1
|
Bernal A, Cuminetti V, Serulla M, Florit A, Konieczny J, Golnarnik G, Chen Y, Ferré M, Geiseler S, Vik A, Olsen R, Arranz L. Bone marrow sympathetic neuropathy is a hallmark of hematopoietic malignancies and it involves severe ultrastructural damage. Exp Hematol Oncol 2025; 14:31. [PMID: 40045344 PMCID: PMC11884145 DOI: 10.1186/s40164-025-00614-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 02/13/2025] [Indexed: 03/09/2025] Open
Abstract
The hematopoietic stem cell (HSC) niche in the bone marrow (BM) supports HSC function, fate and numbers [1]. Sympathetic fibres innervate the BM and are components of the hematopoietic stem and progenitor cell (HSPC) niche [2]. Neuropathy of the HSPC niche is present and essential for disease development in experimental models of JAK2V617F+ myeloproliferative neoplasms (MPN) and MLL-AF9+ acute myeloid leukemia (AML), and it is present in the BM of human MPN and AML patients [3-6]. Neuropathy contributes to mutant HSC expansion and represents an effective therapeutic target to block disease progression in JAK2V617F+ MPN mice [3]. The sympathomimetic agonist mirabegron restored nestin+ cells and reduced reticulin fibrosis in MPN patients [7]. Here, we show that neuropathy of the HSPC niche emerges in two additional experimental models of hematological disease including pre-leukemic myelopoiesis driven by NRASG12D and lymphoma/lymphoblastic leukemia driven by p53 deletion. Neuropathy involves severe ultrastructural damage in NRASG12D+ mice and AML patients as shown by electron microscopy. When further reinforced chemically, neuropathy has a profound impact on the experimental NRASG12D mouse model, promoting myeloid bias, reducing HSPC numbers and inducing changes in the stem cell microenvironment that include reduced numbers of mesenchymal stromal cells (MSC) and increased presence of morphologically abnormal blood vessels in BM. Together, BM neuropathy is a prevalent factor in hematopoietic malignancies that involves important degradation of sympathetic fibres and contributes to disease in a different manner depending on the driver mutation. This should be taken in consideration in the clinic, given that chemotherapy induces neuropathy of the HSC niche [8] and it is the most frequent first line treatment for AML, acute lymphoblastic leukemia and MPN patients.
Collapse
Affiliation(s)
- Aurora Bernal
- Stem Cells, Ageing and Cancer Research Group, Department of Medical Biology, Faculty of Health Sciences, UiT - The Arctic University of Norway, MH2 Building Level 10, 9019, Tromsø, Norway
| | - Vincent Cuminetti
- Stem Cells, Ageing and Cancer Research Group, Department of Medical Biology, Faculty of Health Sciences, UiT - The Arctic University of Norway, MH2 Building Level 10, 9019, Tromsø, Norway
- Stem Cells, Ageing and Cancer Research Group, Centre of Embryology and Healthy Development, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0373, Oslo, Norway
| | - Marc Serulla
- Stem Cells, Ageing and Cancer Research Group, Department of Medical Biology, Faculty of Health Sciences, UiT - The Arctic University of Norway, MH2 Building Level 10, 9019, Tromsø, Norway
| | - Adrian Florit
- Stem Cells, Ageing and Cancer Research Group, Department of Medical Biology, Faculty of Health Sciences, UiT - The Arctic University of Norway, MH2 Building Level 10, 9019, Tromsø, Norway
| | - Joanna Konieczny
- Stem Cells, Ageing and Cancer Research Group, Department of Medical Biology, Faculty of Health Sciences, UiT - The Arctic University of Norway, MH2 Building Level 10, 9019, Tromsø, Norway
| | - Golnaz Golnarnik
- Stem Cells, Ageing and Cancer Research Group, Department of Medical Biology, Faculty of Health Sciences, UiT - The Arctic University of Norway, MH2 Building Level 10, 9019, Tromsø, Norway
| | - Yimeng Chen
- Stem Cells, Ageing and Cancer Research Group, Centre of Embryology and Healthy Development, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0373, Oslo, Norway
| | - Marc Ferré
- Stem Cells, Ageing and Cancer Research Group, Department of Medical Biology, Faculty of Health Sciences, UiT - The Arctic University of Norway, MH2 Building Level 10, 9019, Tromsø, Norway
- Stem Cells, Ageing and Cancer Research Group, Centre of Embryology and Healthy Development, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0373, Oslo, Norway
| | - Samuel Geiseler
- Stem Cells, Ageing and Cancer Research Group, Department of Medical Biology, Faculty of Health Sciences, UiT - The Arctic University of Norway, MH2 Building Level 10, 9019, Tromsø, Norway
| | - Anders Vik
- Department of Hematology, University Hospital of North Norway, 9019, Tromsø, Norway
- Department of Clinical Medicine, Faculty of Health Sciences, UiT - The Arctic University of Norway, 9019, Tromsø, Norway
| | - Randi Olsen
- Advanced Microscopy Core Facility, Department of Medical Biology, Faculty of Health Sciences, UiT - The Arctic University of Norway, MH2 Building Level 9, 9019, Tromsø, Norway
| | - Lorena Arranz
- Stem Cells, Ageing and Cancer Research Group, Department of Medical Biology, Faculty of Health Sciences, UiT - The Arctic University of Norway, MH2 Building Level 10, 9019, Tromsø, Norway.
- Stem Cells, Ageing and Cancer Research Group, Centre of Embryology and Healthy Development, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0373, Oslo, Norway.
- Associate Investigator, Norwegian Center for Molecular Medicine (NCMM), University of Oslo, 0349, Oslo, Norway.
| |
Collapse
|
2
|
Dong R, Wang C, Tang B, Cheng Y, Peng X, Yang X, Ni B, Li J. WDR4 promotes HCC pathogenesis through N 7-methylguanosine by regulating and interacting with METTL1. Cell Signal 2024; 118:111145. [PMID: 38493882 DOI: 10.1016/j.cellsig.2024.111145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/28/2024] [Accepted: 03/15/2024] [Indexed: 03/19/2024]
Abstract
BACKGROUND The N7-methylguanosine (m7G), a modification at defined internal positions within tRNAs and rRNAs, is correlated with tumor progression. Methyltransferase like 1 (METTL1)/ WD repeat domain 4 (WDR4) mediated tRNA m7G modification, which could alter many oncogenic mRNAs translation to promote progress of multiple cancer types. However, whether and how the internal mRNA m7G modification is involved in tumorigenesis remains unclear. METHODS The immunohistochemistry assay was conducted to detect the expression of WDR4 and METTL1 in hepatocellular carcinoma (HCC) and the expression of both genes whether contributes to the prognosis of the survival rate of HCC patients. Then, CCK8, colony formation assays and tumor xenograft models were conducted to determine the effects of WDR4 on HCC cells in vitro and vivo. Besides, dot blot assay, m7G-MeRIP-seq and RNA-seq analysis were conducted to determine whether WDR4 contributes to m7G modification and underlying mechanism in HCC cells. Finally, rescue and CO-IP assay were conducted to explore whether WDR4 and METTL1 proteins form a complex in Huh7 cells. RESULTS WDR4 modulates m7G modification at the internal sites of tumor-promoting mRNAs by forming the WDR4-METTL1 complex. WDR4 knockdown downregulated the expression of mRNA and protein levels of METTL1 gene and thus further modulate the formation of WDR4-METTL1 complex indirectly. METTL1 expression was markedly correlated with WDR4 expression in HCC tissues. HCC patients with high expression of both genes had a poor prognosis. CONCLUSIONS WDR4 may contribute to HCC pathogenesis by interacting with and regulating the expression of METTL1 to synergistically modulate the m7G modification of target mRNAs in tumor cells.
Collapse
Affiliation(s)
- Rui Dong
- Department of Hepatobiliary Surgery, Xinqiao Hospital, The Second Affiliated Hospital of Third Military Medical University, Chongqing 400037, China; Department of Pathophysiology, College of High Altitude Military Medicine, Third Military Medical University, Chongqing 400038, China; Chongqing International Institute for Immunology, Chongqing 401320, China
| | - Chuanxu Wang
- Department of Hepatobiliary Surgery, Xinqiao Hospital, The Second Affiliated Hospital of Third Military Medical University, Chongqing 400037, China
| | - Bo Tang
- Chongqing International Institute for Immunology, Chongqing 401320, China
| | - Yayu Cheng
- Department of Gynecology, Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Hospital), Qingdao 266042, China
| | - Xuehui Peng
- Department of Hepatobiliary Surgery, Xinqiao Hospital, The Second Affiliated Hospital of Third Military Medical University, Chongqing 400037, China
| | - Xiaomin Yang
- Department of Hepatobiliary Surgery, Xinqiao Hospital, The Second Affiliated Hospital of Third Military Medical University, Chongqing 400037, China
| | - Bing Ni
- Department of Pathophysiology, College of High Altitude Military Medicine, Third Military Medical University, Chongqing 400038, China.
| | - Jing Li
- Department of Hepatobiliary Surgery, Xinqiao Hospital, The Second Affiliated Hospital of Third Military Medical University, Chongqing 400037, China.
| |
Collapse
|
3
|
Yang J, Zhang Y, Cheng S, Xu Y, Wu M, Gu S, Xu S, Wu Y, Wang C, Wang Y. Anoikis-related signature predicts prognosis and characterizes immune landscape of ovarian cancer. Cancer Cell Int 2024; 24:53. [PMID: 38310291 PMCID: PMC10837903 DOI: 10.1186/s12935-023-03170-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 11/30/2023] [Indexed: 02/05/2024] Open
Abstract
Ovarian cancer (OV) is the most lethal gynecological malignancy worldwide, with high recurrence rates. Anoikis, a newly-acknowledged form of programmed cell death, plays an essential role in cancer progression, though studies focused on prognostic patterns of anoikis in OV are still lacking. We filtered 32 potential anoikis-related genes (ARGs) among the 6406 differentially expressed genes (DEGs) between the 180 normal controls and 376 TCGA-OV samples. Through the LASSO-Cox analysis, a 2-gene prognostic signature, namely AKT2, and DAPK1, was finally distinguished. We then demonstrated the promising prognostic value of the signature through the K-M survival analysis and time-dependent ROC curves (p-value < 0.05). Moreover, based on the signature and clinical features, we constructed and validated a nomogram model for 1-year, 3-year, and 5-year overall survival, with reliable prognostic values in both TCGA-OV training cohort (p-value < 0.001) and ICGC-OV validation cohort (p-value = 0.030). We evaluated the tumor immune landscape through the CIBERSORT algorithm, which indicated the upregulation of resting Myeloid Dendritic Cells (DCs), memory B cells, and naïve B cells and high expression of key immune checkpoint molecules (CD274 and PDCD1LG2) in the high-risk group. Interestingly, the high-risk group exhibited better sensitivity toward immunotherapy and less sensitivity toward chemotherapies, including Cisplatin and Bleomycin. Especially, based on the IHC of tissue microarrays among 125 OV patients at our institution, we reported that aberrant upregulation of DAPK1 was related to poor prognosis. Conclusively, the anoikis-related signature was a promising tool to evaluate prognosis and predict therapy responses, thus assisting decision-making in the realm of OV precision medicine.
Collapse
Affiliation(s)
- Jiani Yang
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Yue Zhang
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Shanshan Cheng
- Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yanna Xu
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Meixuan Wu
- Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Sijia Gu
- Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Shilin Xu
- Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yongsong Wu
- Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Chao Wang
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Yu Wang
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China.
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
4
|
Fan W, Cao W, Shi J, Gao F, Wang M, Xu L, Wang F, Li Y, Guo R, Bian Z, Li W, Jiang Z, Ma W. Contributions of bone marrow monocytes/macrophages in myeloproliferative neoplasms with JAK2 V617F mutation. Ann Hematol 2023; 102:1745-1759. [PMID: 37233774 PMCID: PMC10213596 DOI: 10.1007/s00277-023-05284-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 05/17/2023] [Indexed: 05/27/2023]
Abstract
The classic BCR-ABL1-negative myeloproliferative neoplasm (MPN) is a highly heterogeneous hematologic tumor that includes three subtypes, namely polycythemia vera (PV), essential thrombocytosis (ET), and primary myelofibrosis (PMF). Despite having the same JAK2V617F mutation, the clinical manifestations of these three subtypes of MPN differ significantly, which suggests that the bone marrow (BM) immune microenvironment may also play an important role. In recent years, several studies have shown that peripheral blood monocytes play an important role in promoting MPN. However, to date, the role of BM monocytes/macrophages in MPN and their transcriptomic alterations remain incompletely understood. The purpose of this study was to clarify the role of BM monocytes/macrophages in MPN patients with the JAK2V617F mutation. MPN patients with the JAK2V617F mutation were enrolled in this study. We investigated the roles of monocytes/macrophages in the BM of MPN patients, using flow cytometry, monocyte/macrophage enrichment sorting, cytospins and Giemsa-Wright staining, and RNA-seq. Pearson correlation coefficient analysis was also used to detect the correlation between BM monocytes/macrophages and the MPN phenotype. In the present study, the proportion of CD163+ monocytes/macrophages increased significantly in all three subtypes of MPN. Interestingly, the percentages of CD163+ monocytes/macrophages are positively correlated with HGB in PV patients and PLT in ET patients. In contrast, the percentages of CD163+ monocytes/macrophages are negatively correlated with HGB and PLT in PMF patients. It was also found that CD14+CD16+ monocytes/macrophages increased and correlated with MPN clinical phenotypes. RNA-seq analyses demonstrated that the transcriptional expressions of monocytes/macrophages in MPN patients are relatively distinct. Gene expression profiles of BM monocytes/macrophages suggest a specialized function in support of megakaryopoiesis in ET patients. In contrast, BM monocytes/macrophages yielded a heterogeneous status in the support or inhibition of erythropoiesis. Significantly, BM monocytes/macrophages shaped an inflammatory microenvironment, which, in turn, promotes myelofibrosis. Thus, we characterized the roles of increased monocytes/macrophages in the occurrence and progression of MPNs. Our findings of the comprehensive transcriptomic characterization of BM monocytes/macrophages provide important resources to serve as a basis for future studies and future targets for the treatment of MPN patients.
Collapse
Affiliation(s)
- Wenjuan Fan
- Department of Hematology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Weijie Cao
- Department of Hematology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Jianxiang Shi
- BGI College & Henan Institute of Medical and Pharmaceutical Sciences in Academy of Medical Science, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Fengcai Gao
- Department of Hematology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Meng Wang
- Department of Hematology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Linping Xu
- Department of Research and Foreign Affairs, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China
| | - Fang Wang
- Department of Hematology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Yingmei Li
- Department of Hematology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Rong Guo
- Department of Hematology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Zhilei Bian
- Department of Hematology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- The Academy of Medical Science, College of Medical, Zhengzhou University, Zhengzhou, 450052, Henan, China
- Department of Hematology, Henan Provincial Hematology Hospital, Zhengzhou, 450000, Henan, China
| | - Wei Li
- Department of Hematology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
- The Academy of Medical Science, College of Medical, Zhengzhou University, Zhengzhou, 450052, Henan, China.
- Department of Hematology, Henan Provincial Hematology Hospital, Zhengzhou, 450000, Henan, China.
| | - Zhongxing Jiang
- Department of Hematology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
- The Academy of Medical Science, College of Medical, Zhengzhou University, Zhengzhou, 450052, Henan, China.
- Department of Hematology, Henan Provincial Hematology Hospital, Zhengzhou, 450000, Henan, China.
| | - Wang Ma
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450008, Henan, China.
| |
Collapse
|
5
|
Deepening Our Understanding of the Factors Affecting Landscape of Myeloproliferative Neoplasms: What Do We Know about Them? Cancers (Basel) 2023; 15:cancers15041348. [PMID: 36831689 PMCID: PMC9954305 DOI: 10.3390/cancers15041348] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/15/2023] [Accepted: 02/17/2023] [Indexed: 02/25/2023] Open
Abstract
Myeloproliferative neoplasms (MPNs) arise from the uncontrolled proliferation of hematopoietic stem and progenitor cells in bone marrow. As with all tumors, the development of MPNs is a consequence of alterations in malignant cells and their interaction with other extrinsic factors that support and promote tumor progression. Since the discovery of driver mutations, much work has focused on studying and reviewing the genomic features of the disease but has neglected to delve into the important role that many other mechanisms may play. This review discusses the genetic component of MPNs but focuses mainly on some of the most relevant work investigating other non-genetic factors that may be crucial for the disease. The studies summarized here address MPN cell-intrinsic or -extrinsic factors and the interaction between them through transcriptomic, proteomic and microbiota studies, among others.
Collapse
|
6
|
Remodeled CD146 +CD271 + Bone Marrow Mesenchymal Stem Cells from Patients with Polycythemia Vera Exhibit Altered Hematopoietic Supportive Activity. Stem Cell Rev Rep 2023; 19:406-416. [PMID: 36018465 DOI: 10.1007/s12015-022-10427-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2022] [Indexed: 02/07/2023]
Abstract
An essential component of the hematopoietic microenvironment, bone marrow mesenchymal stem cells (BM-MSCs) play an important role in the homeostasis and pathogenesis of the hematopoietic system by regulating the fate of hematopoietic stem cells (HSCs). Previous studies revealed that BM-MSCs were functionally remodeled by malignant cells in leukemia. However, the alterations in BM-MSCs in polycythemia vera (PV) and their effects on HSCs still need to be elucidated. Our results demonstrated that although BM-MSCs from PV patients shared similar surface markers with those from healthy donors, they exhibited enhanced proliferation, decreased senescence, and abnormal osteogenic differentiation capacities. The CD146+CD271+ BM-MSC subpopulation, which is considered to give rise to typical cultured BM-MSCs and form bone and the hematopoietic stroma, was then sorted. Compared with those from healthy donors, CD146+CD271+ BM-MSCs from PV patients showed an impaired mesensphere formation capacity and abnormal differentiation toward osteogenic lineages. In addition, CD146+CD271+ PV BM-MSCs showed altered hematopoietic supportive activity when cocultured with cord blood CD34+ cells. Our study suggested that remodeled CD146+CD271+ BM-MSCs might contribute to the pathogenesis of PV, a finding that will shed light on potential therapeutic strategies for PV.
Collapse
|
7
|
Fröbel J, Landspersky T, Percin G, Schreck C, Rahmig S, Ori A, Nowak D, Essers M, Waskow C, Oostendorp RAJ. The Hematopoietic Bone Marrow Niche Ecosystem. Front Cell Dev Biol 2021; 9:705410. [PMID: 34368155 PMCID: PMC8339972 DOI: 10.3389/fcell.2021.705410] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 06/28/2021] [Indexed: 12/18/2022] Open
Abstract
The bone marrow (BM) microenvironment, also called the BM niche, is essential for the maintenance of fully functional blood cell formation (hematopoiesis) throughout life. Under physiologic conditions the niche protects hematopoietic stem cells (HSCs) from sustained or overstimulation. Acute or chronic stress deregulates hematopoiesis and some of these alterations occur indirectly via the niche. Effects on niche cells include skewing of its cellular composition, specific localization and molecular signals that differentially regulate the function of HSCs and their progeny. Importantly, while acute insults display only transient effects, repeated or chronic insults lead to sustained alterations of the niche, resulting in HSC deregulation. We here describe how changes in BM niche composition (ecosystem) and structure (remodeling) modulate activation of HSCs in situ. Current knowledge has revealed that upon chronic stimulation, BM remodeling is more extensive and otherwise quiescent HSCs may be lost due to diminished cellular maintenance processes, such as autophagy, ER stress response, and DNA repair. Features of aging in the BM ecology may be the consequence of intermittent stress responses, ultimately resulting in the degeneration of the supportive stem cell microenvironment. Both chronic stress and aging impair the functionality of HSCs and increase the overall susceptibility to development of diseases, including malignant transformation. To understand functional degeneration, an important prerequisite is to define distinguishing features of unperturbed niche homeostasis in different settings. A unique setting in this respect is xenotransplantation, in which human cells depend on niche factors produced by other species, some of which we will review. These insights should help to assess deviations from the steady state to actively protect and improve recovery of the niche ecosystem in situ to optimally sustain healthy hematopoiesis in experimental and clinical settings.
Collapse
Affiliation(s)
- Julia Fröbel
- Immunology of Aging, Leibniz Institute on Aging - Fritz Lipmann Institute, Jena, Germany
| | - Theresa Landspersky
- School of Medicine, Department of Internal Medicine III, Technical University of Munich, Munich, Germany
| | - Gülce Percin
- Immunology of Aging, Leibniz Institute on Aging - Fritz Lipmann Institute, Jena, Germany
| | - Christina Schreck
- School of Medicine, Department of Internal Medicine III, Technical University of Munich, Munich, Germany
| | - Susann Rahmig
- Immunology of Aging, Leibniz Institute on Aging - Fritz Lipmann Institute, Jena, Germany
| | - Alessandro Ori
- Proteomics of Aging, Leibniz Institute on Aging - Fritz Lipmann Institute, Jena, Germany
| | - Daniel Nowak
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Marieke Essers
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany.,Division Inflammatory Stress in Stem Cells, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Claudia Waskow
- Immunology of Aging, Leibniz Institute on Aging - Fritz Lipmann Institute, Jena, Germany.,Institute of Biochemistry and Biophysics, Faculty of Biological Sciences, Friedrich Schiller University Jena, Jena, Germany.,Department of Medicine III, Technical University Dresden, Dresden, Germany
| | - Robert A J Oostendorp
- School of Medicine, Department of Internal Medicine III, Technical University of Munich, Munich, Germany
| |
Collapse
|
8
|
Tong J, Sun T, Ma S, Zhao Y, Ju M, Gao Y, Zhu P, Tan P, Fu R, Zhang A, Wang D, Wang D, Xiao Z, Zhou J, Yang R, Loughran SJ, Li J, Green AR, Bresnick EH, Wang D, Cheng T, Zhang L, Shi L. Hematopoietic stem cell heterogeneity is linked to the initiation and therapeutic response of myeloproliferative neoplasms. Cell Stem Cell 2021; 28:780. [PMID: 33798424 PMCID: PMC7613297 DOI: 10.1016/j.stem.2021.02.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The implications of stem cell heterogeneity for disease pathogenesis and therapy are poorly defined. JAK2V617F+ myeloproliferative neoplasms (MPNs), harboring the same mutation in hematopoietic stem cells (HSCs), display diverse phenotypes, including polycythemia vera (PV), essential thrombocythemia (ET), and primary myelofibrosis (PMF). These chronic malignant disorders are ideal models to analyze the pathological consequences of stem cell heterogeneity. Single-cell gene expression profiling with parallel mutation detection demonstrated that the megakaryocyte (Mk)-primed HSC subpopulation expanded significantly with enhanced potential in untreated individuals with JAK2V617F+ ET, driven primarily by the JAK2 mutation and elevated interferon signaling. During treatment, mutant HSCs were targeted preferentially in the Mk-primed HSC subpopulation. Interestingly, homozygous mutant HSCs were forced to re-enter quiescence, whereas their heterozygous counterparts underwent apoptosis. This study provides important evidence for the association of stem cell heterogeneity with the pathogenesis and therapeutic response of a malignant disease.
Collapse
Affiliation(s)
- Jingyuan Tong
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, China
- Department of Stem Cell & Regenerative Medicine, Peking Union Medical College, Tianjin, China
| | - Ting Sun
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin 300020, China
- Tianjin Key Laboratory of Gene Therapy for Blood Diseases, Tianjin 300020, China
| | - Shihui Ma
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, China
- Department of Stem Cell & Regenerative Medicine, Peking Union Medical College, Tianjin, China
| | - Yanhong Zhao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Mankai Ju
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin 300020, China
- Tianjin Key Laboratory of Gene Therapy for Blood Diseases, Tianjin 300020, China
| | - Yuchen Gao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin 300020, China
- Tianjin Key Laboratory of Gene Therapy for Blood Diseases, Tianjin 300020, China
| | - Ping Zhu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, China
- Department of Stem Cell & Regenerative Medicine, Peking Union Medical College, Tianjin, China
| | - Puwen Tan
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Rongfeng Fu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin 300020, China
- Tianjin Key Laboratory of Gene Therapy for Blood Diseases, Tianjin 300020, China
| | - Anqi Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, China
- Department of Stem Cell & Regenerative Medicine, Peking Union Medical College, Tianjin, China
- CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin 300020, China
| | - Ding Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Di Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Zhijian Xiao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Jiaxi Zhou
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, China
- Department of Stem Cell & Regenerative Medicine, Peking Union Medical College, Tianjin, China
| | - Renchi Yang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin 300020, China
- Tianjin Key Laboratory of Gene Therapy for Blood Diseases, Tianjin 300020, China
| | - Stephen J. Loughran
- Wellcome-MRC Cambridge Stem Cell Institute, Department of Haematology, University of Cambridge CB2 0AW, UK
| | - Juan Li
- Wellcome-MRC Cambridge Stem Cell Institute, Department of Haematology, University of Cambridge CB2 0AW, UK
| | - Anthony R. Green
- Wellcome-MRC Cambridge Stem Cell Institute, Department of Haematology, University of Cambridge CB2 0AW, UK
| | - Emery H. Bresnick
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53562, USA
| | - Dong Wang
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
- Correspondence: (D.W.), (T.C.), (L.Z.), (L.S.)
| | - Tao Cheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, China
- Department of Stem Cell & Regenerative Medicine, Peking Union Medical College, Tianjin, China
- Correspondence: (D.W.), (T.C.), (L.Z.), (L.S.)
| | - Lei Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, China
- Department of Stem Cell & Regenerative Medicine, Peking Union Medical College, Tianjin, China
- CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin 300020, China
- Tianjin Key Laboratory of Gene Therapy for Blood Diseases, Tianjin 300020, China
- Correspondence: (D.W.), (T.C.), (L.Z.), (L.S.)
| | - Lihong Shi
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, China
- Department of Stem Cell & Regenerative Medicine, Peking Union Medical College, Tianjin, China
- Correspondence: (D.W.), (T.C.), (L.Z.), (L.S.)
| |
Collapse
|
9
|
Tong J, Sun T, Ma S, Zhao Y, Ju M, Gao Y, Zhu P, Tan P, Fu R, Zhang A, Wang D, Wang D, Xiao Z, Zhou J, Yang R, Loughran SJ, Li J, Green AR, Bresnick EH, Wang D, Cheng T, Zhang L, Shi L. Hematopoietic Stem Cell Heterogeneity Is Linked to the Initiation and Therapeutic Response of Myeloproliferative Neoplasms. Cell Stem Cell 2021; 28:502-513.e6. [PMID: 33621485 DOI: 10.1016/j.stem.2021.01.018] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 11/23/2020] [Accepted: 01/27/2021] [Indexed: 12/19/2022]
Abstract
The implications of stem cell heterogeneity for disease pathogenesis and therapy are poorly defined. JAK2V617F+ myeloproliferative neoplasms (MPNs), harboring the same mutation in hematopoietic stem cells (HSCs), display diverse phenotypes, including polycythemia vera (PV), essential thrombocythemia (ET), and primary myelofibrosis (PMF). These chronic malignant disorders are ideal models to analyze the pathological consequences of stem cell heterogeneity. Single-cell gene expression profiling with parallel mutation detection demonstrated that the megakaryocyte (Mk)-primed HSC subpopulation expanded significantly with enhanced potential in untreated individuals with JAK2V617F+ ET, driven primarily by the JAK2 mutation and elevated interferon signaling. During treatment, mutant HSCs were targeted preferentially in the Mk-primed HSC subpopulation. Interestingly, homozygous mutant HSCs were forced to re-enter quiescence, whereas their heterozygous counterparts underwent apoptosis. This study provides important evidence for the association of stem cell heterogeneity with the pathogenesis and therapeutic response of a malignant disease.
Collapse
Affiliation(s)
- Jingyuan Tong
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, China; Department of Stem Cell & Regenerative Medicine, Peking Union Medical College, Tianjin, China
| | - Ting Sun
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin 300020, China; Tianjin Key Laboratory of Gene Therapy for Blood Diseases, Tianjin 300020, China
| | - Shihui Ma
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, China; Department of Stem Cell & Regenerative Medicine, Peking Union Medical College, Tianjin, China
| | - Yanhong Zhao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Mankai Ju
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin 300020, China; Tianjin Key Laboratory of Gene Therapy for Blood Diseases, Tianjin 300020, China
| | - Yuchen Gao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin 300020, China; Tianjin Key Laboratory of Gene Therapy for Blood Diseases, Tianjin 300020, China
| | - Ping Zhu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, China; Department of Stem Cell & Regenerative Medicine, Peking Union Medical College, Tianjin, China
| | - Puwen Tan
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Rongfeng Fu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin 300020, China; Tianjin Key Laboratory of Gene Therapy for Blood Diseases, Tianjin 300020, China
| | - Anqi Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, China; Department of Stem Cell & Regenerative Medicine, Peking Union Medical College, Tianjin, China; CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin 300020, China
| | - Ding Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Di Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Zhijian Xiao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Jiaxi Zhou
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, China; Department of Stem Cell & Regenerative Medicine, Peking Union Medical College, Tianjin, China
| | - Renchi Yang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin 300020, China; Tianjin Key Laboratory of Gene Therapy for Blood Diseases, Tianjin 300020, China
| | - Stephen J Loughran
- Wellcome-MRC Cambridge Stem Cell Institute, Department of Haematology, University of Cambridge CB2 0AW, UK
| | - Juan Li
- Wellcome-MRC Cambridge Stem Cell Institute, Department of Haematology, University of Cambridge CB2 0AW, UK
| | - Anthony R Green
- Wellcome-MRC Cambridge Stem Cell Institute, Department of Haematology, University of Cambridge CB2 0AW, UK
| | - Emery H Bresnick
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53562, USA
| | - Dong Wang
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Tao Cheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, China; Department of Stem Cell & Regenerative Medicine, Peking Union Medical College, Tianjin, China.
| | - Lei Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, China; Department of Stem Cell & Regenerative Medicine, Peking Union Medical College, Tianjin, China; CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin 300020, China; Tianjin Key Laboratory of Gene Therapy for Blood Diseases, Tianjin 300020, China.
| | - Lihong Shi
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, China; Department of Stem Cell & Regenerative Medicine, Peking Union Medical College, Tianjin, China.
| |
Collapse
|