematology, Mayo Clinic, Rochester, MN, USA.,Department of Immunology, Mayo Clinic, Rochester, MN, USA.,Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Andrew D Badley
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA.,Division of Infectious Diseases, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
21
|
Humbert O, Samuelson C, Kiem HP. CRISPR/Cas9 for the treatment of haematological diseases: a journey from bacteria to the bedside. Br J Haematol 2020; 192:33-49. [PMID: 32506752 DOI: 10.1111/bjh.16807] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 05/07/2020] [Accepted: 05/09/2020] [Indexed: 12/26/2022]
Abstract
Genome editing therapies represent a significant advancement in next-generation, precision medicine for the management of haematological diseases, and CRISPR/Cas9 has to date been the most successful implementation platform. From discovery in bacteria and archaea over three decades ago, through intensive basic research and pre-clinical development phases involving the modification of therapeutically relevant cell types, CRISPR/Cas9 genome editing is now being investigated in ongoing clinic trials. Despite the widespread enthusiasm brought by this new technology, significant challenges remain before genome editing can be routinely recommended and implemented in the clinic. These include risks of genotoxicity resulting from off-target DNA cleavage or chromosomal rearrangement, and suboptimal efficacy of homology-directed repair editing strategies, which thus limit therapeutic options. Practical hurdles such as high costs and inaccessibility to patients outside specialised centres must also be addressed. Future improvements in this rapidly developing field should circumvent current limitations with novel editing platforms and with the simplification of clinical protocols using in vivo delivery of editing reagents.
Collapse
Affiliation(s)
| | | | - Hans-Peter Kiem
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA.,University of Washington School of Medicine, Seattle, WA, USA
| |
Collapse
|
22
|
Lee J, Bayarsaikhan D, Bayarsaikhan G, Kim JS, Schwarzbach E, Lee B. Recent advances in genome editing of stem cells for drug discovery and therapeutic application. Pharmacol Ther 2020; 209:107501. [DOI: 10.1016/j.pharmthera.2020.107501] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 02/10/2020] [Indexed: 12/20/2022]
|
23
|
Ali G, Tariq MA, Shahid K, Ahmad FJ, Akram J. Advances in genome editing: the technology of choice for precise and efficient β-thalassemia treatment. Gene Ther 2020; 28:6-15. [PMID: 32355226 DOI: 10.1038/s41434-020-0153-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 04/03/2020] [Accepted: 04/16/2020] [Indexed: 11/09/2022]
Abstract
Beta (β)-thalassemia is one of the most significant hemoglobinopathy worldwide. The high prevalence of the β-thalassemia carriers aggravates the disease burden for patients and national economies in the developing world. The survival of β-thalassemia patients solely relies on repeated transfusions, which eventually results into multi-organ damage. The fetal γ-globin genes are ordinarily silenced at birth and replaced by the adult β-globin genes. However, mutations that cause lifelong persistence of fetal γ-globin, ameliorate the debilitating effects of β-globin mutations. Therefore, therapeutically reactivating the fetal γ-globin gene is a prime focus of researchers. CRISPR/Cas9 is the most common approach to correct disease causative mutations or to enhance or disrupt the expression of proteins to mitigate the effects of the disease. CRISPR/cas9 and prime gene editing to correct mutations in hematopoietic stem cells of β-thalassemia patients has been considered a novel therapeutic approach for effective hemoglobin production. However, genome-editing technologies, along with all advantages, have shown some disadvantages due to either random insertions or deletions at the target site of edition or non-specific targeting in genome. Therefore, the focus of this review is to compare pros and cons of these editing technologies and to elaborate the retrospective scope of gene therapy for β-thalassemia patients.
Collapse
Affiliation(s)
- Gibran Ali
- Institute of Regenerative Medicine, Physiology and Cell Biology Department, University of Health Sciences Lahore, Khyaban-e-Jamia Punjab, Lahore, 54600, Pakistan.
| | - Muhammad Akram Tariq
- Institute of Regenerative Medicine, Physiology and Cell Biology Department, University of Health Sciences Lahore, Khyaban-e-Jamia Punjab, Lahore, 54600, Pakistan
| | - Kamran Shahid
- Department of Oncology Medicine, University of Texas Health Science Center at Tyler, 11937 US HWY 271, Tyler, 75708, TX, USA
| | - Fridoon Jawad Ahmad
- Institute of Regenerative Medicine, Physiology and Cell Biology Department, University of Health Sciences Lahore, Khyaban-e-Jamia Punjab, Lahore, 54600, Pakistan.
| | - Javed Akram
- University of Health Sciences Lahore, Khyaban-e-Jamia Punjab, Lahore, 54600, Pakistan
| |
Collapse
|
24
|
Lim KRQ, Nguyen Q, Dzierlega K, Huang Y, Yokota T. CRISPR-Generated Animal Models of Duchenne Muscular Dystrophy. Genes (Basel) 2020; 11:genes11030342. [PMID: 32213923 PMCID: PMC7141101 DOI: 10.3390/genes11030342] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/21/2020] [Accepted: 03/23/2020] [Indexed: 02/07/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is a fatal X-linked recessive neuromuscular disorder most commonly caused by mutations disrupting the reading frame of the dystrophin (DMD) gene. DMD codes for dystrophin, which is critical for maintaining the integrity of muscle cell membranes. Without dystrophin, muscle cells receive heightened mechanical stress, becoming more susceptible to damage. An active body of research continues to explore therapeutic treatments for DMD as well as to further our understanding of the disease. These efforts rely on having reliable animal models that accurately recapitulate disease presentation in humans. While current animal models of DMD have served this purpose well to some extent, each has its own limitations. To help overcome this, clustered regularly interspaced short palindromic repeat (CRISPR)-based technology has been extremely useful in creating novel animal models for DMD. This review focuses on animal models developed for DMD that have been created using CRISPR, their advantages and disadvantages as well as their applications in the DMD field.
Collapse
Affiliation(s)
- Kenji Rowel Q. Lim
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada; (K.R.Q.L.); (Q.N.); (K.D.); (Y.H.)
| | - Quynh Nguyen
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada; (K.R.Q.L.); (Q.N.); (K.D.); (Y.H.)
| | - Kasia Dzierlega
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada; (K.R.Q.L.); (Q.N.); (K.D.); (Y.H.)
| | - Yiqing Huang
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada; (K.R.Q.L.); (Q.N.); (K.D.); (Y.H.)
| | - Toshifumi Yokota
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada; (K.R.Q.L.); (Q.N.); (K.D.); (Y.H.)
- The Friends of Garrett Cumming Research & Muscular Dystrophy Canada, HM Toupin Neurological Science Research Chair, Edmonton, AB T6G 2H7, Canada
- Correspondence: ; Tel.: +1-780-492-1102
| |
Collapse
|
25
|
Hematopoietic stem cell gene therapy: The optimal use of lentivirus and gene editing approaches. Blood Rev 2019; 40:100641. [PMID: 31761379 DOI: 10.1016/j.blre.2019.100641] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 11/06/2019] [Accepted: 11/11/2019] [Indexed: 12/26/2022]
Abstract
Due to pioneering in vitro investigations on gene modification, gene engineering platforms have incredibly improved to a safer and more powerful tool for the treatment of multiple blood and immune disorders. Likewise, several clinical trials have been initiated combining autologous hematopoietic stem cell transplantation (auto-HSCT) with gene therapy (GT) tools. As several GT modalities such as lentivirus and gene editing tools have a long developmental path ahead to diminish its negative side effects, it is hard to decide which modality is optimal for treating a specific disease. Gene transfer by lentiviruses is the platform of choice for loss-of-mutation diseases, whereas gene correction/addition or gene disruption by gene editing tools, mainly CRISPR/Cas9, is likely to be more efficient in diseases where tight regulation is needed. Therefore, in this review, we compiled pertinent information about lentiviral gene transfer and CRISPR/Cas9 gene editing, their evolution to a safer platform for HSCT, and their applications on other types of gene disorders based on the etiology of the disease and cell fitness.
Collapse
|
26
|
Hirsch F, Iphofen R, Koporc Z. Ethics assessment in research proposals adopting CRISPR technology. Biochem Med (Zagreb) 2019; 29:020202. [PMID: 31223254 PMCID: PMC6559619 DOI: 10.11613/bm.2019.020202] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 04/23/2019] [Indexed: 01/08/2023] Open
Abstract
The rapid and exponential growth of genome editing has posed many challenges for bioethics. This article briefly explains the nature of the technique and the particularly rapid development of Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR) technology. The international and, specifically, European-level systems for assessing the ethical issues consequent on these developments are outlined and discussed. The challenges posed by cases in China are summarized to raise concerns about how a more shared, universally consistent appraisal of bioethical issues can be promoted.
Collapse
Affiliation(s)
- Francois Hirsch
- Ethics Committee of the French National Institute of Health and Medical Research (INSERM), Paris, France
| | - Ron Iphofen
- Independent Research Consultant, La Rochelle, France
| | | |
Collapse
|