1
|
Tejura M, Fayer S, McEwen AE, Flynn J, Starita LM, Fowler DM. Calibration of variant effect predictors on genome-wide data masks heterogeneous performance across genes. Am J Hum Genet 2024; 111:2031-2043. [PMID: 39173626 PMCID: PMC11393694 DOI: 10.1016/j.ajhg.2024.07.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 08/24/2024] Open
Abstract
In silico variant effect predictions are available for nearly all missense variants but played a minimal role in clinical variant classification because they were deemed to provide only supporting evidence. Recently, the ClinGen Sequence Variant Interpretation (SVI) Working Group updated recommendations for variant effect prediction use. By analyzing control pathogenic and benign variants across all genes, they were able to compute evidence strength for predictor score intervals with some intervals generating moderate, strong, or even very strong evidence. However, this genome-wide approach could obscure heterogeneous predictor performance in different genes. We quantified the gene-by-gene performance of two top predictors, REVEL and BayesDel, by analyzing control variants in each predictor score interval in 3,668 disease-relevant genes. Approximately 10% of intervals had sufficient control variants for analysis, and ∼70% of these intervals exceeded the maximum number of incorrect predictions implied by the SVI recommendations. These trending discordant intervals arose owing to the divergence of the gene-specific distribution of predictions from the genome-wide distribution, suggesting that gene-specific calibration is needed in many cases. Approximately 22% of ClinVar missense variants of uncertain significance in genes we analyzed (REVEL = 100,629, BayesDel = 71,928) had predictions in trending discordant intervals. Thus, genome-wide calibrations could result in many variants receiving inappropriate evidence strength. To facilitate a review of the SVI's calibrations, we developed a web application enabling visualization of gene-specific predictions and trending concordant and discordant intervals.
Collapse
Affiliation(s)
- Malvika Tejura
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Shawn Fayer
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Abbye E McEwen
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA; Brotman Baty Institute for Precision Medicine, Seattle, WA 98195, USA; Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | - Jake Flynn
- University of Washington Interdisciplinary Data Science Group, Seattle, WA 98195, USA
| | - Lea M Starita
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA; Brotman Baty Institute for Precision Medicine, Seattle, WA 98195, USA.
| | - Douglas M Fowler
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA; Department of Bioengineering, University of Washington, Seattle, WA 98195, USA; Brotman Baty Institute for Precision Medicine, Seattle, WA 98195, USA.
| |
Collapse
|
2
|
Eriksson A, Engvall M, Mathot L, Österroos A, Rippin M, Cavelier L, Ladenvall C, Baliakas P. Somatic Exonic Deletions in RUNX1 Constitutes a Novel Recurrent Genomic Abnormality in Acute Myeloid Leukemia. Clin Cancer Res 2023; 29:2826-2834. [PMID: 37022349 DOI: 10.1158/1078-0432.ccr-23-0122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 03/08/2023] [Accepted: 04/04/2023] [Indexed: 04/07/2023]
Abstract
PURPOSE In acute myeloid leukemia (AML), somatic mutations (commonly missense, nonsense, and frameshift indels) in RUNX1 are associated with a dismal clinical outcome. Inherited RUNX1 mutations cause familial platelet disorder. As approximately 5%-10% of germline RUNX1 mutations are large exonic deletions, we hypothesized that such exonic RUNX1 aberrations may also be acquired during the development of AML. EXPERIMENTAL DESIGN Sixty patients with well-characterized AML were analyzed with multiplex ligation-dependent probe amplification (n = 60), microarray (n = 11), and/or whole-genome sequencing (n = 8). RESULTS In total, 25 (42% of the cohort) RUNX1-aberrant patients (defined by the presence of classical mutations and/or exonic deletions) were identified. Sixteen patients (27%) carried only exonic deletions, 5 (8%) carried classical mutations, and 4 (7%) carried both exonic deletions and mutations. No significant difference was observed between patients with classical RUNX1 mutations and RUNX1 exonic deletions in median overall survival (OS, 53.1 vs. 38.8 months, respectively, P = 0.63). When applying the European Leukemia Net (ELN) classification including the RUNX1-aberrant group, 20% of the patients initially stratified as intermediate-risk (5% of the whole cohort) were reassigned to the high-risk group, which improved the performance of ELN classification regarding OS between intermediate- and high-risk groups (18.9 vs. 9.6 months, P = 0.09). CONCLUSIONS Somatic RUNX1 exonic deletions constitute a novel recurrent aberration in AML. Our findings have important clinical implications regarding AML classification, risk stratification, and treatment decision. Moreover, they argue in favor of further investigating such genomic aberrations not only in RUNX1 but also in other genes implicated in cancer biology and management. See related commentary by Chakraborty and Stengel, p. 2742.
Collapse
Affiliation(s)
- Anna Eriksson
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Marie Engvall
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Lucy Mathot
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- Department of Clinical Genetics, Uppsala University Hospital, Uppsala, Sweden
| | - Albin Österroos
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Martin Rippin
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Lucia Cavelier
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Clinical Genetics, Karolinska University Hospital, Solna, Sweden
| | - Claes Ladenvall
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Panagiotis Baliakas
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- Department of Clinical Genetics, Uppsala University Hospital, Uppsala, Sweden
| |
Collapse
|
3
|
Lozano Chinga MM, Bertuch AA, Afify Z, Dollerschell K, Hsu JI, John TD, Rao ES, Rowe RG, Sankaran VG, Shimamura A, Williams DA, Nakano TA. Expanded phenotypic and hematologic abnormalities beyond bone marrow failure in MECOM-associated syndromes. Am J Med Genet A 2023; 191:1826-1835. [PMID: 37067177 PMCID: PMC10330190 DOI: 10.1002/ajmg.a.63208] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/17/2023] [Accepted: 03/31/2023] [Indexed: 04/18/2023]
Abstract
The MECOM gene encodes multiple protein isoforms that are essential for hematopoietic stem cell self-renewal and maintenance. Germline MECOM variants have been associated with congenital thrombocytopenia, radioulnar synostosis and bone marrow failure; however, the phenotypic spectrum of MECOM-associated syndromes continues to expand and novel pathogenic variants continue to be identified. We describe eight unrelated patients who add to the previously known phenotypes and genetic defects of MECOM-associated syndromes. As each subject presented with unique MECOM variants, the series failed to demonstrate clear genotype-to-phenotype correlation but may suggest a role for additional modifiers that affect gene expression and subsequent phenotype. Recognition of the expanded hematologic and non-hematologic clinical features allows for rapid molecular diagnosis, early identification of life-threatening complications, and improved genetic counseling for families. A centralized international publicly accessible database to share annotated MECOM variants would advance their clinical interpretation and provide a foundation to perform functional MECOM studies.
Collapse
Affiliation(s)
- Michell M Lozano Chinga
- Primary Children's Hospital, University of Utah, Salt Lake City, Utah, USA
- University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - Alison A Bertuch
- Baylor College of Medicine and Texas Children's Hospital, Houston, Texas, USA
| | - Zeinab Afify
- Primary Children's Hospital, University of Utah, Salt Lake City, Utah, USA
| | - Kaylee Dollerschell
- Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Joanne I Hsu
- Baylor College of Medicine and Texas Children's Hospital, Houston, Texas, USA
| | - Tami D John
- Baylor College of Medicine and Texas Children's Hospital, Houston, Texas, USA
| | - Emily S Rao
- Johns Hopkins Hospital, Baltimore, Maryland, USA
| | - Robert Grant Rowe
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Vijay G Sankaran
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Akiko Shimamura
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston Children's Hospital, Boston, Massachusetts, USA
| | - David A Williams
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Taizo A Nakano
- Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, Colorado, USA
| |
Collapse
|
4
|
Hatton JN, Frone MN, Cox HC, Crowley SB, Hiraki S, Yokoyama NN, Abul-Husn NS, Amatruda JF, Anderson MJ, Bofill-De Ros X, Carr AG, Chao EC, Chen KS, Gu S, Higgs C, Machado J, Ritter D, Schultz KA, Soper ER, Wu MK, Mester JL, Kim J, Foulkes WD, Witkowski L, Stewart DR. Specifications of the ACMG/AMP Variant Classification Guidelines for Germline DICER1 Variant Curation. Hum Mutat 2023; 2023:9537832. [PMID: 38084291 PMCID: PMC10713350 DOI: 10.1155/2023/9537832] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Germline pathogenic variants in DICER1 predispose individuals to develop a variety of benign and malignant tumors. Accurate variant curation and classification is essential for reliable diagnosis of DICER1-related tumor predisposition and identification of individuals who may benefit from surveillance. Since 2015, most labs have followed the American College of Medical Genetics and Genomics and the Association for Molecular Pathology (ACMG/AMP) sequence variant classification guidelines for DICER1 germline variant curation. However, these general guidelines lack gene-specific nuances and leave room for subjectivity. Consequently, a group of DICER1 experts joined ClinGen to form the DICER1 and miRNA-Processing Genes Variant Curation Expert Panel (VCEP), to create DICER1- specific ACMG/AMP guidelines for germline variant curation. The VCEP followed the FDA-approved ClinGen protocol for adapting and piloting these guidelines. A diverse set of 40 DICER1 variants were selected for piloting, including 14 known Pathogenic/Likely Pathogenic (P/LP) variants, 12 known Benign/Likely Benign (B/LB) variants, and 14 variants classified as variants of uncertain significance (VUS) or with conflicting interpretations in ClinVar. Clinically meaningful classifications (i.e., P, LP, LB, or B) were achieved for 82.5% (33/40) of the pilot variants, with 100% concordance among the known P/LP and known B/LB variants. Half of the VUS or conflicting variants were resolved with four variants classified as LB and three as LP. These results demonstrate that the DICER1-specific guidelines for germline variant curation effectively classify known pathogenic and benign variants while reducing the frequency of uncertain classifications. Individuals and labs curating DICER1 variants should consider adopting this classification framework to encourage consistency and improve objectivity.
Collapse
Affiliation(s)
- Jessica N Hatton
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland, USA
| | - Megan N Frone
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland, USA
| | - Hannah C Cox
- PreventionGenetics LLC, Marshfield, Wisconsin, USA
| | | | | | | | - Noura S Abul-Husn
- Institute for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - James F Amatruda
- Cancer and Blood Disease Institute, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | | | - Xavier Bofill-De Ros
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | | | - Elizabeth C Chao
- Ambry Genetics, Aliso Viejo, California, USA
- Division of Genetics and Genomics, Department of Pediatrics, University of California, Irvine, California, USA
| | - Kenneth S Chen
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Shuo Gu
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Cecilia Higgs
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland, USA
| | - Jerry Machado
- Exact Sciences Laboratories, Madison, Wisconsin, USA
| | | | - Kris Ann Schultz
- Cancer and Blood Disorders, Children's Minnesota, International Pleuropulmonary Blastoma/DICER1 Registry, Minneapolis, Minnesota, USA
| | - Emily R Soper
- Institute for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Mona K Wu
- Cancer and Blood Disease Institute, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | | | - Jung Kim
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland, USA
| | - William D Foulkes
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Leora Witkowski
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Douglas R Stewart
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland, USA
| |
Collapse
|
5
|
Feurstein S, Trottier AM, Estrada-Merly N, Pozsgai M, McNeely K, Drazer MW, Ruhle B, Sadera K, Koppayi AL, Scott BL, Oran B, Nishihori T, Agrawal V, Saad A, Lindsley RC, Nakamura R, Kim S, Hu Z, Sobecks R, Spellman S, Saber W, Godley LA. Germ line predisposition variants occur in myelodysplastic syndrome patients of all ages. Blood 2022; 140:2533-2548. [PMID: 35969835 PMCID: PMC9918848 DOI: 10.1182/blood.2022015790] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 07/18/2022] [Accepted: 07/20/2022] [Indexed: 11/20/2022] Open
Abstract
The frequency of pathogenic/likely pathogenic (P/LP) germ line variants in patients with myelodysplastic syndrome (MDS) diagnosed at age 40 years or less is 15% to 20%. However, there are no comprehensive studies assessing the frequency of such variants across the age spectrum. We performed augmented whole-exome sequencing of peripheral blood samples from 404 patients with MDS and their related donors before allogeneic hematopoietic stem cell transplantation. Single-nucleotide and copy number variants in 233 genes were analyzed and interpreted. Germ line status was established by the presence of a variant in the patient and related donor or for those seen previously only as germ line alleles. We identified P/LP germ line variants in 28 of 404 patients with MDS (7%), present within all age deciles. Patients with P/LP variants were more likely to develop higher-grade MDS than those without (43% vs 25%; P = .04). There was no statistically significant difference in outcome parameters between patients with and without a germ line variant, but the analysis was underpowered. P/LP variants in bone marrow failure syndrome genes were found in 5 patients aged less than 40 years, whereas variants in DDX41 (n = 4), telomere biology disorder genes (n = 2), and general tumor predisposition genes (n = 17) were found in patients aged more than 40 years. If presumed germ line variants were included, the yield of P/LP variants would increase to 11%, and by adding suspicious variants of unknown significance, it would rise further to 12%. The high frequency of P/LP germ line variants in our study supports comprehensive germ line genetic testing for all patients with MDS regardless of their age at diagnosis.
Collapse
Affiliation(s)
- Simone Feurstein
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, IL
- Section of Hematology, Oncology and Rheumatology, Department of Internal Medicine, Department of Medicine, Heidelberg University Hospital, Heidelberg, Germany
| | - Amy M. Trottier
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, IL
- Division of Hematology, Department of Medicine, QEII Health Sciences Centre, Dalhousie University, Halifax, NS, Canada
| | - Noel Estrada-Merly
- Center for International Blood and Marrow Transplant Research, Medical College of Wisconsin, Milwaukee, WI
| | - Matthew Pozsgai
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, IL
| | - Kelsey McNeely
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, IL
| | - Michael W. Drazer
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, IL
| | - Brian Ruhle
- Section of General Surgery, Department of Surgery, The University of Chicago, Chicago, IL
| | - Katharine Sadera
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, IL
| | - Ashwin L. Koppayi
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, IL
| | | | - Betul Oran
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Taiga Nishihori
- Department of Blood and Marrow Transplant and Cellular Immunotherapy, Moffitt Cancer Center, Tampa, FL
| | - Vaibhav Agrawal
- Department of Hematology/HCT, City of Hope Comprehensive Cancer Center and Beckman Research Institute of City of Hope, Duarte, CA
| | - Ayman Saad
- Division of Hematology, The Ohio State University Wexner Medical Center, Columbus, OH
| | | | - Ryotaro Nakamura
- Department of Hematology/HCT, City of Hope Comprehensive Cancer Center and Beckman Research Institute of City of Hope, Duarte, CA
| | - Soyoung Kim
- Division of Biostatistics, Medical College of Wisconsin, Wauwatosa, WI
| | - Zhenhuan Hu
- Division of Biostatistics, Medical College of Wisconsin, Wauwatosa, WI
| | - Ronald Sobecks
- Blood and Marrow Transplantation, Department of Hematology and Medical Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH
| | - Stephen Spellman
- CIBMTR Center for International Blood and Marrow Transplant Research, National Marrow Donor Program/Be The Match, Minneapolis, MN
| | - Wael Saber
- Center for International Blood and Marrow Transplant Research, Medical College of Wisconsin, Milwaukee, WI
| | - Lucy A. Godley
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, IL
| |
Collapse
|
6
|
Engvall M, Karlsson Y, Kuchinskaya E, Jörnegren Å, Mathot L, Pandzic T, Palle J, Ljungström V, Cavelier L, Hellström Lindberg E, Cammenga J, Baliakas P. Familial platelet disorder due to germline exonic deletions in RUNX1: a diagnostic challenge with distinct alterations of the transcript isoform equilibrium. Leuk Lymphoma 2022; 63:2311-2320. [PMID: 35533071 DOI: 10.1080/10428194.2022.2067997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Germline pathogenic variants in RUNX1 are associated with familial platelet disorder with predisposition to myeloid malignancies (FPD/MM) with intragenic deletions in RUNX1 accounting for almost 7% of all reported variants. We present two new pedigrees with FPD/MM carrying two different germline RUNX1 intragenic deletions. The aforementioned deletions encompass exons 1-2 and 9-10 respectively, with the exon 9-10 deletion being previously unreported. RNA sequencing of patients carrying the exon 9-10 deletion revealed a fusion with LINC00160 resulting in a change in the 3' sequence of RUNX1. Expression analysis of the transcript isoform demonstrated altered RUNX1a/b/c ratios in carriers from both families compared to controls. Our data provide evidence on the impact of intragenic RUNX1 deletions on transcript isoform expression and highlight the importance of routinely performing copy number variant analysis in patients with suspected MM with germline predisposition.
Collapse
Affiliation(s)
- Marie Engvall
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Ylva Karlsson
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Ekaterina Kuchinskaya
- Department of Clinical Pathology and Clinical Genetics, and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Åsa Jörnegren
- Department of Pediatrics, Örebro University Hospital, Örebro, Sweden
| | - Lucy Mathot
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Tatjana Pandzic
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Josefine Palle
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | - Viktor Ljungström
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Lucia Cavelier
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Eva Hellström Lindberg
- Department of Medicine, Division of Hematology, Huddinge, Karolinska University Hospital, Stockholm, Sweden.,Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Jörg Cammenga
- Department of Hematology, Linköping University Hospital, Linköping, Sweden.,Department of Molecular Medicine and Virology (MMV), Division of Biomedical and Clinical Sciences (BKV), Linköping University, Linköping, Sweden
| | - Panagiotis Baliakas
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
7
|
Ceyhan-Birsoy O. Germline Testing for the Evaluation of Hereditary Cancer Predisposition. Clin Lab Med 2022; 42:497-506. [DOI: 10.1016/j.cll.2022.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
8
|
Revision of RUNX1 Variant Curation Rules. Blood Adv 2022; 6:4726-4730. [PMID: 35764482 DOI: 10.1182/bloodadvances.2022008017] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/27/2022] [Indexed: 11/20/2022] Open
|
9
|
Feurstein S, Hahn CN, Mehta N, Godley LA. A practical guide to interpreting germline variants that drive hematopoietic malignancies, bone marrow failure, and chronic cytopenias. Genet Med 2022; 24:931-954. [PMID: 35063349 DOI: 10.1016/j.gim.2021.12.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 12/14/2021] [Indexed: 10/19/2022] Open
Abstract
PURPOSE The American College of Medical Genetics and Genomics and the Association for Molecular Pathology guidelines for germline variant interpretation are implemented as a broad framework by standardizing variant interpretation. These rules were designed to be specified, but this process has not been performed for most of the 200 genes associated with inherited hematopoietic malignancies, bone marrow failure, and cytopenias. Because guidelines on how to perform these gene specifications are lacking, variant interpretation is less reliable and reproducible. METHODS We have used a variety of methods such as calculations of minor allele frequencies, quasi-case-control studies to establish thresholds, proband counting, and plotting of receiver operating characteristic curves to compare different in silico prediction tools to design recommendations for variant interpretation. RESULTS We herein provide practical recommendations for the creation of thresholds for minor allele frequencies, in silico predictions, counting of probands, identification of functional domains with minimal benign variation, use of constraint Z-scores and functional evidence, prediction of nonsense-mediated decay, and assessment of phenotype specificity. CONCLUSION These guidelines can be used by anyone interpreting variants associated with inherited hematopoietic malignancies, bone marrow failure, and cytopenias to develop criteria for reliable, accurate, and reproducible germline variant interpretation.
Collapse
Affiliation(s)
- Simone Feurstein
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, IL; Section of Hematology, Oncology and Rheumatology, Department of Internal Medicine, Heidelberg University Hospital, Heidelberg, Germany
| | - Christopher N Hahn
- Molecular Pathology Research Laboratory, Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, South Australia, Australia; Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
| | - Nikita Mehta
- Diagnostic Molecular Genetics Laboratory, Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Lucy A Godley
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, IL; Department of Human Genetics, The University of Chicago, Chicago, IL.
| |
Collapse
|
10
|
Hayashi Y, Harada Y, Harada H. Myeloid neoplasms and clonal hematopoiesis from the RUNX1 perspective. Leukemia 2022; 36:1203-1214. [PMID: 35354921 DOI: 10.1038/s41375-022-01548-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/03/2022] [Accepted: 03/11/2022] [Indexed: 12/17/2022]
Abstract
RUNX1 is a critical transcription factor for the emergence of definitive hematopoiesis and the precise regulation of adult hematopoiesis. Dysregulation of its regulatory network causes aberrant hematopoiesis. Recurrent genetic alterations in RUNX1, including chromosomal translocations and mutations, have been identified in both inherited and sporadic diseases. Recent genomic studies have revealed a vast mutational landscape surrounding genetic alterations in RUNX1. Accumulating pieces of evidence also indicate the leukemogenic role of wild-type RUNX1 in certain situations. Based on these efforts, part of the molecular mechanisms of disease development as a consequence of dysregulated RUNX1-regulatory networks have become increasingly evident. This review highlights the recent advances in the field of RUNX1 research and discusses the critical roles of RUNX1 in hematopoiesis and the pathobiological function of its alterations in the context of disease, particularly myeloid neoplasms, and clonal hematopoiesis.
Collapse
Affiliation(s)
- Yoshihiro Hayashi
- Laboratory of Oncology, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Yuka Harada
- Laboratory of Oncology, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan.,Department of Clinical Laboratory, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Tokyo, Japan
| | - Hironori Harada
- Laboratory of Oncology, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan.
| |
Collapse
|
11
|
Roloff GW, Drazer MW, Godley LA. Inherited Susceptibility to Hematopoietic Malignancies in the Era of Precision Oncology. JCO Precis Oncol 2022; 5:107-122. [PMID: 34994594 DOI: 10.1200/po.20.00387] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
As germline predisposition to hematopoietic malignancies has gained increased recognition and attention in the field of oncology, it is important for clinicians to use a systematic framework for the identification, management, and surveillance of patients with hereditary hematopoietic malignancies (HHMs). In this article, we discuss strategies for identifying individuals who warrant diagnostic evaluation and describe considerations pertaining to molecular testing. Although a paucity of prospective data is available to guide clinical monitoring of individuals harboring pathogenic variants, we provide recommendations for clinical surveillance based on consensus opinion and highlight current advances regarding the risk of progression to overt malignancy in HHM variant carriers. We also discuss the prognosis of HHMs and considerations surrounding the utility of allogeneic stem-cell transplantation in these individuals. We close with an overview of contemporary issues at the intersection of HHMs and precision oncology.
Collapse
Affiliation(s)
- Gregory W Roloff
- Department of Medicine, Loyola University Medical Center, Maywood, IL
| | - Michael W Drazer
- Section of Hematology/Oncology, Department of Medicine and the Department of Human Genetics, the University of Chicago, Chicago, IL
| | - Lucy A Godley
- Section of Hematology/Oncology, Department of Medicine and the Department of Human Genetics, the University of Chicago, Chicago, IL
| |
Collapse
|
12
|
Avagyan S, Shimamura A. Lessons From Pediatric MDS: Approaches to Germline Predisposition to Hematologic Malignancies. Front Oncol 2022; 12:813149. [PMID: 35356204 PMCID: PMC8959480 DOI: 10.3389/fonc.2022.813149] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 01/26/2022] [Indexed: 12/13/2022] Open
Abstract
Pediatric myelodysplastic syndromes (MDS) often raise concern for an underlying germline predisposition to hematologic malignancies, referred to as germline predisposition herein. With the availability of genetic testing, it is now clear that syndromic features may be lacking in patients with germline predisposition. Many genetic lesions underlying germline predisposition may also be mutated somatically in de novo MDS and leukemias, making it critical to distinguish their germline origin. The verification of a suspected germline predisposition informs therapeutic considerations, guides monitoring pre- and post-treatment, and allows for family counseling. Presentation of MDS due to germline predisposition is not limited to children and spans a wide age range. In fact, the risk of MDS may increase with age in many germline predisposition conditions and can present in adults who lack classical stigmata in their childhood. Furthermore, germline predisposition associated with DDX41 mutations presents with older adult-onset MDS. Although a higher proportion of pediatric patients with MDS will have a germline predisposition, the greater number of MDS diagnoses in adult patients may result in a larger overall number of those with an underlying germline predisposition. In this review, we present a framework for the evaluation of germline predisposition to MDS across all ages. We discuss characteristics of personal and family history, clinical exam and laboratory findings, and integration of genetic sequencing results to assist in the diagnostic evaluation. We address the implications of a diagnosis of germline predisposition for the individual, for their care after MDS therapy, and for family members. Studies on MDS with germline predisposition have provided unique insights into the pathogenesis of hematologic malignancies and mechanisms of somatic genetic rescue vs. disease progression. Increasing recognition in adult patients will inform medical management and may provide potential opportunities for the prevention or interception of malignancy.
Collapse
Affiliation(s)
- Serine Avagyan
- Dana-Farber/Boston Children's Hospital Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA, United States
| | - Akiko Shimamura
- Dana-Farber/Boston Children's Hospital Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
13
|
Palma-Barqueros V, Bury L, Kunishima S, Lozano ML, Rodríguez-Alen A, Revilla N, Bohdan N, Padilla J, Fernández-Pérez MP, de la Morena-Barrio ME, Marín-Quiles A, Benito R, López-Fernández MF, Marcellini S, Zamora-Cánovas A, Vicente V, Martínez C, Gresele P, Bastida JM, Rivera J. Expanding the genetic spectrum of TUBB1-related thrombocytopenia. Blood Adv 2021; 5:5453-5467. [PMID: 34516618 PMCID: PMC8714720 DOI: 10.1182/bloodadvances.2020004057] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 06/20/2021] [Indexed: 11/20/2022] Open
Abstract
β1-Tubulin plays a major role in proplatelet formation and platelet shape maintenance, and pathogenic variants in TUBB1 lead to thrombocytopenia and platelet anisocytosis (TUBB1-RT). To date, the reported number of pedigrees with TUBB1-RT and of rare TUBB1 variants with experimental demonstration of pathogenicity is limited. Here, we report 9 unrelated families presenting with thrombocytopenia carrying 6 β1-tubulin variants, p.Cys12LeufsTer12, p.Thr107Pro, p.Gln423*, p.Arg359Trp, p.Gly109Glu, and p.Gly269Asp, the last of which novel. Segregation studies showed incomplete penetrance of these variants for platelet traits. Indeed, most carriers showed macrothrombocytopenia, some only increased platelet size, and a minority had no abnormalities. Moreover, only homozygous carriers of the p.Gly109Glu variant displayed macrothrombocytopenia, highlighting the importance of allele burden in the phenotypic expression of TUBB1-RT. The p.Arg359Trp, p.Gly269Asp, and p.Gly109Glu variants deranged β1-tubulin incorporation into the microtubular marginal ring in platelets but had a negligible effect on platelet activation, secretion, or spreading, suggesting that β1-tubulin is dispensable for these processes. Transfection of TUBB1 missense variants in CHO cells altered β1-tubulin incorporation into the microtubular network. In addition, TUBB1 variants markedly impaired proplatelet formation from peripheral blood CD34+ cell-derived megakaryocytes. Our study, using in vitro modeling, molecular characterization, and clinical investigations provides a deeper insight into the pathogenicity of rare TUBB1 variants. These novel data expand the genetic spectrum of TUBB1-RT and highlight a remarkable heterogeneity in its clinical presentation, indicating that allelic burden or combination with other genetic or environmental factors modulate the phenotypic impact of rare TUBB1 variants.
Collapse
Affiliation(s)
- Verónica Palma-Barqueros
- Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria-Arrixaca, Centro de Investigacién Biomódica en Red de Enfermedades Raras-U765, Murcia, Spain
| | - Loredana Bury
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Shinji Kunishima
- Department of Medical Technology, Gifu University of Medical Science, Seki, Japan
| | - María Luisa Lozano
- Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria-Arrixaca, Centro de Investigacién Biomódica en Red de Enfermedades Raras-U765, Murcia, Spain
| | - Augustín Rodríguez-Alen
- Servicio de Hematología y Hemoterapia, Hospital Virgen de la Salud, Complejo Hospitalario de Toledo, Toledo, Spain
| | - Nuria Revilla
- Servicio de Hematología, Hospital Universitario Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Natalia Bohdan
- Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria-Arrixaca, Centro de Investigacién Biomódica en Red de Enfermedades Raras-U765, Murcia, Spain
| | - José Padilla
- Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria-Arrixaca, Centro de Investigacién Biomódica en Red de Enfermedades Raras-U765, Murcia, Spain
| | - María P. Fernández-Pérez
- Servicio de Hematología, Hospital Universitario Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - María Eugenia de la Morena-Barrio
- Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria-Arrixaca, Centro de Investigacién Biomódica en Red de Enfermedades Raras-U765, Murcia, Spain
| | - Ana Marín-Quiles
- Instituto de Investigación Biomédica de Salamanca, Instituto de Biología Molecular y Celular del Cáncer, Centro de Investigación del Cáncer, Universidad de Salamanca-Consejo Superior de Investigaciones Científicas
| | - Rocío Benito
- Instituto de Investigación Biomédica de Salamanca, Instituto de Biología Molecular y Celular del Cáncer, Centro de Investigación del Cáncer, Universidad de Salamanca-Consejo Superior de Investigaciones Científicas
| | | | | | - Ana Zamora-Cánovas
- Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria-Arrixaca, Centro de Investigacién Biomódica en Red de Enfermedades Raras-U765, Murcia, Spain
| | - Vicente Vicente
- Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria-Arrixaca, Centro de Investigacién Biomódica en Red de Enfermedades Raras-U765, Murcia, Spain
| | - Constantino Martínez
- Servicio de Hematología, Hospital Universitario Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Paolo Gresele
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - José M. Bastida
- Departamento de Hematología, IBSAL-Hospital Universitario de Salamanca, Salamanca, Spain
| | - José Rivera
- Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria-Arrixaca, Centro de Investigacién Biomódica en Red de Enfermedades Raras-U765, Murcia, Spain
| |
Collapse
|
14
|
Tawana K, Brown AL, Churpek JE. Integrating germline variant assessment into routine clinical practice for myelodysplastic syndrome and acute myeloid leukaemia: current strategies and challenges. Br J Haematol 2021; 196:1293-1310. [PMID: 34658019 DOI: 10.1111/bjh.17855] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 08/24/2021] [Accepted: 09/12/2021] [Indexed: 12/28/2022]
Abstract
Over the last decade, the field of hereditary haematological malignancy syndromes (HHMSs) has gained increasing recognition among clinicians and scientists worldwide. Germline mutations now account for almost 10% of adult and paediatric myelodysplasia/acute myeloid leukaemia (MDS/AML). As our ability to diagnose HHMSs has improved, we are now faced with the challenges of integrating these advances into routine clinical practice for patients with MDS/AML and how to optimise management and surveillance of patients and asymptomatic carriers. Discoveries of novel syndromes combined with clinical, genetic and epigenetic profiling of tumour samples, have highlighted unique patterns of disease evolution across HHMSs. Despite these advances, causative lesions are detected in less than half of familial cases and evidence-based guidelines are often lacking, suggesting there is much still to learn. Future research efforts are needed to sustain current momentum within the field, led not only by advancing genetic technology but essential collaboration between clinical and academic communities.
Collapse
Affiliation(s)
- Kiran Tawana
- Department of Haematology, Addenbrooke's Hospital, Cambridge, UK
| | - Anna L Brown
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia.,Centre for Cancer Biology, SA Pathology, University of South Australia, Adelaide, SA, Australia.,Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Jane E Churpek
- Division of Hematology, Medical Oncology, and Palliative Care, Department of Medicine, School of Medicine and Public Health, The University of Wisconsin, Madison, WI, USA
| |
Collapse
|
15
|
Homan CC, Venugopal P, Arts P, Shahrin NH, Feurstein S, Rawlings L, Lawrence DM, Andrews J, King-Smith SL, Harvey NL, Brown AL, Scott HS, Hahn CN. GATA2 deficiency syndrome: A decade of discovery. Hum Mutat 2021; 42:1399-1421. [PMID: 34387894 PMCID: PMC9291163 DOI: 10.1002/humu.24271] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 07/27/2021] [Accepted: 08/08/2021] [Indexed: 12/14/2022]
Abstract
GATA2 deficiency syndrome (G2DS) is a rare autosomal dominant genetic disease predisposing to a range of symptoms, of which myeloid malignancy and immunodeficiency including recurrent infections are most common. In the last decade since it was first reported, there have been over 480 individuals identified carrying a pathogenic or likely pathogenic germline GATA2 variant with symptoms of G2DS, with 240 of these confirmed to be familial and 24 de novo. For those that develop myeloid malignancy (75% of all carriers with G2DS disease symptoms), the median age of onset is 17 years (range 0-78 years) and myelodysplastic syndrome is the first diagnosis in 75% of these cases with acute myeloid leukemia in a further 9%. All variant types appear to predispose to myeloid malignancy and immunodeficiency. Apart from lymphedema in which haploinsufficiency seems necessary, the mutational requirements of the other less common G2DS phenotypes is still unclear. These predominantly loss-of-function variants impact GATA2 expression and function in numerous ways including perturbations to DNA binding, protein structure, protein:protein interactions, and gene transcription, splicing, and expression. In this review, we provide the first expert-curated ACMG/AMP classification with codes of published variants compatible for use in clinical or diagnostic settings.
Collapse
Affiliation(s)
- Claire C Homan
- Department of Genetics and Molecular Pathology, SA Pathology, Frome Road, Adelaide, South Australia, 5000, Australia.,Molecular Pathology Research Laboratory, Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, South Australia, 5000, Australia
| | - Parvathy Venugopal
- Department of Genetics and Molecular Pathology, SA Pathology, Frome Road, Adelaide, South Australia, 5000, Australia.,Molecular Pathology Research Laboratory, Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, South Australia, 5000, Australia
| | - Peer Arts
- Department of Genetics and Molecular Pathology, SA Pathology, Frome Road, Adelaide, South Australia, 5000, Australia.,Molecular Pathology Research Laboratory, Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, South Australia, 5000, Australia
| | - Nur H Shahrin
- Department of Genetics and Molecular Pathology, SA Pathology, Frome Road, Adelaide, South Australia, 5000, Australia.,Molecular Pathology Research Laboratory, Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, South Australia, 5000, Australia
| | - Simone Feurstein
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, Illinois, USA
| | - Lesley Rawlings
- Department of Genetics and Molecular Pathology, SA Pathology, Frome Road, Adelaide, South Australia, 5000, Australia
| | - David M Lawrence
- Australian Cancer Research Foundation Cancer Genomics Facility, Centre for Cancer Biology, SA Pathology, Frome Road, Adelaide, South Australia, 5000, Australia
| | - James Andrews
- Australian Cancer Research Foundation Cancer Genomics Facility, Centre for Cancer Biology, SA Pathology, Frome Road, Adelaide, South Australia, 5000, Australia
| | - Sarah L King-Smith
- Department of Genetics and Molecular Pathology, SA Pathology, Frome Road, Adelaide, South Australia, 5000, Australia.,Molecular Pathology Research Laboratory, Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, South Australia, 5000, Australia.,Specialist Genomics, Australian Genomics, 50 Flemington Road, Parkville, Victoria, 3052, Australia
| | - Natasha L Harvey
- Molecular Pathology Research Laboratory, Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, South Australia, 5000, Australia
| | - Anna L Brown
- Department of Genetics and Molecular Pathology, SA Pathology, Frome Road, Adelaide, South Australia, 5000, Australia.,Molecular Pathology Research Laboratory, Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, South Australia, 5000, Australia.,Adelaide Medical School, University of Adelaide, Adelaide, South Australia, 5000, Australia.,Clinical Health Sciences, University of South Australia, Adelaide, South Australia, 5000, Australia
| | - Hamish S Scott
- Department of Genetics and Molecular Pathology, SA Pathology, Frome Road, Adelaide, South Australia, 5000, Australia.,Molecular Pathology Research Laboratory, Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, South Australia, 5000, Australia.,Australian Cancer Research Foundation Cancer Genomics Facility, Centre for Cancer Biology, SA Pathology, Frome Road, Adelaide, South Australia, 5000, Australia.,Specialist Genomics, Australian Genomics, 50 Flemington Road, Parkville, Victoria, 3052, Australia.,Adelaide Medical School, University of Adelaide, Adelaide, South Australia, 5000, Australia.,Clinical Health Sciences, University of South Australia, Adelaide, South Australia, 5000, Australia
| | - Christopher N Hahn
- Department of Genetics and Molecular Pathology, SA Pathology, Frome Road, Adelaide, South Australia, 5000, Australia.,Molecular Pathology Research Laboratory, Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, South Australia, 5000, Australia.,Adelaide Medical School, University of Adelaide, Adelaide, South Australia, 5000, Australia.,Clinical Health Sciences, University of South Australia, Adelaide, South Australia, 5000, Australia
| |
Collapse
|
16
|
Abstract
PURPOSE OF REVIEW Recognition of hereditary hematopoietic malignancies impacts patient management as well as health surveillance strategies for the patient and relatives who share the causative DNA variant. In this review, barriers to the diagnosis and management of patients are outlined. RECENT FINDINGS Increasingly, individuals are being recognized as having germline predisposition to hematopoietic malignancies. Clinical testing for these syndromes is difficult for most clinicians given the need to send true germline samples and the lack of standardization in the field with regard to which genes are covered and the types of DNA changes detected. Additional barriers such as insurance coverage, especially for older individuals, and access to clinical experts need to be overcome in the future. SUMMARY New research addressing whether use of hematopoietic stem cells with deleterious variants are permissive to transplantation; effective means of delivering genetic counseling and results disclosure to decrease the psychological impact of these diagnoses; and a comprehensive list of all predisposition genes will advance our ability to provide the best treatment possible for our patients and facilitate strategies to maintain excellent health throughout their lifetimes and for members of younger generations. VIDEO ABSTRACT Submitted, http://links.lww.com/COH/A22.
Collapse
|
17
|
Feurstein S, Drazer M, Godley LA. Germline predisposition to haematopoietic malignancies. Hum Mol Genet 2021; 30:R225-R235. [PMID: 34100074 DOI: 10.1093/hmg/ddab141] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/15/2021] [Accepted: 05/17/2021] [Indexed: 12/12/2022] Open
Abstract
Once thought to be exceedingly rare, the advent of next-generation sequencing has revealed a plethora of germline predisposition disorders that confer risk for haematopoietic malignancies (HMs). These syndromes are now recognized to be much more common than previously thought. The recognition of a germline susceptibility risk allele in an individual impacts the clinical management and health surveillance strategies in the index patient and relatives who share the causative DNA variant. Challenges to accurate clinical testing include a lack of familiarity in many health care providers, the requirement for DNA samples that reasonably approximate the germline state, and a lack of standardization among diagnostic platforms as to which genes are sequenced and their capabilities in detecting the full range of variant types that confer risk. Current knowledge gaps include a comprehensive understanding of all predisposition genes; whether scenarios exist in which an allogeneic stem cell transplant using donor haematopoietic stem cells with deleterious variants is permissive; and effective means of delivering genetic counseling and results disclosure for these conditions. We are hopeful that comprehensive germline genetic testing, universal germline testing for all patients with an HM, universal germline testing for allogeneic haematopoietic stem cell donors, and the development of preventive strategies to delay or even prevent malignancies will be available in the near future. These factors will likely contribute to improved health outcomes for at-risk individuals and their family members.
Collapse
Affiliation(s)
- Simone Feurstein
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, IL
| | - Michael Drazer
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, IL.,Department of Human Genetics, The University of Chicago, Chicago, IL
| | - Lucy A Godley
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, IL.,Department of Human Genetics, The University of Chicago, Chicago, IL
| |
Collapse
|
18
|
The Emerging Role of Hematopathologists and Molecular Pathologists in Detection, Monitoring, and Management of Myeloid Neoplasms with Germline Predisposition. Curr Hematol Malig Rep 2021; 16:336-344. [PMID: 34028637 DOI: 10.1007/s11899-021-00636-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/19/2021] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW Awareness, widespread availability, and routine use of sequencing techniques in work-up of myelodysplastic syndromes and acute myeloid leukemia have facilitated increased recognition of these entities arising in a background of germline predisposition disorders (GPD). RECENT FINDINGS The latest revisions to the WHO classification of myeloid neoplasms incorporate "myeloid neoplasms with germline predisposition" as a separate entity due to the therapeutic implications of this diagnosis. It has become apparent that some of these entities have unique recognizable morphologic findings that can be challenging to interpret at time. Hence, much needs to be studied, posing a new layer of complexity to hematopathologists and oncologists. A thorough understanding of cytogenetic and molecular findings during disease evolution is essential. Consequently, hematopathologists and molecular pathologists play an increasing role in recognition of bone marrow morphologic features that help in recognition of underlying GPD, monitoring, and prompt identification of progression.
Collapse
|
19
|
Identifying potential germline variants from sequencing hematopoietic malignancies. Blood 2021; 136:2498-2506. [PMID: 33236764 DOI: 10.1182/blood.2020006910] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 08/23/2020] [Indexed: 12/12/2022] Open
Abstract
Next-generation sequencing (NGS) of bone marrow and peripheral blood increasingly guides clinical care in hematological malignancies. NGS data may help to identify single nucleotide variants, insertions/deletions, copy number variations, and translocations at a single time point, and repeated NGS testing allows tracking of dynamic changes in variants during the course of a patient's disease. Tumor cells used for NGS may contain germline, somatic, and clonal hematopoietic DNA alterations, and distinguishing the etiology of a variant may be challenging. We describe an approach using patient history, individual variant characteristics, and sequential NGS assays to identify potential germline variants. Our current criteria for identifying an individual likely to have a deleterious germline variant include a strong family history or multiple cancers in a single patient, diagnosis of a hematopoietic malignancy at a younger age than seen in the general population, variant allele frequency > 0.3 of a deleterious allele in a known germline predisposition gene, and variant persistence identified on clinical NGS panels, despite a change in disease state. Sequential molecular testing of hematopoietic specimens may provide insight into disease pathology, impact patient and family members' care, and potentially identify new cancer-predisposing risk alleles. Ideally, individuals should give consent at the time of NGS testing to receive information about potential germline variants and to allow future contact as research advances.
Collapse
|
20
|
Accurate germline RUNX1 variant interpretation and its clinical significance. Blood Adv 2021; 4:6199-6203. [PMID: 33351114 DOI: 10.1182/bloodadvances.2020003304] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/02/2020] [Indexed: 02/07/2023] Open
|
21
|
Klco JM, Mullighan CG. Advances in germline predisposition to acute leukaemias and myeloid neoplasms. Nat Rev Cancer 2021; 21:122-137. [PMID: 33328584 PMCID: PMC8404376 DOI: 10.1038/s41568-020-00315-z] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/28/2020] [Indexed: 12/17/2022]
Abstract
Although much work has focused on the elucidation of somatic alterations that drive the development of acute leukaemias and other haematopoietic diseases, it has become increasingly recognized that germline mutations are common in many of these neoplasms. In this Review, we highlight the different genetic pathways impacted by germline mutations that can ultimately lead to the development of familial and sporadic haematological malignancies, including acute lymphoblastic leukaemia, acute myeloid leukaemia (AML) and myelodysplastic syndrome (MDS). Many of the genes disrupted by somatic mutations in these diseases (for example, TP53, RUNX1, IKZF1 and ETV6) are the same as those that harbour germline mutations in children and adolescents who develop these malignancies. Moreover, the presumption that familial leukaemias only present in childhood is no longer true, in large part due to the numerous studies demonstrating germline DDX41 mutations in adults with MDS and AML. Lastly, we highlight how different cooperating events can influence the ultimate phenotype in these different familial leukaemia syndromes.
Collapse
Affiliation(s)
- Jeffery M Klco
- Department of Pathology and the Hematological Malignancies Program, St. Jude Children's Research Hospital, Memphis, TN, USA.
| | - Charles G Mullighan
- Department of Pathology and the Hematological Malignancies Program, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
22
|
Trottier AM, Godley LA. Inherited predisposition to haematopoietic malignancies: overcoming barriers and exploring opportunities. Br J Haematol 2020; 194:663-676. [PMID: 33615436 DOI: 10.1111/bjh.17247] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 11/02/2020] [Indexed: 12/14/2022]
Abstract
Inherited predisposition to haematopoietic malignancies, due to deleterious germline variants in a variety of genes, is an important clinical entity with implications for the health and management of patients and their family members. Unfortunately, there remain several common misconceptions in this field that can result in patients going unrecognised and/or having incomplete or improper testing including: the impression that inherited haematological malignancy syndromes are rare, that myeloid and lymphoid malignancy predisposition syndromes are mutually exclusive, and that solid tumour predisposition syndromes are unique and distinct from haematopoietic malignancy predisposition syndromes. In the present review, we challenge these ideas with our insights into germline genetic testing for these conditions with the hope that increased awareness and knowledge will overcome barriers and lead to improved diagnosis and management.
Collapse
Affiliation(s)
- Amy M Trottier
- Division of Hematology, Department of Medicine, QEII Health Sciences Centre/Dalhousie University, Halifax, NS, Canada
| | - Lucy A Godley
- Section of Hematology/Oncology, Departments of Medicine and Human Genetics, The University of Chicago, Chicago, IL, USA
| |
Collapse
|
23
|
Kraft IL, Godley LA. Identifying potential germline variants from sequencing hematopoietic malignancies. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2020; 2020:219-227. [PMID: 33275754 PMCID: PMC7727528 DOI: 10.1182/hematology.2020006910] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Next-generation sequencing (NGS) of bone marrow and peripheral blood increasingly guides clinical care in hematological malignancies. NGS data may help to identify single nucleotide variants, insertions/deletions, copy number variations, and translocations at a single time point, and repeated NGS testing allows tracking of dynamic changes in variants during the course of a patient's disease. Tumor cells used for NGS may contain germline, somatic, and clonal hematopoietic DNA alterations, and distinguishing the etiology of a variant may be challenging. We describe an approach using patient history, individual variant characteristics, and sequential NGS assays to identify potential germline variants. Our current criteria for identifying an individual likely to have a deleterious germline variant include a strong family history or multiple cancers in a single patient, diagnosis of a hematopoietic malignancy at a younger age than seen in the general population, variant allele frequency > 0.3 of a deleterious allele in a known germline predisposition gene, and variant persistence identified on clinical NGS panels, despite a change in disease state. Sequential molecular testing of hematopoietic specimens may provide insight into disease pathology, impact patient and family members' care, and potentially identify new cancer-predisposing risk alleles. Ideally, individuals should give consent at the time of NGS testing to receive information about potential germline variants and to allow future contact as research advances.
Collapse
Affiliation(s)
- Ira L. Kraft
- Section of Hematology/Oncology, Department of Medicine and The University of Chicago Comprehensive Cancer Center and
| | - Lucy A. Godley
- Section of Hematology/Oncology, Department of Medicine and The University of Chicago Comprehensive Cancer Center and
- Department of Human Genetics, The University of Chicago, Chicago, IL
| |
Collapse
|