1
|
Li L, Hu X, Nkwocha J, Kmieciak M, Meads MB, Shain KH, Alugubelli RR, Silva AS, Mann H, Sudalagunta PR, Canevarolo RR, Zhou L, Grant S. Combined MEK1/2 and ATR inhibition promotes myeloma cell death through a STAT3-dependent mechanism in vitro and in vivo. Br J Haematol 2024; 205:2338-2348. [PMID: 39379134 DOI: 10.1111/bjh.19796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/18/2024] [Indexed: 10/10/2024]
Abstract
Mechanisms underlying potentiation of the anti-myeloma (MM) activity of ataxia telangiectasia Rad3 (ATR) antagonists by MAPK (Mitogen-activated protein kinases)-related extracellular kinase 1/2 (MEK1/2) inhibitors were investigated. Co-administration of the ATR inhibitor (ATRi) BAY1895344 (BAY) and MEK1/2 inhibitors, for example, cobimetinib, synergistically increased cell death in diverse MM cell lines. Mechanistically, BAY and cobimetinib blocked STAT3 Tyr705 and Ser727 phosphorylation, respectively, and dual dephosphorylation triggered marked STAT3 inactivation and downregulation of STAT3 (Signal transducer and activator of transcription 3) downstream targets (c-Myc and BCL-XL). Similar events occurred in highly bortezomib-resistant (PS-R) cells, in the presence of patient-derived conditioned medium, and with alternative ATR (e.g. M1774) and MEK1/2 (trametinib) inhibitors. Notably, constitutively active STAT3 c-MYC or BCL-XL ectopic expression significantly protected cells from BAY/cobimetinib. In contrast, transfection of cells with a dominant-negative form of STAT3 (Y705F) sensitized cells to cobimetinib, as did ATR shRNA knockdown. Conversely, MEK1/2 knockdown markedly increased ATRi sensitivity. The BAY/cobimetinib regimen was also active against primary CD138+ MM cells, but not normal CD34+ cells. Finally, the ATR inhibitor/cobimetinib regimen significantly improved survival in MM xenografts, including bortezomib-resistant models, with minimal toxicity. Collectively, these findings suggest that combined ATR/MEK1/2 inhibition triggers dual STAT3 Tyr705 and Ser727 dephosphorylation, pronounced downregulation of cytoprotective targets and MM cell death, warranting attention as a novel therapeutic strategy in MM.
Collapse
Affiliation(s)
- Lin Li
- Division of Hematology/Oncology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Xiaoyan Hu
- Division of Hematology/Oncology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Jewel Nkwocha
- Division of Hematology/Oncology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Maciej Kmieciak
- Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Mark B Meads
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center, Tampa, Florida, USA
| | - Kenneth H Shain
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center, Tampa, Florida, USA
| | | | - Ariosto S Silva
- Department of Metabolism and Physiology, H. Lee Moffitt Cancer Center, Tampa, Florida, USA
| | - Hashim Mann
- Division of Hematology/Oncology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Praneeth R Sudalagunta
- Department of Metabolism and Physiology, H. Lee Moffitt Cancer Center, Tampa, Florida, USA
| | - Rafael R Canevarolo
- Department of Metabolism and Physiology, H. Lee Moffitt Cancer Center, Tampa, Florida, USA
| | - Liang Zhou
- Division of Hematology/Oncology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
- Department of Translational Medicine, Asklepios BioPharmaceutical, Inc., Durham, North Carolina, USA
| | - Steven Grant
- Division of Hematology/Oncology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
- Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, USA
| |
Collapse
|
2
|
Durand R, Bellanger C, Descamps G, Dousset C, Maïga S, Derrien J, Thirouard L, Bouard L, Asnagli H, Beer P, Parker A, Gomez‐Bougie P, Devilder M, Moreau P, Touzeau C, Moreau‐Aubry A, Chiron D, Pellat‐Deceunynck C. Combined inhibition of CTPS1 and ATR is a metabolic vulnerability in p53-deficient myeloma cells. Hemasphere 2024; 8:e70016. [PMID: 39380841 PMCID: PMC11460984 DOI: 10.1002/hem3.70016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/12/2024] [Accepted: 07/31/2024] [Indexed: 10/10/2024] Open
Abstract
In multiple myeloma, as in B-cell malignancies, mono- and especially bi-allelic TP53 gene inactivation is a high-risk factor for treatment resistance, and there are currently no therapies specifically targeting p53 deficiency. In this study, we evaluated if the loss of cell cycle control in p53-deficient myeloma cells would confer a metabolically actionable vulnerability. We show that CTP synthase 1 (CTPS1), which encodes a CTP synthesis rate-limiting enzyme essential for DNA and RNA synthesis in lymphoid cells, is overexpressed in samples from myeloma patients displaying a high proliferation rate (high MKI67 expression) or a low p53 score (synonymous with TP53 deletion and/or mutation). This overexpression of CTPS1 was associated with reduced survival in two cohorts. Using scRNA-seq analysis in 24 patient samples, we further demonstrate that myeloma cells in the S or G2/M phase display high CTPS1 expression. Pharmacological inhibition of CTPS1 by STP-B induced cell cycle arrest in early S phase in isogenic NCI-H929 or XG7 TP53 +/+, TP53 -/-, and TP53 R175H/R175H cells and in a TP53 -/R123STOP patient sample. The functional annotation of transcriptional changes in 10 STP-B-treated myeloma cell lines revealed a decrease in protein translation and confirmed the blockade of cells into the S phase. The pharmacological inhibition of ATR, which governs the intrinsic S/G2 checkpoint, in STP-B-induced S-phase arrested cells synergistically induced cell death in TP53 +/+, TP53 -/-, and TP53 R175H/R175H isogenic cell lines (Bliss score >15). This combination induced replicative stress and caspase-mediated cell death and was highly effective in resistant/refractory patient samples with TP53 deletion and/or mutation and in TP53 -/- NCI-H929 xenografted NOD-scid IL2Rgamma mice. Our in vitro, ex vivo, and in vivo data provide the rationale for combined CTPS1 and ATR inhibition for the treatment of p53-deficient patients.
Collapse
Affiliation(s)
- Romane Durand
- Nantes Université, INSERM, CHU NantesCNRS, Université d'Angers, CRCI2NANantesFrance
| | - Céline Bellanger
- Nantes Université, INSERM, CHU NantesCNRS, Université d'Angers, CRCI2NANantesFrance
| | - Géraldine Descamps
- Nantes Université, INSERM, CHU NantesCNRS, Université d'Angers, CRCI2NANantesFrance
| | - Christelle Dousset
- Nantes Université, INSERM, CHU NantesCNRS, Université d'Angers, CRCI2NANantesFrance
| | - Sophie Maïga
- Nantes Université, INSERM, CHU NantesCNRS, Université d'Angers, CRCI2NANantesFrance
| | - Jennifer Derrien
- Nantes Université, INSERM, CHU NantesCNRS, Université d'Angers, CRCI2NANantesFrance
| | - Laura Thirouard
- Nantes Université, INSERM, CHU NantesCNRS, Université d'Angers, CRCI2NANantesFrance
| | - Louise Bouard
- Nantes Université, INSERM, CHU NantesCNRS, Université d'Angers, CRCI2NANantesFrance
| | | | | | | | | | | | - Philippe Moreau
- Nantes Université, INSERM, CHU NantesCNRS, Université d'Angers, CRCI2NANantesFrance
| | - Cyrille Touzeau
- Nantes Université, INSERM, CHU NantesCNRS, Université d'Angers, CRCI2NANantesFrance
| | - Agnès Moreau‐Aubry
- Nantes Université, INSERM, CHU NantesCNRS, Université d'Angers, CRCI2NANantesFrance
| | - David Chiron
- Nantes Université, INSERM, CHU NantesCNRS, Université d'Angers, CRCI2NANantesFrance
| | | |
Collapse
|
3
|
Ravn Berg S, Dikic A, Sharma A, Hagen L, Vågbø CB, Zatula A, Misund K, Waage A, Slupphaug G. Progression of monoclonal gammopathy of undetermined significance to multiple myeloma is associated with enhanced translational quality control and overall loss of surface antigens. J Transl Med 2024; 22:548. [PMID: 38849800 PMCID: PMC11162064 DOI: 10.1186/s12967-024-05345-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/23/2024] [Indexed: 06/09/2024] Open
Abstract
BACKGROUND Despite significant advancements in treatment strategies, multiple myeloma remains incurable. Additionally, there is a distinct lack of reliable biomarkers that can guide initial treatment decisions and help determine suitable replacement or adjuvant therapies when relapse ensues due to acquired drug resistance. METHODS To define specific proteins and pathways involved in the progression of monoclonal gammopathy of undetermined significance (MGUS) to multiple myeloma (MM), we have applied super-SILAC quantitative proteomic analysis to CD138 + plasma cells from 9 individuals with MGUS and 37 with MM. RESULTS Unsupervised hierarchical clustering defined three groups: MGUS, MM, and MM with an MGUS-like proteome profile (ML) that may represent a group that has recently transformed to MM. Statistical analysis identified 866 differentially expressed proteins between MM and MGUS, and 189 between MM and ML, 177 of which were common between MGUS and ML. Progression from MGUS to MM is accompanied by upregulated EIF2 signaling, DNA repair, and proteins involved in translational quality control, whereas integrin- and actin cytoskeletal signaling and cell surface markers are downregulated. CONCLUSION Compared to the premalignant plasma cells in MGUS, malignant MM cells apparently have mobilized several pathways that collectively contribute to ensure translational fidelity and to avoid proteotoxic stress, especially in the ER. The overall reduced expression of immunoglobulins and surface antigens contribute to this and may additionally mediate evasion from recognition by the immune apparatus. Our analyses identified a range of novel biomarkers with potential prognostic and therapeutic value, which will undergo further evaluation to determine their clinical significance.
Collapse
Affiliation(s)
- Sigrid Ravn Berg
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, NTNU, N-7491, Trondheim, Norway
- Clinic of Laboratory Medicine, St. Olavs hospital, N-7491, Trondheim, Norway
| | - Aida Dikic
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, NTNU, N-7491, Trondheim, Norway
- Clinic of Laboratory Medicine, St. Olavs hospital, N-7491, Trondheim, Norway
| | - Animesh Sharma
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, NTNU, N-7491, Trondheim, Norway
- Clinic of Laboratory Medicine, St. Olavs hospital, N-7491, Trondheim, Norway
- PROMEC Core Facility for Proteomics and Modomics, Norwegian University of Science and Technology, NTNU, and the Central Norway Regional Health Authority Norway, N-7491, Trondheim, Norway
| | - Lars Hagen
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, NTNU, N-7491, Trondheim, Norway
- Clinic of Laboratory Medicine, St. Olavs hospital, N-7491, Trondheim, Norway
- PROMEC Core Facility for Proteomics and Modomics, Norwegian University of Science and Technology, NTNU, and the Central Norway Regional Health Authority Norway, N-7491, Trondheim, Norway
| | - Cathrine Broberg Vågbø
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, NTNU, N-7491, Trondheim, Norway
- Clinic of Laboratory Medicine, St. Olavs hospital, N-7491, Trondheim, Norway
- PROMEC Core Facility for Proteomics and Modomics, Norwegian University of Science and Technology, NTNU, and the Central Norway Regional Health Authority Norway, N-7491, Trondheim, Norway
| | - Alexey Zatula
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, NTNU, N-7491, Trondheim, Norway
- Clinic of Laboratory Medicine, St. Olavs hospital, N-7491, Trondheim, Norway
| | - Kristine Misund
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, NTNU, N-7491, Trondheim, Norway
- Department of Medical Genetics, St Olavs hospital, N-7491, Trondheim, Norway
| | - Anders Waage
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, NTNU, N-7491, Trondheim, Norway
- Department of Hematology, and Biobank1, St Olavs hospital, N-7491, Trondheim, Norway
| | - Geir Slupphaug
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, NTNU, N-7491, Trondheim, Norway.
- Clinic of Laboratory Medicine, St. Olavs hospital, N-7491, Trondheim, Norway.
- PROMEC Core Facility for Proteomics and Modomics, Norwegian University of Science and Technology, NTNU, and the Central Norway Regional Health Authority Norway, N-7491, Trondheim, Norway.
| |
Collapse
|
4
|
Durand R, Descamps G, Bellanger C, Dousset C, Maïga S, Alberge JB, Derrien J, Cruard J, Minvielle S, Lilli NL, Godon C, Le Bris Y, Tessoulin B, Amiot M, Gomez-Bougie P, Touzeau C, Moreau P, Chiron D, Moreau-Aubry A, Pellat-Deceunynck C. A p53 score derived from TP53 CRISPR/Cas9 HMCLs predicts survival and reveals a major role of BAX in the response to BH3 mimetics. Blood 2024; 143:1242-1258. [PMID: 38096363 DOI: 10.1182/blood.2023021581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 10/27/2023] [Accepted: 11/29/2023] [Indexed: 03/25/2024] Open
Abstract
ABSTRACT To establish a strict p53-dependent gene-expression profile, TP53-/- clones were derived from TP53+/+ and TP53-/mut t(4;14) human myeloma cell lines (HMCLs) using CRISPR/Cas9 technology. From the 17 dysregulated genes shared between the TP53-/- clones from TP53+/+ HMCLs, we established a functional p53 score, involving 13 genes specifically downregulated upon p53 silencing. This functional score segregated clones and myeloma cell lines as well as other cancer cell lines according to their TP53 status. The score efficiently identified samples from patients with myeloma with biallelic TP53 inactivation and was predictive of overall survival in Multiple Myeloma Research Foundation-coMMpass and CASSIOPEA cohorts. At the functional level, we showed that among the 13 genes, p53-regulated BAX expression correlated with and directly affected the MCL1 BH3 mimetic S63845 sensitivity of myeloma cells by decreasing MCL1-BAX complexes. However, resistance to S63845 was overcome by combining MCL1 and BCL2 BH3 mimetics, which displayed synergistic efficacy. The combination of BH3 mimetics was effective in 97% of patient samples with or without del17p. Nevertheless, single-cell RNA sequencing analysis showed that myeloma cells surviving the combination had lower p53 score, showing that myeloma cells with higher p53 score were more sensitive to BH3 mimetics. Taken together, we established a functional p53 score that identifies myeloma cells with biallelic TP53 invalidation, demonstrated that p53-regulated BAX is critical for optimal cell response to BH3 mimetics, and showed that MCL1 and BCL2 BH3 mimetics in combination may be of greater effectiveness for patients with biallelic TP53 invalidation, for whom there is still an unmet medical need.
Collapse
Affiliation(s)
- Romane Durand
- Molecular Vulnerabilities of Tumor Escape in B-cell Malignancies, Nantes Université, Centre National de la Recherche Scientifique (CNRS), INSERM, Centre de Recherche en Cancérologie et Immunologie Intégrée Nantes Angers (CRCI2NA), Nantes, France
- Hematology Department, Site de Recherche Intégrée sur le Cancer, Imaging and Longitudinal Investigations to Ameliorate Decision-making (SIRIC ILIAD), Nantes, France
| | - Géraldine Descamps
- Molecular Vulnerabilities of Tumor Escape in B-cell Malignancies, Nantes Université, Centre National de la Recherche Scientifique (CNRS), INSERM, Centre de Recherche en Cancérologie et Immunologie Intégrée Nantes Angers (CRCI2NA), Nantes, France
- Hematology Department, Site de Recherche Intégrée sur le Cancer, Imaging and Longitudinal Investigations to Ameliorate Decision-making (SIRIC ILIAD), Nantes, France
| | - Céline Bellanger
- Molecular Vulnerabilities of Tumor Escape in B-cell Malignancies, Nantes Université, Centre National de la Recherche Scientifique (CNRS), INSERM, Centre de Recherche en Cancérologie et Immunologie Intégrée Nantes Angers (CRCI2NA), Nantes, France
- Hematology Department, Site de Recherche Intégrée sur le Cancer, Imaging and Longitudinal Investigations to Ameliorate Decision-making (SIRIC ILIAD), Nantes, France
| | - Christelle Dousset
- Hematology Department, Site de Recherche Intégrée sur le Cancer, Imaging and Longitudinal Investigations to Ameliorate Decision-making (SIRIC ILIAD), Nantes, France
- Hematology Department, Nantes Université, Centre Hospitalier Universitaire (CHU) de Nantes, CNRS, INSERM, CRCI2NA, Nantes, France
| | - Sophie Maïga
- Hematology Department, Site de Recherche Intégrée sur le Cancer, Imaging and Longitudinal Investigations to Ameliorate Decision-making (SIRIC ILIAD), Nantes, France
- Hematology Department, Nantes Université, Centre Hospitalier Universitaire (CHU) de Nantes, CNRS, INSERM, CRCI2NA, Nantes, France
| | - Jean-Baptiste Alberge
- Molecular Vulnerabilities of Tumor Escape in B-cell Malignancies, Nantes Université, Centre National de la Recherche Scientifique (CNRS), INSERM, Centre de Recherche en Cancérologie et Immunologie Intégrée Nantes Angers (CRCI2NA), Nantes, France
- Hematology Department, Site de Recherche Intégrée sur le Cancer, Imaging and Longitudinal Investigations to Ameliorate Decision-making (SIRIC ILIAD), Nantes, France
| | - Jennifer Derrien
- Molecular Vulnerabilities of Tumor Escape in B-cell Malignancies, Nantes Université, Centre National de la Recherche Scientifique (CNRS), INSERM, Centre de Recherche en Cancérologie et Immunologie Intégrée Nantes Angers (CRCI2NA), Nantes, France
- Hematology Department, Site de Recherche Intégrée sur le Cancer, Imaging and Longitudinal Investigations to Ameliorate Decision-making (SIRIC ILIAD), Nantes, France
| | - Jonathan Cruard
- Molecular Vulnerabilities of Tumor Escape in B-cell Malignancies, Nantes Université, Centre National de la Recherche Scientifique (CNRS), INSERM, Centre de Recherche en Cancérologie et Immunologie Intégrée Nantes Angers (CRCI2NA), Nantes, France
- Hematology Department, Site de Recherche Intégrée sur le Cancer, Imaging and Longitudinal Investigations to Ameliorate Decision-making (SIRIC ILIAD), Nantes, France
| | - Stéphane Minvielle
- Molecular Vulnerabilities of Tumor Escape in B-cell Malignancies, Nantes Université, Centre National de la Recherche Scientifique (CNRS), INSERM, Centre de Recherche en Cancérologie et Immunologie Intégrée Nantes Angers (CRCI2NA), Nantes, France
- Hematology Department, Site de Recherche Intégrée sur le Cancer, Imaging and Longitudinal Investigations to Ameliorate Decision-making (SIRIC ILIAD), Nantes, France
| | | | | | - Yannick Le Bris
- Hematology Department, Nantes Université, Centre Hospitalier Universitaire (CHU) de Nantes, CNRS, INSERM, CRCI2NA, Nantes, France
| | - Benoit Tessoulin
- Hematology Department, Site de Recherche Intégrée sur le Cancer, Imaging and Longitudinal Investigations to Ameliorate Decision-making (SIRIC ILIAD), Nantes, France
- Hematology Department, Nantes Université, Centre Hospitalier Universitaire (CHU) de Nantes, CNRS, INSERM, CRCI2NA, Nantes, France
| | - Martine Amiot
- Molecular Vulnerabilities of Tumor Escape in B-cell Malignancies, Nantes Université, Centre National de la Recherche Scientifique (CNRS), INSERM, Centre de Recherche en Cancérologie et Immunologie Intégrée Nantes Angers (CRCI2NA), Nantes, France
- Hematology Department, Site de Recherche Intégrée sur le Cancer, Imaging and Longitudinal Investigations to Ameliorate Decision-making (SIRIC ILIAD), Nantes, France
| | - Patricia Gomez-Bougie
- Hematology Department, Site de Recherche Intégrée sur le Cancer, Imaging and Longitudinal Investigations to Ameliorate Decision-making (SIRIC ILIAD), Nantes, France
- Hematology Department, Nantes Université, Centre Hospitalier Universitaire (CHU) de Nantes, CNRS, INSERM, CRCI2NA, Nantes, France
| | - Cyrille Touzeau
- Hematology Department, Site de Recherche Intégrée sur le Cancer, Imaging and Longitudinal Investigations to Ameliorate Decision-making (SIRIC ILIAD), Nantes, France
- Hematology Department, Nantes Université, Centre Hospitalier Universitaire (CHU) de Nantes, CNRS, INSERM, CRCI2NA, Nantes, France
| | - Philippe Moreau
- Hematology Department, Site de Recherche Intégrée sur le Cancer, Imaging and Longitudinal Investigations to Ameliorate Decision-making (SIRIC ILIAD), Nantes, France
- Hematology Department, Nantes Université, Centre Hospitalier Universitaire (CHU) de Nantes, CNRS, INSERM, CRCI2NA, Nantes, France
| | - David Chiron
- Molecular Vulnerabilities of Tumor Escape in B-cell Malignancies, Nantes Université, Centre National de la Recherche Scientifique (CNRS), INSERM, Centre de Recherche en Cancérologie et Immunologie Intégrée Nantes Angers (CRCI2NA), Nantes, France
- Hematology Department, Site de Recherche Intégrée sur le Cancer, Imaging and Longitudinal Investigations to Ameliorate Decision-making (SIRIC ILIAD), Nantes, France
| | - Agnès Moreau-Aubry
- Molecular Vulnerabilities of Tumor Escape in B-cell Malignancies, Nantes Université, Centre National de la Recherche Scientifique (CNRS), INSERM, Centre de Recherche en Cancérologie et Immunologie Intégrée Nantes Angers (CRCI2NA), Nantes, France
- Hematology Department, Site de Recherche Intégrée sur le Cancer, Imaging and Longitudinal Investigations to Ameliorate Decision-making (SIRIC ILIAD), Nantes, France
| | - Catherine Pellat-Deceunynck
- Molecular Vulnerabilities of Tumor Escape in B-cell Malignancies, Nantes Université, Centre National de la Recherche Scientifique (CNRS), INSERM, Centre de Recherche en Cancérologie et Immunologie Intégrée Nantes Angers (CRCI2NA), Nantes, France
- Hematology Department, Site de Recherche Intégrée sur le Cancer, Imaging and Longitudinal Investigations to Ameliorate Decision-making (SIRIC ILIAD), Nantes, France
| |
Collapse
|
5
|
Tonon G. Myeloma and DNA damage. Blood 2024; 143:488-495. [PMID: 37992215 DOI: 10.1182/blood.2023021384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/27/2023] [Accepted: 10/28/2023] [Indexed: 11/24/2023] Open
Abstract
ABSTRACT DNA-damaging agents have represented the first effective treatment for the blood cancer multiple myeloma, and after 65 years since their introduction to the clinic, they remain one of the mainstay therapies for this disease. Myeloma is a cancer of plasma cells. Despite exceedingly slow proliferation, myeloma cells present extended genomic rearrangements and intense genomic instability, starting at the premalignant stage of the disease. Where does such DNA damage stem from? A reliable model argues that the powerful oncogenes activated in myeloma as well the phenotypic peculiarities of cancer plasma cells, including the dependency on the proteasome for survival and the constant presence of oxidative stress, all converge on modulating DNA damage and repair. Beleaguered by these contraposing forces, myeloma cells survive in a precarious balance, in which the robust engagement of DNA repair mechanisms to guarantee cell survival is continuously challenged by rampant genomic instability, essential for cancer cells to withstand hostile selective pressures. Shattering this delicate equilibrium has been the goal of the extensive use of DNA-damaging agents since their introduction in the clinic, now enriched by novel approaches that leverage upon synthetic lethality paradigms. Exploiting the impairment of homologous recombination caused by myeloma genetic lesions or treatments, it is now possible to design therapeutic combinations that could target myeloma cells more effectively. Furthermore, DNA-damaging agents, as demonstrated in solid tumors, may sensitize cells to immune therapies. In all, targeting DNA damage and repair remains as central as ever in myeloma, even for the foreseeable future.
Collapse
Affiliation(s)
- Giovanni Tonon
- Università Vita-Salute San Raffaele, Milan, Italy
- Division of Experimental Oncology and Center for Omics Sciences, Functional Genomics of Cancer Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
6
|
De Mel S, Lee AR, Tan JHI, Tan RZY, Poon LM, Chan E, Lee J, Chee YL, Lakshminarasappa SR, Jaynes PW, Jeyasekharan AD. Targeting the DNA damage response in hematological malignancies. Front Oncol 2024; 14:1307839. [PMID: 38347838 PMCID: PMC10859481 DOI: 10.3389/fonc.2024.1307839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 01/03/2024] [Indexed: 02/15/2024] Open
Abstract
Deregulation of the DNA damage response (DDR) plays a critical role in the pathogenesis and progression of many cancers. The dependency of certain cancers on DDR pathways has enabled exploitation of such through synthetically lethal relationships e.g., Poly ADP-Ribose Polymerase (PARP) inhibitors for BRCA deficient ovarian cancers. Though lagging behind that of solid cancers, DDR inhibitors (DDRi) are being clinically developed for haematological cancers. Furthermore, a high proliferative index characterize many such cancers, suggesting a rationale for combinatorial strategies targeting DDR and replicative stress. In this review, we summarize pre-clinical and clinical data on DDR inhibition in haematological malignancies and highlight distinct haematological cancer subtypes with activity of DDR agents as single agents or in combination with chemotherapeutics and targeted agents. We aim to provide a framework to guide the design of future clinical trials involving haematological cancers for this important class of drugs.
Collapse
Affiliation(s)
- Sanjay De Mel
- Department of Haematology-Oncology, National University Cancer Institute, Singapore, National University Health System, Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University Singapore, Singapore, Singapore
| | - Ainsley Ryan Lee
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Joelle Hwee Inn Tan
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Rachel Zi Yi Tan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Li Mei Poon
- Department of Haematology-Oncology, National University Cancer Institute, Singapore, National University Health System, Singapore, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University Singapore, Singapore, Singapore
| | - Esther Chan
- Department of Haematology-Oncology, National University Cancer Institute, Singapore, National University Health System, Singapore, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University Singapore, Singapore, Singapore
| | - Joanne Lee
- Department of Haematology-Oncology, National University Cancer Institute, Singapore, National University Health System, Singapore, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University Singapore, Singapore, Singapore
| | - Yen Lin Chee
- Department of Haematology-Oncology, National University Cancer Institute, Singapore, National University Health System, Singapore, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University Singapore, Singapore, Singapore
| | - Satish R. Lakshminarasappa
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Patrick William Jaynes
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Anand D. Jeyasekharan
- Department of Haematology-Oncology, National University Cancer Institute, Singapore, National University Health System, Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University Singapore, Singapore, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| |
Collapse
|
7
|
Pfeiffer C, Grandits AM, Asnagli H, Schneller A, Huber J, Zojer N, Schreder M, Parker AE, Bolomsky A, Beer PA, Ludwig H. CTPS1 is a novel therapeutic target in multiple myeloma which synergizes with inhibition of CHEK1, ATR or WEE1. Leukemia 2024; 38:181-192. [PMID: 37898670 DOI: 10.1038/s41375-023-02071-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 09/25/2023] [Accepted: 10/10/2023] [Indexed: 10/30/2023]
Abstract
Targeting nucleotide biosynthesis is a proven strategy for the treatment of cancer but is limited by toxicity, reflecting the fundamental nucleotide requirement of dividing cells. The rate limiting step in de novo pyrimidine synthesis is of interest, being catalyzed by two homologous enzymes, CTP synthase 1 (CTPS1) and CTPS2, that could be differentially targeted. Herein, analyses of publicly available datasets identified an essential role for CTPS1 in multiple myeloma (MM), linking high expression of CTPS1 (but not CTPS2) with advanced disease and poor outcomes. In cellular experiments, CTPS1 knockout induced apoptosis of MM cell lines. Exposure of MM cells to STP-B, a novel and highly selective pharmacological inhibitor of CTPS1, inhibited proliferation, induced S phase arrest and led to cell death by apoptosis. Mechanistically, CTPS1 inhibition by STP-B activated DNA damage response (DDR) pathways and induced double-strand DNA breaks which accumulated in early S phase. Combination of STP-B with pharmacological inhibitors of key components of the DDR pathway (ATR, CHEK1 or WEE1) resulted in synergistic growth inhibition and early apoptosis. Taken together, these findings identify CTPS1 as a promising new target in MM, either alone or in combination with DDR pathway inhibition.
Collapse
Affiliation(s)
- Christina Pfeiffer
- Department of Medicine I, Klinik Ottakring, Wilhelminen Cancer Research Institute, Vienna, Austria
| | - Alexander M Grandits
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | | | - Anja Schneller
- Department of Medicine I, Klinik Ottakring, Wilhelminen Cancer Research Institute, Vienna, Austria
| | - Julia Huber
- Department of Medicine I, Klinik Ottakring, Wilhelminen Cancer Research Institute, Vienna, Austria
| | - Niklas Zojer
- Department of Medicine I, Klinik Ottakring, Wilhelminen Cancer Research Institute, Vienna, Austria
- Department of Medicine I, Center for Oncology and Hematology, Klinik Ottakring, Vienna, Austria
| | - Martin Schreder
- Department of Medicine I, Center for Oncology and Hematology, Klinik Ottakring, Vienna, Austria
| | | | - Arnold Bolomsky
- Department of Medicine I, Klinik Ottakring, Wilhelminen Cancer Research Institute, Vienna, Austria
| | | | - Heinz Ludwig
- Department of Medicine I, Klinik Ottakring, Wilhelminen Cancer Research Institute, Vienna, Austria.
| |
Collapse
|
8
|
Petrilla C, Galloway J, Kudalkar R, Ismael A, Cottini F. Understanding DNA Damage Response and DNA Repair in Multiple Myeloma. Cancers (Basel) 2023; 15:4155. [PMID: 37627183 PMCID: PMC10453069 DOI: 10.3390/cancers15164155] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
Multiple myeloma (MM) is a plasma cell malignancy characterized by several genetic abnormalities, including chromosomal translocations, genomic deletions and gains, and point mutations. DNA damage response (DDR) and DNA repair mechanisms are altered in MM to allow for tumor development, progression, and resistance to therapies. Damaged DNA rarely induces an apoptotic response, given the presence of ataxia-telangiectasia mutated (ATM) loss-of-function or mutations, as well as deletions, mutations, or downregulation of tumor protein p53 (TP53) and tumor protein p73 (TP73). Moreover, DNA repair mechanisms are either hyperactive or defective to allow for rapid correction of the damage or permissive survival. Medications used to treat patients with MM can induce DNA damage, by either direct effects (mono-adducts induced by melphalan), or as a result of reactive oxygen species (ROS) production by proteasome inhibitors such as bortezomib. In this review, we will describe the mechanisms of DDR and DNA repair in normal tissues, the contribution of these pathways to MM disease progression and other phenotypes, and the potential therapeutic opportunities for patients with MM.
Collapse
Affiliation(s)
| | | | | | | | - Francesca Cottini
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
9
|
Berardi A, Botrugno OA, Quilici G, Manteiga JMG, Bachi A, Tonon G, Musco G. Nizp1 is a specific
NUP98
‐
NSD1
functional interactor that regulates
NUP98
‐
NSD1
‐dependent oncogenic programs. FEBS J 2022; 290:1782-1797. [PMID: 36271682 DOI: 10.1111/febs.16664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/27/2022] [Accepted: 10/21/2022] [Indexed: 11/05/2022]
Abstract
NSD1, NSD2 and NSD3 proteins constitute a family of histone 3 lysine 36 (H3K36) methyltransferases with similar domain architecture, but diversified activities, in part, dependent on their non-enzymatic domains. These domains, despite their high sequence identity, recruit the hosting proteins to different chromatin regions through the recognition of diverse epigenetic marks and/or associations to distinct interactors. In this sense, the PHDvC5HCH finger tandem domain represents a paradigmatic example of functional divergence within the NSD family. In this work, we prove and give a structural rationale for the uniqueness of the PHDvC5HCH domain of NSD1 in recognizing the C2HR Zinc finger domain of Nizp1 (NSD1 interacting Zn finger protein). Importantly, we show that, in a leukaemogenic context, Nizp1 is pivotal in driving the unscheduled expression of HoxA genes and of genes involved in the type I IFN pathway, triggered by the expression of the fusion protein NUP98-NSD1. These data provide the first insight into the pathophysiological relevance of the Nizp1-NSD1 functional association. Targeting of this interaction might open new therapeutic windows to inhibit the NUP98-NSD1 oncogenic properties.
Collapse
Affiliation(s)
- Andrea Berardi
- Biomolecular NMR, Division of Genetics and Cell Biology IRCCS Ospedale San Raffaele Milan Italy
| | - Oronza A. Botrugno
- Functional Genomics of Cancer, Division of Experimental Oncology IRCCS Ospedale San Raffaele Milan Italy
| | - Giacomo Quilici
- Biomolecular NMR, Division of Genetics and Cell Biology IRCCS Ospedale San Raffaele Milan Italy
| | | | - Angela Bachi
- Functional Proteomics Group IFOM‐FIRC Institute of Molecular Oncology Milan Italy
| | - Giovanni Tonon
- Functional Genomics of Cancer, Division of Experimental Oncology IRCCS Ospedale San Raffaele Milan Italy
| | - Giovanna Musco
- Biomolecular NMR, Division of Genetics and Cell Biology IRCCS Ospedale San Raffaele Milan Italy
| |
Collapse
|
10
|
Gritti I, Basso V, Rinchai D, Corigliano F, Pivetti S, Gaviraghi M, Rosano D, Mazza D, Barozzi S, Roncador M, Parmigiani G, Legube G, Parazzoli D, Cittaro D, Bedognetti D, Mondino A, Segalla S, Tonon G. Loss of ribonuclease DIS3 hampers genome integrity in myeloma by disrupting DNA:RNA hybrid metabolism. EMBO J 2022; 41:e108040. [PMID: 36215697 PMCID: PMC9670201 DOI: 10.15252/embj.2021108040] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 07/25/2022] [Accepted: 09/23/2022] [Indexed: 01/13/2023] Open
Abstract
The ribonuclease DIS3 is one of the most frequently mutated genes in the hematological cancer multiple myeloma, yet the basis of its tumor suppressor function in this disease remains unclear. Herein, exploiting the TCGA dataset, we found that DIS3 plays a prominent role in the DNA damage response. DIS3 inactivation causes genomic instability by increasing mutational load, and a pervasive accumulation of DNA:RNA hybrids that induces genomic DNA double-strand breaks (DSBs). DNA:RNA hybrid accumulation also prevents binding of the homologous recombination (HR) machinery to double-strand breaks, hampering DSB repair. DIS3-inactivated cells become sensitive to PARP inhibitors, suggestive of a defect in homologous recombination repair. Accordingly, multiple myeloma patient cells mutated for DIS3 harbor an increased mutational burden and a pervasive overexpression of pro-inflammatory interferon, correlating with the accumulation of DNA:RNA hybrids. We propose DIS3 loss in myeloma to be a driving force for tumorigenesis via DNA:RNA hybrid-dependent enhanced genome instability and increased mutational rate. At the same time, DIS3 loss represents a liability that might be therapeutically exploited in patients whose cancer cells harbor DIS3 mutations.
Collapse
Affiliation(s)
- Ilaria Gritti
- Functional Genomics of Cancer Unit, Division of Experimental OncologyIstituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific InstituteMilanoItaly
| | - Veronica Basso
- Division of Immunology, Transplantation and Infectious DiseaseIstituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific InstituteMilanoItaly
| | | | - Federica Corigliano
- Functional Genomics of Cancer Unit, Division of Experimental OncologyIstituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific InstituteMilanoItaly
| | - Silvia Pivetti
- Functional Genomics of Cancer Unit, Division of Experimental OncologyIstituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific InstituteMilanoItaly
| | - Marco Gaviraghi
- Functional Genomics of Cancer Unit, Division of Experimental OncologyIstituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific InstituteMilanoItaly
| | - Dalia Rosano
- Functional Genomics of Cancer Unit, Division of Experimental OncologyIstituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific InstituteMilanoItaly
| | - Davide Mazza
- Experimental Imaging CenterIstituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific InstituteMilanoItaly
| | - Sara Barozzi
- IFOM, The FIRC Institute of Molecular OncologyMilanoItaly
| | - Marco Roncador
- Department of Data SciencesDana Farber Cancer InstituteBostonMAUSA,Department of BiostatisticsHarvard T.H. Chan School of Public HealthBostonMAUSA
| | - Giovanni Parmigiani
- Department of Data SciencesDana Farber Cancer InstituteBostonMAUSA,Department of BiostatisticsHarvard T.H. Chan School of Public HealthBostonMAUSA
| | - Gaelle Legube
- MCD, Centre de Biologie Intégrative (CBI), CNRSUniversity of ToulouseToulouseFrance
| | | | - Davide Cittaro
- Center for Omics Sciences @OSR (COSR)Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific InstituteMilanoItaly
| | - Davide Bedognetti
- Cancer Research DepartmentSidra MedicineDohaQatar,Dipartimento di Medicina Interna e Specialità MedicheUniversità degli Studi di GenovaGenoaItaly
| | - Anna Mondino
- Division of Immunology, Transplantation and Infectious DiseaseIstituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific InstituteMilanoItaly
| | - Simona Segalla
- Functional Genomics of Cancer Unit, Division of Experimental OncologyIstituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific InstituteMilanoItaly
| | - Giovanni Tonon
- Functional Genomics of Cancer Unit, Division of Experimental OncologyIstituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific InstituteMilanoItaly,Center for Omics Sciences @OSR (COSR)Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific InstituteMilanoItaly,Università Vita‐Salute San RaffaeleMilanItaly
| |
Collapse
|
11
|
A drug repurposing strategy for overcoming human multiple myeloma resistance to standard-of-care treatment. Cell Death Dis 2022; 13:203. [PMID: 35246527 PMCID: PMC8897388 DOI: 10.1038/s41419-022-04651-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 01/28/2022] [Accepted: 02/14/2022] [Indexed: 12/15/2022]
Abstract
Despite several approved therapeutic modalities, multiple myeloma (MM) remains an incurable blood malignancy and only a small fraction of patients achieves prolonged disease control. The common anti-MM treatment targets proteasome with specific inhibitors (PI). The resulting interference with protein degradation is particularly toxic to MM cells as they typically accumulate large amounts of toxic proteins. However, MM cells often acquire resistance to PIs through aberrant expression or mutations of proteasome subunits such as PSMB5, resulting in disease recurrence and further treatment failure. Here we propose CuET—a proteasome-like inhibitor agent that is spontaneously formed in-vivo and in-vitro from the approved alcohol-abuse drug disulfiram (DSF), as a readily available treatment effective against diverse resistant forms of MM. We show that CuET efficiently kills also resistant MM cells adapted to proliferate under exposure to common anti-myeloma drugs such as bortezomib and carfilzomib used as the first-line therapy, as well as to other experimental drugs targeting protein degradation upstream of the proteasome. Furthermore, CuET can overcome also the adaptation mechanism based on reduced proteasome load, another clinically relevant form of treatment resistance. Data obtained from experimental treatment-resistant cellular models of human MM are further corroborated using rather unique advanced cytotoxicity experiments on myeloma and normal blood cells obtained from fresh patient biopsies including newly diagnosed as well as relapsed and treatment-resistant MM. Overall our findings suggest that disulfiram repurposing particularly if combined with copper supplementation may offer a promising and readily available treatment option for patients suffering from relapsed and/or therapy-resistant multiple myeloma.
Collapse
|
12
|
Genomic characterization of functional high-risk multiple myeloma patients. Blood Cancer J 2022; 12:24. [PMID: 35102139 PMCID: PMC8803925 DOI: 10.1038/s41408-021-00576-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 10/25/2021] [Accepted: 10/27/2021] [Indexed: 12/18/2022] Open
Abstract
Multiple myeloma (MM) patients with suboptimal response to induction therapy or early relapse, classified as the functional high-risk (FHR) patients, have been shown to have poor outcomes. We evaluated newly-diagnosed MM patients in the CoMMpass dataset and divided them into three groups: genomic high-risk (GHR) group for patients with t(4;14) or t(14;16) or complete loss of functional TP53 (bi-allelic deletion of TP53 or mono-allelic deletion of 17p13 (del17p13) and TP53 mutation) or 1q21 gain and International Staging System (ISS) stage 3; FHR group for patients who had no markers of GHR group but were refractory to induction therapy or had early relapse within 12 months; and standard-risk (SR) group for patients who did not fulfill any of the criteria for GHR or FHR. FHR patients had the worst survival. FHR patients are characterized by increased mutations affecting the IL-6/JAK/STAT3 pathway, and a gene expression profile associated with aberrant mitosis and DNA damage response. This is also corroborated by the association with the mutational signature associated with abnormal DNA damage response. We have also developed a machine learning based classifier that can identify most of these patients at diagnosis.
Collapse
|
13
|
Botrugno OA, Tonon G. Genomic Instability and Replicative Stress in Multiple Myeloma: The Final Curtain? Cancers (Basel) 2021; 14:cancers14010025. [PMID: 35008191 PMCID: PMC8750813 DOI: 10.3390/cancers14010025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/18/2021] [Accepted: 12/20/2021] [Indexed: 12/02/2022] Open
Abstract
Simple Summary Genomic instability is recognized as a driving force in most cancers as well as in the haematological cancer multiple myeloma and remains among the leading cause of drug resistance. Several evidences suggest that replicative stress exerts a fundamental role in fuelling genomic instability. Notably, cancer cells rely on a single protein, ATR, to cope with the ensuing DNA damage. In this perspective, we provide an overview depicting how replicative stress represents an Achilles heel for multiple myeloma, which could be therapeutically exploited either alone or in combinatorial regimens to preferentially ablate tumor cells. Abstract Multiple Myeloma (MM) is a genetically complex and heterogeneous hematological cancer that remains incurable despite the introduction of novel therapies in the clinic. Sadly, despite efforts spanning several decades, genomic analysis has failed to identify shared genetic aberrations that could be targeted in this disease. Seeking alternative strategies, various efforts have attempted to target and exploit non-oncogene addictions of MM cells, including, for example, proteasome inhibitors. The surprising finding that MM cells present rampant genomic instability has ignited concerted efforts to understand its origin and exploit it for therapeutic purposes. A credible hypothesis, supported by several lines of evidence, suggests that at the root of this phenotype there is intense replicative stress. Here, we review the current understanding of the role of replicative stress in eliciting genomic instability in MM and how MM cells rely on a single protein, Ataxia Telangiectasia-mutated and Rad3-related protein, ATR, to control and survive the ensuing, potentially fatal DNA damage. From this perspective, replicative stress per se represents not only an opportunity for MM cells to increase their evolutionary pool by increasing their genomic heterogeneity, but also a vulnerability that could be leveraged for therapeutic purposes to selectively target MM tumor cells.
Collapse
Affiliation(s)
- Oronza A. Botrugno
- Functional Genomics of Cancer Unit, Experimental Oncology Division, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Correspondence: (O.A.B.); (G.T.); Tel.: +39-02-2643-6661 (O.A.B.); +39-02-2643-5624 (G.T.); Fax: +39-02-2643-6352 (O.A.B. & G.T.)
| | - Giovanni Tonon
- Functional Genomics of Cancer Unit, Experimental Oncology Division, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Center for Omics Sciences, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Correspondence: (O.A.B.); (G.T.); Tel.: +39-02-2643-6661 (O.A.B.); +39-02-2643-5624 (G.T.); Fax: +39-02-2643-6352 (O.A.B. & G.T.)
| |
Collapse
|
14
|
Bohl SR, Schmalbrock LK, Bauhuf I, Meyer T, Dolnik A, Szyska M, Blätte TJ, Knödler S, Röhner L, Miller D, Kull M, Langer C, Döhner H, Letai A, Damm F, Heckl D, Bullinger L, Krönke J. Comprehensive CRISPR-Cas9 screens identify genetic determinants of drug responsiveness in multiple myeloma. Blood Adv 2021; 5:2391-2402. [PMID: 33950175 PMCID: PMC8114551 DOI: 10.1182/bloodadvances.2020003541] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 03/16/2021] [Indexed: 12/12/2022] Open
Abstract
The introduction of new drugs in the past years has substantially improved outcome in multiple myeloma (MM). However, the majority of patients eventually relapse and become resistant to one or multiple drugs. While the genetic landscape of relapsed/ resistant multiple myeloma has been elucidated, the causal relationship between relapse-specific gene mutations and the sensitivity to a given drug in MM has not systematically been evaluated. To determine the functional impact of gene mutations, we performed combined whole-exome sequencing (WES) of longitudinal patient samples with CRISPR-Cas9 drug resistance screens for lenalidomide, bortezomib, dexamethasone, and melphalan. WES of longitudinal samples from 16 MM patients identified a large number of mutations in each patient that were newly acquired or evolved from a small subclone (median 9, range 1-55), including recurrent mutations in TP53, DNAH5, and WSCD2. Focused CRISPR-Cas9 resistance screens against 170 relapse-specific mutations functionally linked 15 of them to drug resistance. These included cereblon E3 ligase complex members for lenalidomide, structural genes PCDHA5 and ANKMY2 for dexamethasone, RB1 and CDK2NC for bortezomib, and TP53 for melphalan. In contrast, inactivation of genes involved in the DNA damage repair pathway, including ATM, FANCA, RAD54B, and BRCC3, enhanced susceptibility to cytotoxic chemotherapy. Resistance patterns were highly drug specific with low overlap and highly correlated with the treatment-dependent clonal evolution in patients. The functional association of specific genetic alterations with drug sensitivity will help to personalize treatment of MM in the future.
Collapse
Affiliation(s)
- Stephan R Bohl
- Department of Internal Medicine III, Ulm University Hospital, Ulm, Germany
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Laura K Schmalbrock
- Department of Internal Medicine III, Ulm University Hospital, Ulm, Germany
- Department of Hematology, Oncology and Tumor Immunology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Imke Bauhuf
- Department of Internal Medicine III, Ulm University Hospital, Ulm, Germany
| | - Tatjana Meyer
- Department of Internal Medicine III, Ulm University Hospital, Ulm, Germany
| | - Anna Dolnik
- Department of Hematology, Oncology and Tumor Immunology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Martin Szyska
- Department of Hematology, Oncology and Tumor Immunology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Tamara J Blätte
- Department of Hematology, Oncology and Tumor Immunology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Sarah Knödler
- Department of Internal Medicine III, Ulm University Hospital, Ulm, Germany
| | - Linda Röhner
- Department of Internal Medicine III, Ulm University Hospital, Ulm, Germany
| | - Denise Miller
- Department of Internal Medicine III, Ulm University Hospital, Ulm, Germany
| | - Miriam Kull
- Department of Internal Medicine III, Ulm University Hospital, Ulm, Germany
| | - Christian Langer
- Department of Hematology, Internal Oncology and Palliative Care, Kempten Hospital, Kempten, Germany; and
| | - Hartmut Döhner
- Department of Internal Medicine III, Ulm University Hospital, Ulm, Germany
| | - Anthony Letai
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Frederik Damm
- Department of Hematology, Oncology and Tumor Immunology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Dirk Heckl
- Department of Hematology and Oncology Children's Hospital, Halle University Hospital, Halle, Germany
| | - Lars Bullinger
- Department of Hematology, Oncology and Tumor Immunology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Jan Krönke
- Department of Internal Medicine III, Ulm University Hospital, Ulm, Germany
- Department of Hematology, Oncology and Tumor Immunology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
15
|
Telomere Architecture Correlates with Aggressiveness in Multiple Myeloma. Cancers (Basel) 2021; 13:cancers13081969. [PMID: 33921898 PMCID: PMC8073772 DOI: 10.3390/cancers13081969] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/12/2021] [Accepted: 04/14/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Multiple myeloma (MM) remains an incurable blood cancer. One of the current challenges in patient management is the risk assessment and subsequent treatment management for each patient with MM. Patients with an identical diagnosis may present very different disease courses and outcomes. This challenge of MM is a current focus of the scientific and medical communities. In our research, we have used an imaging approach to determine the risk of MM patients to progressive/aggressive disease. Using three-dimensional (3D) imaging of telomeres, the ends of chromosomes, we report that specific telomeric profiles are associated with aggressive disease. Abstract The prognosis of multiple myeloma (MM), an incurable B-cell malignancy, has significantly improved through the introduction of novel therapeutic modalities. Myeloma prognosis is essentially determined by cytogenetics, both at diagnosis and at disease progression. However, for a large cohort of patients, cytogenetic analysis is not always available. In addition, myeloma patients with favorable cytogenetics can display an aggressive clinical course. Therefore, it is necessary to develop additional prognostic and predictive markers for this disease to allow for patient risk stratification and personalized clinical decision-making. Genomic instability is a prominent characteristic in MM, and we have previously shown that the three-dimensional (3D) nuclear organization of telomeres is a marker of both genomic instability and genetic heterogeneity in myeloma. In this study, we compared in a longitudinal prospective study blindly the 3D telomeric profiles from bone marrow samples of 214 initially treatment-naïve patients with either monoclonal gammopathy of undetermined significance (MGUS), smoldering multiple myeloma (SMM), or MM, with a minimum follow-up of 5 years. Here, we report distinctive 3D telomeric profiles correlating with disease aggressiveness and patient response to treatment in MM patients, and also distinctive 3D telomeric profiles for disease progression in smoldering multiple myeloma patients. In particular, lower average intensity (telomere length, below 13,500 arbitrary units) and increased number of telomere aggregates are associated with shorter survival and could be used as a prognostic factor to identify high-risk SMM and MM patients.
Collapse
|
16
|
Saitoh T, Oda T. DNA Damage Response in Multiple Myeloma: The Role of the Tumor Microenvironment. Cancers (Basel) 2021; 13:504. [PMID: 33525741 PMCID: PMC7865954 DOI: 10.3390/cancers13030504] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/21/2021] [Accepted: 01/26/2021] [Indexed: 12/13/2022] Open
Abstract
Multiple myeloma (MM) is an incurable plasma cell malignancy characterized by genomic instability. MM cells present various forms of genetic instability, including chromosomal instability, microsatellite instability, and base-pair alterations, as well as changes in chromosome number. The tumor microenvironment and an abnormal DNA repair function affect genetic instability in this disease. In addition, states of the tumor microenvironment itself, such as inflammation and hypoxia, influence the DNA damage response, which includes DNA repair mechanisms, cell cycle checkpoints, and apoptotic pathways. Unrepaired DNA damage in tumor cells has been shown to exacerbate genomic instability and aberrant features that enable MM progression and drug resistance. This review provides an overview of the DNA repair pathways, with a special focus on their function in MM, and discusses the role of the tumor microenvironment in governing DNA repair mechanisms.
Collapse
Affiliation(s)
- Takayuki Saitoh
- Department of Laboratory Sciences, Graduate School of Health Sciences, Gunma University, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan
| | - Tsukasa Oda
- Laboratory of Molecular Genetics, Institute for Molecular and Cellular Regulation, Gunma University, 3-39-15 Showa-machi, Maebashi, Gunma 371-8512, Japan;
| |
Collapse
|