1
|
Rasouli M, Troester S, Grebien F, Goemans BF, Zwaan CM, Heidenreich O. NUP98 oncofusions in myeloid malignancies: An update on molecular mechanisms and therapeutic opportunities. Hemasphere 2024; 8:e70013. [PMID: 39323480 PMCID: PMC11423334 DOI: 10.1002/hem3.70013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/12/2024] [Accepted: 08/28/2024] [Indexed: 09/27/2024] Open
Abstract
Acute myeloid leukemia (AML) is an aggressive hematological malignancy with a heterogeneous molecular landscape. In the pediatric context, the NUP98 gene is a frequent target of chromosomal rearrangements that are linked to poor prognosis and unfavorable treatment outcomes in different AML subtypes. The translocations fuse NUP98 to a diverse array of partner genes, resulting in fusion proteins with novel functions. NUP98 fusion oncoproteins induce aberrant biomolecular condensation, abnormal gene expression programs, and re-wired protein interactions which ultimately cause alterations in the cell cycle and changes in cellular structures, all of which contribute to leukemia development. The extent of these effects is steered by the functional domains of the fusion partners and the influence of concomitant somatic mutations. In this review, we discuss the complex characteristics of NUP98 fusion proteins and potential novel therapeutic approaches for NUP98 fusion-driven AML.
Collapse
Affiliation(s)
- Milad Rasouli
- Princess Maxima Center for Pediatric OncologyUtrechtThe Netherlands
- Department of Pediatric Hematology/OncologyErasmus MC‐Sophia Children's HospitalRotterdamThe Netherlands
| | - Selina Troester
- Department of Biological Sciences and PathobiologyUniversity of Veterinary Medicine ViennaViennaAustria
| | - Florian Grebien
- Department of Biological Sciences and PathobiologyUniversity of Veterinary Medicine ViennaViennaAustria
- St. Anna Children's Cancer Research Institute (CCRI)ViennaAustria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
| | | | - C. Michel Zwaan
- Princess Maxima Center for Pediatric OncologyUtrechtThe Netherlands
- Department of Pediatric Hematology/OncologyErasmus MC‐Sophia Children's HospitalRotterdamThe Netherlands
| | - Olaf Heidenreich
- Princess Maxima Center for Pediatric OncologyUtrechtThe Netherlands
- Department of HematologyUniversity Medical Center UtrechtUtrechtThe Netherlands
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research InstituteNewcastle UniversityNewcastle upon TyneUK
| |
Collapse
|
2
|
Rasouli M, Blair H, Troester S, Szoltysek K, Cameron R, Ashtiani M, Krippner-Heidenreich A, Grebien F, McGeehan G, Zwaan CM, Heidenreich O. The MLL-Menin Interaction is a Therapeutic Vulnerability in NUP98-rearranged AML. Hemasphere 2023; 7:e935. [PMID: 37520776 PMCID: PMC10378738 DOI: 10.1097/hs9.0000000000000935] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 06/21/2023] [Indexed: 08/01/2023] Open
Abstract
Chromosomal translocations involving the NUP98 locus are among the most prevalent rearrangements in pediatric acute myeloid leukemia (AML). AML with NUP98 fusions is characterized by high expression of HOXA and MEIS1 genes and is associated with poor clinical outcome. NUP98 fusion proteins are recruited to their target genes by the mixed lineage leukemia (MLL) complex, which involves a direct interaction between MLL and Menin. Here, we show that therapeutic targeting of the Menin-MLL interaction inhibits the propagation of NUP98-rearrranged AML both ex vivo and in vivo. Treatment of primary AML cells with the Menin inhibitor revumenib (SNDX-5613) impairs proliferation and clonogenicity ex vivo in long-term coculture and drives myeloid differentiation. These phenotypic effects are associated with global gene expression changes in primary AML samples that involve the downregulation of many critical NUP98 fusion protein-target genes, such as MEIS1 and CDK6. In addition, Menin inhibition reduces the expression of both wild-type FLT3 and mutated FLT3-ITD, and in combination with FLT3 inhibitor, suppresses patient-derived NUP98-r AML cells in a synergistic manner. Revumenib treatment blocks leukemic engraftment and prevents leukemia-associated death of immunodeficient mice transplanted with NUP98::NSD1 FLT3-ITD-positive patient-derived AML cells. These results demonstrate that NUP98-rearranged AMLs are highly susceptible to inhibition of the MLL-Menin interaction and suggest the inclusion of AML patients harboring NUP98 fusions into the clinical evaluation of Menin inhibitors.
Collapse
Affiliation(s)
- Milad Rasouli
- Princess Maxima Center for pediatric Oncology, Utrecht, The Netherlands
- Department of Pediatric Hematology/Oncology, Erasmus MC-Sophia Children’s Hospital, Rotterdam, The Netherlands
| | - Helen Blair
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Selina Troester
- Institute for Medical Biochemistry, University of Veterinary Medicine Vienna, Austria
| | - Katarzyna Szoltysek
- Princess Maxima Center for pediatric Oncology, Utrecht, The Netherlands
- Maria Sklodowska-Curie Institute – Oncology Center, Gliwice Branch, Poland
| | - Rachel Cameron
- Princess Maxima Center for pediatric Oncology, Utrecht, The Netherlands
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Minoo Ashtiani
- Princess Maxima Center for pediatric Oncology, Utrecht, The Netherlands
| | | | - Florian Grebien
- Institute for Medical Biochemistry, University of Veterinary Medicine Vienna, Austria
| | | | - C. Michel Zwaan
- Princess Maxima Center for pediatric Oncology, Utrecht, The Netherlands
- Department of Pediatric Hematology/Oncology, Erasmus MC-Sophia Children’s Hospital, Rotterdam, The Netherlands
| | - Olaf Heidenreich
- Princess Maxima Center for pediatric Oncology, Utrecht, The Netherlands
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
3
|
Almohsen SS, Griffin AM, Dickson BC, Demicco EG. VIM::KMT2A-rearranged sarcomas: A report of two new cases confirming an entity with distinct histologic features. Genes Chromosomes Cancer 2023; 62:405-411. [PMID: 36959690 DOI: 10.1002/gcc.23138] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/15/2023] [Accepted: 03/18/2023] [Indexed: 03/25/2023] Open
Abstract
The recently described KMT2A-rearranged sarcomas are rare emerging entities where the KMT2A gene fuses with YAP1 and, less commonly, VIM, resulting in two distinct morphologies. Unlike the sclerosing epithelioid fibrosarcoma-like features that characterize tumors with KMT2A::YAP1 fusions, VIM::KMT2A-rearranged sarcomas are more uniformly cellular and lack the extensively sclerotic background seen in the former. Most tumors behave aggressively with metastases on presentation. Here, we describe the clinicopathologic and molecular findings in two additional cases of VIM::KMT2A rearranged sarcomas that arose in the deep soft tissues of adult males. Both tumors were composed of hypercellular fascicles of uniform spindle cells with pale eosinophilic cytoplasm and ovoid nuclei. The stroma had scant delicate collagen with occasional thin-walled ectatic blood vessels and perivascular hyalinization. Immunohistochemical studies showed an unspecific staining pattern with diffuse positivity for CD99 and BCL2 and variable staining for S100 protein. RNA-sequencing detected the presence of VIM::KMT2A gene fusion involving VIM exon 4 and KMT2A exon 2 in both cases. Sarcomas with VIM::KMT2A gene fusions seem to have sufficient morphologic features to warrant distinction from KMT2A-rearranged sarcomas with YAP1 partner. Without the benefit of molecular testing, these tumors pose a diagnostic challenge due to their lack of specific immunohistochemical profile and great morphologic overlap with other monomorphic spindle cell neoplasms.
Collapse
Affiliation(s)
- Shahd S Almohsen
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital & Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Anthony M Griffin
- University Musculoskeletal Oncology Unit, Sinai Health System & Division of Orthopaedic Surgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Brendan C Dickson
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital & Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Elizabeth G Demicco
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital & Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
4
|
Kim M, Jo KW, Kim H, Han ME, Oh SO. Genetic heterogeneity of liver cancer stem cells. Anat Cell Biol 2023; 56:94-108. [PMID: 36384888 PMCID: PMC9989795 DOI: 10.5115/acb.22.161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/27/2022] [Accepted: 10/27/2022] [Indexed: 11/19/2022] Open
Abstract
Cancer cell heterogeneity is a serious problem in the control of tumor progression because it can cause chemoresistance and metastasis. Heterogeneity can be generated by various mechanisms, including genetic evolution of cancer cells, cancer stem cells (CSCs), and niche heterogeneity. Because the genetic heterogeneity of CSCs has been poorly characterized, the genetic mutation status of CSCs was examined using Exome-Seq and RNA-Seq data of liver cancer. Here we show that different surface markers for liver cancer stem cells (LCSCs) showed a unique propensity for genetic mutations. Cluster of differentiation 133 (CD133)-positive cells showed frequent mutations in the IRF2, BAP1, and ERBB3 genes. However, leucine-rich repeat-containing G protein-coupled receptor 5-positive cells showed frequent mutations in the CTNNB1, RELN, and ROBO1 genes. In addition, some genetic mutations were frequently observed irrespective of the surface markers for LCSCs. BAP1 mutations was frequently observed in CD133-, CD24-, CD13-, CD90-, epithelial cell adhesion molecule-, or keratin 19-positive LCSCs. ASXL2, ERBB3, IRF2, TLX3, CPS1, and NFATC2 mutations were observed in more than three types of LCSCs, suggesting that common mechanisms for the development of these LCSCs. The present study provides genetic heterogeneity depending on the surface markers for LCSCs. The genetic heterogeneity of LCSCs should be considered in the development of LCSC-targeting therapeutics.
Collapse
Affiliation(s)
- Minjeong Kim
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan, Korea
| | - Kwang-Woo Jo
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan, Korea
| | - Hyojin Kim
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan, Korea
| | - Myoung-Eun Han
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan, Korea
| | - Sae-Ock Oh
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan, Korea
| |
Collapse
|
5
|
Michmerhuizen NL, Klco JM, Mullighan CG. Mechanistic insights and potential therapeutic approaches for NUP98-rearranged hematologic malignancies. Blood 2020; 136:2275-2289. [PMID: 32766874 PMCID: PMC7702474 DOI: 10.1182/blood.2020007093] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 07/21/2020] [Indexed: 12/15/2022] Open
Abstract
Nucleoporin 98 (NUP98) fusion oncoproteins are observed in a spectrum of hematologic malignancies, particularly pediatric leukemias with poor patient outcomes. Although wild-type full-length NUP98 is a member of the nuclear pore complex, the chromosomal translocations leading to NUP98 gene fusions involve the intrinsically disordered and N-terminal region of NUP98 with over 30 partner genes. Fusion partners include several genes bearing homeodomains or having known roles in transcriptional or epigenetic regulation. Based on data in both experimental models and patient samples, NUP98 fusion oncoprotein-driven leukemogenesis is mediated by changes in chromatin structure and gene expression. Multiple cofactors associate with NUP98 fusion oncoproteins to mediate transcriptional changes possibly via phase separation, in a manner likely dependent on the fusion partner. NUP98 gene fusions co-occur with a set of additional mutations, including FLT3-internal tandem duplication and other events contributing to increased proliferation. To improve the currently dire outcomes for patients with NUP98-rearranged malignancies, therapeutic strategies have been considered that target transcriptional and epigenetic machinery, cooperating alterations, and signaling or cell-cycle pathways. With the development of more faithful experimental systems and continued study, we anticipate great strides in our understanding of the molecular mechanisms and therapeutic vulnerabilities at play in NUP98-rearranged models. Taken together, these studies should lead to improved clinical outcomes for NUP98-rearranged leukemia.
Collapse
Affiliation(s)
| | - Jeffery M Klco
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN
| | | |
Collapse
|
6
|
Fagnan A, Mercher T. NUP98 and KMT2A: usually the bride rather than the bridesmaid. Haematologica 2020; 105:1757-1760. [PMID: 32611575 DOI: 10.3324/haematol.2020.253476] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Alexandre Fagnan
- INSERM U1170, Gustave Roussy Institute, Villejuif.,Université Paris Diderot, Paris.,Equipe labellisée Ligue Nationale Contre le Cancer, Paris
| | - Thomas Mercher
- INSERM U1170, Gustave Roussy Institute, Villejuif.,Université Paris Diderot, Paris.,Equipe labellisée Ligue Nationale Contre le Cancer, Paris.,Université Paris-Saclay, Villejuif, France
| |
Collapse
|