1
|
Premchandar A, Ming R, Baiad A, Da Fonte DF, Xu H, Faubert D, Veit G, Lukacs GL. Readthrough-induced misincorporated amino acid ratios guide mutant-specific therapeutic approaches for two CFTR nonsense mutations. Front Pharmacol 2024; 15:1389586. [PMID: 38725656 PMCID: PMC11079177 DOI: 10.3389/fphar.2024.1389586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 03/28/2024] [Indexed: 05/12/2024] Open
Abstract
Cystic fibrosis (CF) is a monogenic disease caused by mutations in the CF transmembrane conductance regulator (CFTR) gene. Premature termination codons (PTCs) represent ∼9% of CF mutations that typically cause severe expression defects of the CFTR anion channel. Despite the prevalence of PTCs as the underlying cause of genetic diseases, understanding the therapeutic susceptibilities of their molecular defects, both at the transcript and protein levels remains partially elucidated. Given that the molecular pathologies depend on the PTC positions in CF, multiple pharmacological interventions are required to suppress the accelerated nonsense-mediated mRNA decay (NMD), to correct the CFTR conformational defect caused by misincorporated amino acids, and to enhance the inefficient stop codon readthrough. The G418-induced readthrough outcome was previously investigated only in reporter models that mimic the impact of the local sequence context on PTC mutations in CFTR. To identify the misincorporated amino acids and their ratios for PTCs in the context of full-length CFTR readthrough, we developed an affinity purification (AP)-tandem mass spectrometry (AP-MS/MS) pipeline. We confirmed the incorporation of Cys, Arg, and Trp residues at the UGA stop codons of G542X, R1162X, and S1196X in CFTR. Notably, we observed that the Cys and Arg incorporation was favored over that of Trp into these CFTR PTCs, suggesting that the transcript sequence beyond the proximity of PTCs and/or other factors can impact the amino acid incorporation and full-length CFTR functional expression. Additionally, establishing the misincorporated amino acid ratios in the readthrough CFTR PTCs aided in maximizing the functional rescue efficiency of PTCs by optimizing CFTR modulator combinations. Collectively, our findings contribute to the understanding of molecular defects underlying various CFTR nonsense mutations and provide a foundation to refine mutation-dependent therapeutic strategies for various CF-causing nonsense mutations.
Collapse
Affiliation(s)
| | - Ruiji Ming
- Department of Physiology, McGill University, Montréal, QC, Canada
| | - Abed Baiad
- Department of Physiology, McGill University, Montréal, QC, Canada
| | | | - Haijin Xu
- Department of Physiology, McGill University, Montréal, QC, Canada
| | - Denis Faubert
- IRCM Mass Spectrometry and Proteomics Platform, Institut de Recherches Cliniques de Montréal, Montréal, QC, Canada
| | - Guido Veit
- Department of Physiology, McGill University, Montréal, QC, Canada
| | - Gergely L. Lukacs
- Department of Physiology, McGill University, Montréal, QC, Canada
- Department of Biochemistry, McGill University, Montréal, QC, Canada
| |
Collapse
|
2
|
Todaro AM, Radu CM, Ciccone M, Toffanin S, Serino ML, Campello E, Bulato C, Lunghi B, Gemmati D, Cuneo A, Hackeng TM, Simioni P, Bernardi F, Castoldi E. In vitro and ex vivo rescue of a nonsense mutation responsible for severe coagulation factor V deficiency. J Thromb Haemost 2024; 22:410-422. [PMID: 37866515 DOI: 10.1016/j.jtha.2023.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 10/24/2023]
Abstract
BACKGROUND Coagulation factor V (FV) deficiency is a rare bleeding disorder that is usually managed with fresh-frozen plasma. Patients with nonsense mutations may respond to treatment with readthrough agents. OBJECTIVES To investigate whether the F5 p.Arg1161Ter mutation, causing severe FV deficiency in several patients, would be amenable to readthrough therapy. METHODS F5 mRNA and protein expression were evaluated in a F5 p.Arg1161Ter-homozygous patient. Five readthrough agents with different mechanisms of action, i.e. G418, ELX-02, PTC-124, 2,6-diaminopurine (2,6-DAP), and Amlexanox, were tested in in vitro and ex vivo models of the mutation. RESULTS The F5 p.Arg1161Ter-homozygous patient showed residual F5 mRNA and functional platelet FV, indicating detectable levels of natural readthrough. COS-1 cells transfected with the FV-Arg1161Ter cDNA expressed 0.7% FV activity compared to wild-type. Treatment with 0-500 μM G418, ELX-02, and 2,6-DAP dose-dependently increased FV activity up to 7.0-fold, 3.1-fold, and 10.8-fold, respectively, whereas PTC-124 and Amlexanox (alone or in combination) were ineffective. These findings were confirmed by thrombin generation assays in FV-depleted plasma reconstituted with conditioned media of treated cells. All compounds except ELX-02 showed some degree of cytotoxicity. Ex vivo differentiated megakaryocytes of the F5 p.Arg1161Ter-homozygous patient, which were negative at FV immunostaining, turned positive after treatment with all 5 readthrough agents. Notably, they were also able to internalize mutant FV rescued with G418 or 2,6-DAP, which would be required to maintain the crucial platelet FV pool in vivo. CONCLUSION These findings provide in vitro and ex vivo proof-of-principle for readthrough-mediated rescue of the F5 p.Arg1161Ter mutation.
Collapse
Affiliation(s)
- Alice M Todaro
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Claudia M Radu
- Department of Medicine, Thrombotic and Haemorrhagic Diseases Unit, Padua University Medical School, Padua, Italy
| | - Maria Ciccone
- Department of Medical Sciences, Section of Haematology, Sant'Anna Hospital, Ferrara University, Ferrara, Italy
| | - Serena Toffanin
- Department of Medicine, Thrombotic and Haemorrhagic Diseases Unit, Padua University Medical School, Padua, Italy
| | - M Luisa Serino
- Department of Medical Sciences, Section of Haematology, Sant'Anna Hospital, Ferrara University, Ferrara, Italy
| | - Elena Campello
- Department of Medicine, Thrombotic and Haemorrhagic Diseases Unit, Padua University Medical School, Padua, Italy
| | - Cristiana Bulato
- Department of Medicine, Thrombotic and Haemorrhagic Diseases Unit, Padua University Medical School, Padua, Italy
| | - Barbara Lunghi
- Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular Biology, Ferrara University, Ferrara, Italy
| | - Donato Gemmati
- Department of Translational Medicine, Haemostasis & Thrombosis Centre, Ferrara University, Ferrara, Italy
| | - Antonio Cuneo
- Department of Medical Sciences, Section of Haematology, Sant'Anna Hospital, Ferrara University, Ferrara, Italy
| | - Tilman M Hackeng
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Paolo Simioni
- Department of Medicine, Thrombotic and Haemorrhagic Diseases Unit, Padua University Medical School, Padua, Italy
| | - Francesco Bernardi
- Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular Biology, Ferrara University, Ferrara, Italy
| | - Elisabetta Castoldi
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands.
| |
Collapse
|
3
|
Guo Y, Liu L, Mao B, Xie Z, Tian Q, Zhang C, Ma X. Prenatal diagnosis and genetic analysis of novel missense mutation in FVIII gene. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2024; 49:1523-1530. [PMID: 39931783 DOI: 10.11817/j.issn.1672-7347.2024.230520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 02/14/2025]
Abstract
Hemophilia A (HA) is an X-linked recessive hereditary bleeding disorder characterized by recurrent bleeding into muscles, deep tissues, and joint cavities, which may result in varying degrees of disability. Currently, there is no cure for this disease. In this study, the First Hospital of Lanzhou University conducted prenatal diagnosis and family genetic testing on a female carrier of the coagulation factor VIII (FVIII) gene mutation c.5878 C>G in exon 18, classified as a variant of unknown significance. The analysis confirmed that the c.5878 C>G mutation is the pathogenic mutation in the HA family. The proband and her mother were both heterozygous carriers, while her brother was a hemizygous patient. This mutation has not been previously reported and represents a novel pathogenic missense mutation. Family genetic analysis supported the X-linked recessive inheritance pattern. By performing preimplantation genetic testing for monogenic diseases (PGT-M), embryos were screened for the mutation, allowing the carrier to successfully give birth to a healthy child. Screening for FVIII gene mutations to identify mutation types and loci, combined with preconception, preimplantation, and prenatal genetic diagnosis, is critical for reducing adverse pregnancy outcomes and preventing the birth of HA-affected offspring.
Collapse
Affiliation(s)
- Yarong Guo
- First School of Clinical Medicine, Lanzhou University, Lanzhou 730000.
| | - Lin Liu
- First School of Clinical Medicine, Lanzhou University, Lanzhou 730000
- Reproductive Medicine Center, First Hospital of Lanzhou University, Lanzhou 730000
| | - Bin Mao
- Reproductive Medicine Center, First Hospital of Lanzhou University, Lanzhou 730000
| | - Zehui Xie
- First School of Clinical Medicine, Lanzhou University, Lanzhou 730000
| | - Qimin Tian
- First School of Clinical Medicine, Lanzhou University, Lanzhou 730000
| | - Chuan Zhang
- Medical Genetics Center, Maternal and Child Health Hospital of Gansu Province; Gansu Province Clinical Medical Research Center for Birth Defects and Rare Diseases, Lanzhou 730000, China
| | - Xiaoling Ma
- First School of Clinical Medicine, Lanzhou University, Lanzhou 730000.
- Reproductive Medicine Center, First Hospital of Lanzhou University, Lanzhou 730000.
| |
Collapse
|
4
|
Li S, Li J, Shi W, Nie Z, Zhang S, Ma F, Hu J, Chen J, Li P, Xie X. Pharmaceuticals Promoting Premature Termination Codon Readthrough: Progress in Development. Biomolecules 2023; 13:988. [PMID: 37371567 DOI: 10.3390/biom13060988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/27/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Around 11% of all known gene lesions causing human genetic diseases are nonsense mutations that introduce a premature stop codon (PTC) into the protein-coding gene sequence. Drug-induced PTC readthrough is a promising therapeutic strategy for treating hereditary diseases caused by nonsense mutations. To date, it has been found that more than 50 small-molecular compounds can promote PTC readthrough, known as translational readthrough-inducing drugs (TRIDs), and can be divided into two major categories: aminoglycosides and non-aminoglycosides. This review summarizes the pharmacodynamics and clinical application potential of the main TRIDs discovered so far, especially some newly discovered TRIDs in the past decade. The discovery of these TRIDs brings hope for treating nonsense mutations in various genetic diseases. Further research is still needed to deeply understand the mechanism of eukaryotic cell termination and drug-induced PTC readthrough so that patients can achieve the greatest benefit from the various TRID treatments.
Collapse
Affiliation(s)
- Shan Li
- School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Juan Li
- Central Laboratory, The First Hospital of Lanzhou University, Lanzhou 730000, China
- Gansu Key Laboratory of Genetic Study of Hematopathy, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Wenjing Shi
- School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Ziyan Nie
- School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Shasha Zhang
- School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Fengdie Ma
- School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jun Hu
- School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jianjun Chen
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Peiqiang Li
- School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Xiaodong Xie
- School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
5
|
Beryozkin A, Nagel-Wolfum K, Banin E, Sharon D. Factors Affecting Readthrough of Natural Versus Premature Termination Codons. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1415:149-155. [PMID: 37440028 DOI: 10.1007/978-3-031-27681-1_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Nonsense mutations occur within the open-reading frame of a gene resulting in a premature termination codon (PTC). PTC-containing mRNAs can either be degeraded or cause premature translation termination producing a truncated protein that can be either nonfunctional or toxic. Translational readthrough inducing drugs (TRIDs) are small molecules that are able to induce readthrough, resulting in the restoration of full-length protein expression. The re-expressed proteins usually harbor a missense change. The effciency of individual TRIDs is variable and varies between different genes and even different nonsense mutations in the same gene. This review summarizes factors, including the sequences located upstream and downstream the disease-causing mutation and the type of PTC, affecting the translational readthrough process by modulating the type of amino acid insertion and the efficiency of the process during readthrough following TRIDs treatments.
Collapse
Affiliation(s)
- Avigail Beryozkin
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Kerstin Nagel-Wolfum
- Institute of Molecular Physiology & Institute of Developmental Biology and Neurobiology, Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Eyal Banin
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Dror Sharon
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
6
|
Testa MF, Lombardi S, Bernardi F, Ferrarese M, Belvini D, Radossi P, Castaman G, Pinotti M, Branchini A. Translational readthrough at F8 nonsense variants in the factor VIII B domain contributes to residual expression and lowers inhibitor association. Haematologica 2022; 108:472-482. [PMID: 35924581 PMCID: PMC9890017 DOI: 10.3324/haematol.2022.281279] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Indexed: 02/03/2023] Open
Abstract
In hemophilia A, F8 nonsense variants, and particularly those affecting the large factor VIII (FVIII) B domain that is dispensable for coagulant activity, display lower association with replacement therapy-related anti-FVIII inhibitory antibodies as retrieved from multiple international databases. Since null genetic conditions favor inhibitor development, we hypothesized that translational readthrough over premature termination codons (PTC) may contribute to immune tolerance by producing full-length proteins through the insertion of amino acid subset(s). To quantitatively evaluate the readthrough output in vitro, we developed a very sensitive luciferase-based system to detect very low full-length FVIII synthesis from a wide panel (n=45; ~60% patients with PTC) of F8 nonsense variants. PTC not associated with inhibitors displayed higher readthrough-driven expression levels than inhibitor-associated PTC, a novel observation. Particularly, higher levels were detected for B-domain variants (n=20) than for variants in other domains (n=25). Studies on plasma from six hemophilia A patients with PTC, integrated by expression of the corresponding nonsense and readthrough-deriving missense variants, consistently revealed higher FVIII levels for B-domain variants. Only one B-domain PTC (Arg814*) was found among the highly represented PTC not sporadically associated with inhibitors, but with the lowest proportion of inhibitor cases (4 out of 57). These original insights into the molecular genetics of hemophilia A, and particularly into genotype-phenotype relationships related with disease treatment, demonstrate that B-domain features favor PTC readthrough output. This provides a potential molecular mechanism contributing to differential PTC-associated inhibitor occurrence, with translational implications for a novel, experimentally based classification of F8 nonsense variants.
Collapse
Affiliation(s)
- Maria Francesca Testa
- Department of Life Sciences and Biotechnology and LTTA Center, University of Ferrara, Ferrara
| | - Silvia Lombardi
- Department of Life Sciences and Biotechnology and LTTA Center, University of Ferrara, Ferrara,°Current address: Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Francesco Bernardi
- Department of Life Sciences and Biotechnology and LTTA Center, University of Ferrara, Ferrara
| | - Mattia Ferrarese
- Department of Life Sciences and Biotechnology and LTTA Center, University of Ferrara, Ferrara
| | - Donata Belvini
- Transfusion Service, Hemophilia Center and Hematology, Castelfranco Veneto Hospital, Castelfranco Veneto
| | - Paolo Radossi
- Oncohematology-Oncologic Institute of Veneto, Castelfranco Veneto Hospital, Castelfranco Veneto
| | - Giancarlo Castaman
- Center for Bleeding Disorders and Coagulation, Careggi University Hospital, Florence, Italy
| | - Mirko Pinotti
- Department of Life Sciences and Biotechnology and LTTA Center, University of Ferrara, Ferrara.
| | - Alessio Branchini
- Department of Life Sciences and Biotechnology and LTTA Center, University of Ferrara, Ferrara.
| |
Collapse
|
7
|
Lombardi S, Testa MF, Pinotti M, Branchini A. Translation termination codons in protein synthesis and disease. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2022; 132:1-48. [PMID: 36088072 DOI: 10.1016/bs.apcsb.2022.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Fidelity of protein synthesis, a process shaped by several mechanisms involving specialized ribosome regions and external factors, ensures the precise reading of sense as well as stop codons (UGA, UAG, UAA), which are usually localized at the 3' of mRNA and drive the release of the polypeptide chain. However, either natural (NTCs) or premature (PTCs) termination codons, the latter arising from nucleotide changes, can undergo a recoding process named ribosome or translational readthrough, which insert specific amino acids (NTCs) or subset(s) depending on the stop codon type (PTCs). This process is particularly relevant for nonsense mutations, a relatively frequent cause of genetic disorders, which impair gene expression at different levels by potentially leading to mRNA degradation and/or synthesis of truncated proteins. As a matter of fact, many efforts have been made to develop efficient and safe readthrough-inducing compounds, which have been challenged in several models of human disease to provide with a therapy. In this view, the dissection of the molecular determinants shaping the outcome of readthrough, namely nucleotide and protein contexts as well as their interplay and impact on protein structure/function, is crucial to identify responsive nonsense mutations resulting in functional full-length proteins. The interpretation of experimental and mechanistic findings is also important to define a possibly clear picture of potential readthrough-favorable features useful to achieve rescue profiles compatible with therapeutic thresholds typical of each targeted disorder, which is of primary importance for the potential translatability of readthrough into a personalized and mutation-specific, and thus patient-oriented, therapeutic strategy.
Collapse
Affiliation(s)
- Silvia Lombardi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Maria Francesca Testa
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Mirko Pinotti
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Alessio Branchini
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy.
| |
Collapse
|
8
|
Abreu RBV, Gomes TT, Nepomuceno TC, Li X, Fuchshuber-Moraes M, De Gregoriis G, Suarez-Kurtz G, Monteiro ANA, Carvalho MA. Functional Restoration of BRCA1 Nonsense Mutations by Aminoglycoside-Induced Readthrough. Front Pharmacol 2022; 13:935995. [PMID: 35837282 PMCID: PMC9273842 DOI: 10.3389/fphar.2022.935995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/01/2022] [Indexed: 11/13/2022] Open
Abstract
BRCA1 is a major tumor suppressor that functions in the accurate repair of DNA double-strand breaks via homologous recombination (HR). Nonsense mutations in BRCA1 lead to inactive truncated protein products and are associated with high risk of breast and ovarian cancer. These mutations generate premature termination codons (PTCs). Different studies have shown that aminoglycosides can induce PTC suppression by promoting stop codon readthrough and restoring full-length (FL) protein expression. The use of these compounds has been studied in clinical trials for genetic diseases such as cystic fibrosis and Duchenne muscular dystrophy, with encouraging results. Here we show proof-of-concept data demonstrating that the aminoglycoside G418 can induce BRCA1 PTC readthrough and restore FL protein synthesis and function. We first demonstrate that G418 treatment restores BRCA1 FL protein synthesis in HCC1395, a human breast tumor cell line carrying the R1751X mutation. HCC1395 cells treated with G418 also recover HR DNA repair and restore cell cycle checkpoint activation. A set of naturally occurring BRCA1 nonsense variants encoding different PTCs was evaluated in a GFP C-terminal BRCA1 construct model and BRCA1 PTC readthrough levels vary depending on the stop codon context. Because PTC readthrough could generate FL protein carrying pathogenic missense mutations, variants representing the most probable acquired amino acid substitutions in consequence of readthrough were functionally assessed by a validated transcription activation assay. Overall, this is the first study that evaluates the readthrough of PTC variants with clinical relevance in the breast and ovarian cancer-predisposing gene BRCA1.
Collapse
Affiliation(s)
- Renata B. V. Abreu
- Divisão de Pesquisa Clínica, Instituto Nacional de Câncer, Rio de Janeiro, Brazil
| | - Thiago T. Gomes
- Divisão de Pesquisa Clínica, Instituto Nacional de Câncer, Rio de Janeiro, Brazil
| | - Thales C. Nepomuceno
- Divisão de Pesquisa Clínica, Instituto Nacional de Câncer, Rio de Janeiro, Brazil
- Cancer Epidemiology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - Xueli Li
- Cancer Epidemiology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | | | | | | | - Alvaro N. A. Monteiro
- Cancer Epidemiology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - Marcelo A. Carvalho
- Divisão de Pesquisa Clínica, Instituto Nacional de Câncer, Rio de Janeiro, Brazil
- Instituto Federal do Rio de Janeiro—IFRJ, Rio de Janeiro, Brazil
- *Correspondence: Marcelo A. Carvalho,
| |
Collapse
|
9
|
Baradaran-Heravi A, Bauer CC, Pickles IB, Hosseini-Farahabadi S, Balgi AD, Choi K, Linley DM, Beech DJ, Roberge M, Bon RS. Nonselective TRPC channel inhibition and suppression of aminoglycoside-induced premature termination codon readthrough by the small molecule AC1903. J Biol Chem 2022; 298:101546. [PMID: 34999117 PMCID: PMC8808171 DOI: 10.1016/j.jbc.2021.101546] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/14/2021] [Accepted: 12/19/2021] [Indexed: 11/28/2022] Open
Abstract
Nonsense mutations, which occur in ∼11% of patients with genetic disorders, introduce premature termination codons (PTCs) that lead to truncated proteins and promote nonsense-mediated mRNA decay. Aminoglycosides such as G418 permit PTC readthrough and so may be used to address this problem. However, their effects are variable between patients, making clinical use of aminoglycosides challenging. In this study, we tested whether TRPC nonselective cation channels contribute to the variable PTC readthrough effect of aminoglycosides by controlling their cellular uptake. Indeed, a recently reported selective TRPC5 inhibitor, AC1903, consistently suppressed G418 uptake and G418-induced PTC readthrough in the DMS-114 cancer cell line and junctional epidermolysis bullosa (JEB) patient-derived keratinocytes. Interestingly, the effect of AC1903 in DMS-114 cells was mimicked by nonselective TRPC inhibitors, but not by well-characterized inhibitors of TRPC1/4/5 (Pico145, GFB-8438) or TRPC3/6/7 (SAR7334), suggesting that AC1903 may work through additional or undefined targets. Indeed, in our experiments, AC1903 inhibited multiple TRPC channels including TRPC3, TRPC4, TRPC5, TRPC6, TRPC4-C1, and TRPC5-C1, as well as endogenous TRPC1:C4 channels in A498 renal cancer cells, all with low micromolar IC50 values (1.8-18 μM). We also show that AC1903 inhibited TRPV4 channels, but had weak or no effects on TRPV1 and no effect on the nonselective cation channel PIEZO1. Our study reveals that AC1903 has previously unrecognized targets, which need to be considered when interpreting results from experiments with this compound. In addition, our data strengthen the hypothesis that nonselective calcium channels are involved in aminoglycoside uptake.
Collapse
Affiliation(s)
- Alireza Baradaran-Heravi
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada.
| | - Claudia C Bauer
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, UK
| | - Isabelle B Pickles
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, UK; School of Chemistry, University of Leeds, Leeds, UK
| | - Sara Hosseini-Farahabadi
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Aruna D Balgi
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Kunho Choi
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Deborah M Linley
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, UK
| | - David J Beech
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, UK
| | - Michel Roberge
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Robin S Bon
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, UK; Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK.
| |
Collapse
|
10
|
Martins-Dias P, Romão L. Nonsense suppression therapies in human genetic diseases. Cell Mol Life Sci 2021; 78:4677-4701. [PMID: 33751142 PMCID: PMC11073055 DOI: 10.1007/s00018-021-03809-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 02/06/2021] [Accepted: 03/05/2021] [Indexed: 02/06/2023]
Abstract
About 11% of all human disease-associated gene lesions are nonsense mutations, resulting in the introduction of an in-frame premature translation-termination codon (PTC) into the protein-coding gene sequence. When translated, PTC-containing mRNAs originate truncated and often dysfunctional proteins that might be non-functional or have gain-of-function or dominant-negative effects. Therapeutic strategies aimed at suppressing PTCs to restore deficient protein function-the so-called nonsense suppression (or PTC readthrough) therapies-have the potential to provide a therapeutic benefit for many patients and in a broad range of genetic disorders, including cancer. These therapeutic approaches comprise the use of translational readthrough-inducing compounds that make the translational machinery recode an in-frame PTC into a sense codon. However, most of the mRNAs carrying a PTC can be rapidly degraded by the surveillance mechanism of nonsense-mediated decay (NMD), thus decreasing the levels of PTC-containing mRNAs in the cell and their availability for PTC readthrough. Accordingly, the use of NMD inhibitors, or readthrough-compound potentiators, may enhance the efficiency of PTC suppression. Here, we review the mechanisms of PTC readthrough and their regulation, as well as the recent advances in the development of novel approaches for PTC suppression, and their role in personalized medicine.
Collapse
Affiliation(s)
- Patrícia Martins-Dias
- Department of Human Genetics, Instituto Nacional de Saúde Doutor Ricardo Jorge, Av. Padre Cruz, 1649-016, Lisbon, Portugal
- Faculty of Sciences, BioISI-Biosystems and Integrative Sciences Institute, University of Lisboa, 1749-016, Lisbon, Portugal
| | - Luísa Romão
- Department of Human Genetics, Instituto Nacional de Saúde Doutor Ricardo Jorge, Av. Padre Cruz, 1649-016, Lisbon, Portugal.
- Faculty of Sciences, BioISI-Biosystems and Integrative Sciences Institute, University of Lisboa, 1749-016, Lisbon, Portugal.
| |
Collapse
|
11
|
Abstract
Inhibiting eukaryotic protein translation with small molecules is emerging as a powerful therapeutic strategy. The advantage of targeting cellular translational machinery is that it is required for the highly proliferative state of many neoplastic cells, replication of certain viruses, and ultimately the expression of a wide variety of protein targets. Although, this approach has been exploited to develop clinical agents, such as homoharringtonine (HHT, 1), used to treat chronic myeloid leukemia (CML), inhibiting components of the translational machinery is often associated with cytotoxic phenotypes. However, recent studies have demonstrated that certain small molecules can inhibit the translation of specific subsets of proteins, leading to lower cytotoxicity, and opening-up therapeutic opportunities for translation inhibitors to be deployed in indications beyond oncology and infectious disease. This review summarizes efforts to develop inhibitors of the eukaryotic translational machinery as therapeutic agents and highlights emerging opportunities for translation inhibitors in the future.
Collapse
Affiliation(s)
- Angela Fan
- Department of Discovery Chemistry, Merck & Co., Inc., South San Francisco, California 94080, United States
| | - Phillip P Sharp
- Department of Discovery Chemistry, Merck & Co., Inc., South San Francisco, California 94080, United States
| |
Collapse
|
12
|
Palma M, Lejeune F. Deciphering the molecular mechanism of stop codon readthrough. Biol Rev Camb Philos Soc 2020; 96:310-329. [PMID: 33089614 DOI: 10.1111/brv.12657] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 09/23/2020] [Accepted: 09/26/2020] [Indexed: 12/11/2022]
Abstract
Recognition of the stop codon by the translation machinery is essential to terminating translation at the right position and to synthesizing a protein of the correct size. Under certain conditions, the stop codon can be recognized as a coding codon promoting translation, which then terminates at a later stop codon. This event, called stop codon readthrough, occurs either by error, due to a dedicated regulatory environment leading to generation of different protein isoforms, or through the action of a readthrough compound. This review focuses on the mechanisms of stop codon readthrough, the nucleotide and protein environments that facilitate or inhibit it, and the therapeutic interest of stop codon readthrough in the treatment of genetic diseases caused by nonsense mutations.
Collapse
Affiliation(s)
- Martine Palma
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020 - U1277 - CANTHER - Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France
| | - Fabrice Lejeune
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020 - U1277 - CANTHER - Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France
| |
Collapse
|
13
|
Tarrasó G, Real-Martinez A, Parés M, Romero-Cortadellas L, Puigros L, Moya L, de Luna N, Brull A, Martín MA, Arenas J, Lucia A, Andreu AL, Barquinero J, Vissing J, Krag TO, Pinós T. Absence of p.R50X Pygm read-through in McArdle disease cellular models. Dis Model Mech 2020; 13:dmm.043281. [PMID: 31848135 PMCID: PMC6994938 DOI: 10.1242/dmm.043281] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 12/05/2019] [Indexed: 12/13/2022] Open
Abstract
McArdle disease is an autosomal recessive disorder caused by the absence of muscle glycogen phosphorylase, which leads to blocked muscle glycogen breakdown. We used three different cellular models to evaluate the efficiency of different read-through agents (including amlexanox, Ataluren, RTC13 and G418) in McArdle disease. The first model consisted of HeLa cells transfected with two different GFP-PYGM constructs presenting the Pygm p.R50X mutation (GFP-PYGM p.R50X and PYGM Ex1-GFP p.R50X). The second cellular model was based on the creation of HEK293T cell lines stably expressing the PYGM Ex1-GFP p.R50X construct. As these plasmids encode murine Pygm cDNA without any intron sequence, their transfection in cells would allow for analysis of the efficacy of read-through agents with no concomitant nonsense-mediated decay interference. The third model consisted of skeletal muscle cultures derived from the McArdle mouse model (knock-in for the p.R50X mutation in the Pygm gene). We found no evidence of read-through at detectable levels in any of the models evaluated. We performed a literature search and compared the premature termination codon context sequences with reported positive and negative read-through induction, identifying a potential role for nucleotide positions −9, −8, −3, −2, +13 and +14 (the first nucleotide of the stop codon is assigned as +1). The Pygm p.R50X mutation presents TGA as a stop codon, G nucleotides at positions −1 and −9, and a C nucleotide at −3, which potentially generate a good context for read-through induction, counteracted by the presence of C at −2 and its absence at +4. Summary: Here, we evaluated the efficiency of different read-through agents in McArdle disease cell culture models, revealing that read-through compounds do not restore full-length muscle glycogen phosphorylase.
Collapse
Affiliation(s)
- Guillermo Tarrasó
- Mitochondrial and Neuromuscular Disorders Unit, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona 08035, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid 28029, Spain
| | - Alberto Real-Martinez
- Mitochondrial and Neuromuscular Disorders Unit, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona 08035, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid 28029, Spain
| | - Marta Parés
- Gene and Cell Therapy Unit, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona 08035, Spain
| | - Lídia Romero-Cortadellas
- Gene and Cell Therapy Unit, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona 08035, Spain
| | - Laura Puigros
- Gene and Cell Therapy Unit, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona 08035, Spain
| | - Laura Moya
- Gene and Cell Therapy Unit, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona 08035, Spain
| | - Noemí de Luna
- Laboratori de Malalties Neuromusculars, Institut de Recerca Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona 08041, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid 28029, Spain
| | - Astrid Brull
- Sorbonne Université, INSERM UMRS_974, Center of Research in Myology, 75013 Paris, France
| | - Miguel Angel Martín
- Mitochondrial and Neuromuscular Diseases Laboratory, 12 de Octubre Hospital Research Institute (i+12), Madrid 28041, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid 28029, Spain
| | - Joaquin Arenas
- Mitochondrial and Neuromuscular Diseases Laboratory, 12 de Octubre Hospital Research Institute (i+12), Madrid 28041, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid 28029, Spain
| | - Alejandro Lucia
- Mitochondrial and Neuromuscular Diseases Laboratory, 12 de Octubre Hospital Research Institute (i+12), Madrid 28041, Spain.,Faculty of Sport Sciences, European University, Madrid 28670, Spain
| | - Antoni L Andreu
- Mitochondrial and Neuromuscular Disorders Unit, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona 08035, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid 28029, Spain
| | - Jordi Barquinero
- Gene and Cell Therapy Unit, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona 08035, Spain
| | - John Vissing
- Copenhagen Neuromuscular Center, Department of Neurology, Rigshospitalet, University of Copenhagen, Copenhagen DK-2100, Denmark
| | - Thomas O Krag
- Copenhagen Neuromuscular Center, Department of Neurology, Rigshospitalet, University of Copenhagen, Copenhagen DK-2100, Denmark
| | - Tomàs Pinós
- Mitochondrial and Neuromuscular Disorders Unit, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona 08035, Spain .,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid 28029, Spain
| |
Collapse
|