1
|
Amini SN, Porcelijn L, Sobels A, Kartachova M, de Haas M, Zwaginga JJ, Schipperus MR. Anti-glycoprotein antibodies and sequestration pattern of indium-labeled platelets in immune thrombocytopenia. Blood Adv 2022; 6:1797-1803. [PMID: 34654052 PMCID: PMC8941471 DOI: 10.1182/bloodadvances.2021004822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 09/08/2021] [Indexed: 11/20/2022] Open
Abstract
Antiglycoprotein (anti-GP) antibodies play an important role in the pathophysiology of immune thrombocytopenia (ITP). The sequestration pattern of platelets in the spleen and liver can be studied with 111In-labeled autologous platelet scans. No studies have investigated the role of anti-GP antibodies in sequestration patterns in ITP patients. In this study, we examined the association between antibodies and (1) platelet sequestration site and (2) clearance rate of platelets. All ITP patients receiving an 111In-labeled autologous platelet study between 2014 and 2018 were included. Antibodies were measured using the direct MAIPA method to determine the presence and titer of anti-GPIIb/IIIa, anti-GPIb/IX, and anti-GPV antibodies. Multivariate regression models were used to study the association between anti-GP antibodies, sequestration site, and clearance rate. Seventy-four patients were included, with a mean age of 36 years. Forty-seven percent of the patients showed a predominantly splenic sequestration pattern, 29% mixed, and 25% a hepatic pattern. In 53% of the patients, anti-GP antibodies were detected. Regression models showed a significant association between splenic sequestration and GPV autoantibodies. Furthermore, in patients where antibodies were present, the clearance rate was higher in patients with a splenic sequestration. Anti-GPV antibodies are associated with a splenic sequestration pattern in ITP patients. These associations provide insight into the possible pathophysiological mechanisms of ITP, which may lead to better detection and treatment of this partly idiopathic and prevalent disease.
Collapse
Affiliation(s)
- Sufia N Amini
- Department of Hematology, Hagaziekenhuis, The Hague, The Netherlands
- Department of Hematology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Annemieke Sobels
- Department of Hospital Pharmacy, Hagaziekenhuis, The Hague, The Netherlands
| | - Marina Kartachova
- Department of Nuclear Medicine, Hagaziekenhuis, The Hague, The Netherlands; and
| | | | - Jaap Jan Zwaginga
- Department of Hematology, Leiden University Medical Center, Leiden, The Netherlands
| | - Martin R Schipperus
- Department of Hematology, University Medical Center Groningen, The Netherlands
| |
Collapse
|
2
|
Porcelijn L, Schmidt DE, Oldert G, Hofstede-van Egmond S, Kapur R, Zwaginga JJ, de Haas M. Evolution and Utility of Antiplatelet Autoantibody Testing in Patients with Immune Thrombocytopenia. Transfus Med Rev 2020; 34:258-269. [PMID: 33046350 DOI: 10.1016/j.tmrv.2020.09.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/08/2020] [Accepted: 09/09/2020] [Indexed: 01/01/2023]
Abstract
To this day, immune thrombocytopenia (ITP) remains a clinical diagnosis made by exclusion of other causes for thrombocytopenia. Reliable detection of platelet autoantibodies would support the clinical diagnosis, but the lack of specificity and sensitivity of the available methods for platelet autoantibody testing limits their value in the diagnostic workup of thrombocytopenia. The introduction of methods for glycoprotein-specific autoantibody detection has improved the specificity of testing and is acceptable for ruling in ITP but not ruling it out as a diagnosis. The sensitivity of these assays varies widely, even between studies using comparable assays. A review of the relevant literature combined with our own laboratory's experience of testing large number of serum and platelet samples makes it clear that this variation can be explained by variations in the characteristics of the tests, including in the glycoprotein-specific monoclonal antibodies, the glycoproteins that are tested, the platelet numbers used in the assay and the cutoff levels for positive and negative results, as well as differences in the tested patient populations. In our opinion, further standardization and optimization of the direct autoantibody detection methods to increase sensitivity without compromising specificity seem possible but will still likely be insufficient to distinguish the often very weak specific autoantibody signals from background signals. Further developments of autoantibody detection methods will therefore be necessary to increase sensitivity to a level acceptable to provide laboratory confirmation of a diagnosis of ITP.
Collapse
Affiliation(s)
- Leendert Porcelijn
- Department of Immunohematology Diagnostics, Sanquin Diagnostic Services, Amsterdam, the Netherlands.
| | - David E Schmidt
- Sanquin Research, Department of Experimental Immunohematology, Amsterdam and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Gonda Oldert
- Department of Immunohematology Diagnostics, Sanquin Diagnostic Services, Amsterdam, the Netherlands
| | | | - Rick Kapur
- Sanquin Research, Department of Experimental Immunohematology, Amsterdam and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Jaap Jan Zwaginga
- Department of Immuno-hematology and Blood Transfusion, Leiden University Medical Center, Leiden, the Netherlands; Sanquin Research, Center for Clinical Transfusion Research, Leiden, the Netherlands; Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, the Netherlands
| | - Masja de Haas
- Department of Immunohematology Diagnostics, Sanquin Diagnostic Services, Amsterdam, the Netherlands; Sanquin Research, Center for Clinical Transfusion Research, Leiden, the Netherlands; Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
3
|
Nurden AT. Clinical significance of altered collagen-receptor functioning in platelets with emphasis on glycoprotein VI. Blood Rev 2019; 38:100592. [PMID: 31351674 DOI: 10.1016/j.blre.2019.100592] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 07/05/2019] [Accepted: 07/19/2019] [Indexed: 01/01/2023]
Abstract
Much interest surrounds the receptors α2β1 and glycoprotein VI (GPVI) whose synchronized action mediates the attachment and activation of platelets on collagen, essential for preventing blood loss but also the most thrombogenic component of the vessel wall. Subject to density variations on platelets through natural polymorphisms, the absence of α2β1 or GPVI uniquely leads to a substantial block of hemostasis without causing major bleeding. Specific to the megakaryocyte lineage, GPVI and its signaling pathways are most promising targets for anti-thrombotic therapy. This review looks at the clinical consequences of the loss of collagen receptor function with emphasis on both the inherited and acquired loss of GPVI with brief mention of mouse models when necessary. A detailed survey of rare case reports of patients with inherited disease-causing variants of the GP6 gene is followed by an assessment of the causes and clinical consequences of acquired GPVI deficiency, a more frequent finding most often due to antibody-induced platelet GPVI shedding. Release of soluble GPVI is brought about by platelet metalloproteinases; a process induced by ligand or antibody binding to GPVI or even high shear forces. Also included is an assessment of the clinical importance of GPVI-mediated platelet interactions with fibrin and of the promise shown by the pharmacological inhibition of GPVI in a cardiovascular context. The role for GPVI in platelet function in inflammation and in the evolution and treatment of major illnesses such as rheumatoid arthritis, cancer and sepsis is also discussed.
Collapse
Affiliation(s)
- Alan T Nurden
- Institut de Rhythmologie et de Modélisation Cardiaque, PTIB, Hôpital Xavier Arnozan, 33600 Pessac, France.
| |
Collapse
|