1
|
Du Y, Yang K, Tang Y, Fan R, Gong Y. A Rare t(X;21)(p11;q22) in Childhood Acute Myeloid Leukemia: Case Report and Literature Review. Pediatr Blood Cancer 2025; 72:e31457. [PMID: 39558843 DOI: 10.1002/pbc.31457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 10/27/2024] [Indexed: 11/20/2024]
Affiliation(s)
- Yiwen Du
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Kun Yang
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Yuqian Tang
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Ruixia Fan
- Department of Pharmaceutical Analysis, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan Province, China
| | - Yuping Gong
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| |
Collapse
|
2
|
Wu F, Li N, Wu X, Chen M, Huang W, Chen X, Hong Y, Wang L, Chen K, Lin L, You M, Liu J. EZH2 mutation is associated with the development of visceral metastasis by enhancing proliferation and invasion and inhibiting apoptosis in breast cancer cells. BMC Cancer 2024; 24:1166. [PMID: 39300407 DOI: 10.1186/s12885-024-12950-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 09/12/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND The prognosis of breast cancer patients with visceral metastasis (VM) is significantly worse than that of patients without VM. We aimed to evaluate EZH2 (enhancer of zeste homolog 2) mutation as a biomarker associated with VM. METHODS Data from forty-nine patients with metastatic breast cancer (MBC) pathologically confirmed at our hospital between March 2016 and September 2018 were collected. Metastatic tissue samples were obtained via ultrasound-guided needle biopsy, and paired peripheral blood samples were also collected. Tissue and blood samples were subjected to targeted next-generation sequencing via a 247-gene panel. Stably transfected MDA-MB-231 cells expressing wild-type EZH2 (EZH2WT) or a mutant form of EZH2 (EZH2K515R) were generated. Cell proliferation, colony formation ability, migration and invasion abilities and apoptosis were assessed using CCK-8 assays, plate colony formation assays, Transwell chamber assays and flow cytometry. RESULTS The incidence of EZH2 mutations in the VM subgroup was greater than that in the non-VM subgroup in the entire cohort (n = 49, 42.3% vs. 13.0%, p = 0.024) and in the triple-negative breast cancer (TNBC) subgroup (n = 20, 50.0% vs. 10.0%, p = 0.05). Patients carrying EZH2 mutations had a significantly greater risk of developing VM than did those in the non-EZH2 mutation group in the entire cohort (HR 2.9) and in the TNBC subgroup (HR 6.45). Multivariate analysis revealed that EZH2 mutation was an independent prognostic factor for VM (HR 2.99, p = 0.009) in the entire cohort and in the TNBC subgroup (HR 10.1, p = 0.006). Data from cBioPortal also showed that patients with EZH2 mutations had a significantly greater risk of developing VM (HR 3.1), and the time to develop VM was significantly earlier in the EZH2 mutation group (31.5 months vs. 109.7 months, p = 0.008). Multivariate analysis revealed that EZH2 mutation (HR 2.73, p = 0.026) was an independent factor for VM after breast cancer surgery. There was no correlation between EZH2 mutations and BRCA1/2 mutations. Most of the patients (81.8%) in our cohort who developed VM carried the "c.1544A > G (p.K515R)" mutation. Compared with EZH2WT MDA-MB-231 cells, EZH2K515R MDA-MB-231 cells had greater colony formation rates (p < 0.01), greater migration and invasion rates (p < 0.001), and lower apoptosis rates (p < 0.01). The proportion of S + G2/M phase cells in the EZH2K515R group was significantly greater than that in the EZH2WT group. CONCLUSIONS EZH2 mutation is associated with VM development in breast cancer patients. The EZH2K515R mutation leads to VM and a poor prognosis by enhancing proliferation and invasion and inhibiting apoptosis in breast cancer cells.
Collapse
Affiliation(s)
- Fan Wu
- Department of Medical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Fujian Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian Province, China
| | - Nani Li
- Department of Medical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian Province, China
| | - Xiufeng Wu
- Department of Breast Surgery, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian Province, China
| | - Mulan Chen
- Department of Medical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian Province, China
| | - Weiwei Huang
- Department of Medical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Fujian Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian Province, China
| | - Xinhua Chen
- Department of Medical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian Province, China
| | - Yi Hong
- Department of Medical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian Province, China
| | - Lili Wang
- Department of Medical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian Province, China
| | - Kan Chen
- Department of Medical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian Province, China
| | - Lin Lin
- Department of Medical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian Province, China
| | - Minjin You
- Department of Medical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian Province, China
| | - Jian Liu
- Department of Medical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian Province, China.
| |
Collapse
|
3
|
Salman H. Comparative Analysis of AML Classification Systems: Evaluating the WHO, ICC, and ELN Frameworks and Their Distinctions. Cancers (Basel) 2024; 16:2915. [PMID: 39199685 PMCID: PMC11352995 DOI: 10.3390/cancers16162915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/14/2024] [Accepted: 08/20/2024] [Indexed: 09/01/2024] Open
Abstract
Comprehensive analyses of the molecular heterogeneity of acute myelogenous leukemia, AML, particularly when malignant cells retain normal karyotype, has significantly evolved. In 2022, significant revisions were introduced in the World Health Organization (WHO) classification and the European LeukemiaNet (ELN) 2022 guidelines of acute myeloid leukemia (AML). These revisions coincided with the inception of the first version of the International Consensus Classification (ICC) for AML. These modifications aim to improve diagnosis and treatment outcomes via a comprehensive incorporation of sophisticated genetic and clinical parameters as well as facilitate accruals to innovative clinical trials. Key updates include modifications to the blast count criteria for AML diagnosis, with WHO 2022 eliminating the ≥20% blast requirement in the presence of AML-defining abnormalities and ICC 2022 setting a 10% cutoff for recurrent genetic abnormalities. Additionally, new categories, such as AML with mutated TP53 and MDS/AML, were introduced. ELN 2022 guidelines retained risk stratification approach and emphasized the critical role of measurable residual disease (MRD) that increased the use of next-generation sequencing (NGS) and flow cytometry testing. These revisions underscore the importance of precise classification for targeted treatment strategies and improved patient outcomes. How much difference versus concordance these classifications present and the impact of those on clinical practice is a continuing discussion.
Collapse
Affiliation(s)
- Huda Salman
- Brown Center for Immunotherapy, Melvin and Bren Simon Comprehensive Cancer Center, School of Medicine, Indiana University, Indianapolis, IN 46202, USA
| |
Collapse
|
4
|
Chen D, Geyer J, Bagg A, Hasserjian R, Weinberg OK. A comparative analysis of the clinical and genetic profiles of blast phase BCR::ABL1-negative myeloproliferative neoplasm and acute myeloid leukemia, myelodysplasia-related. Int J Lab Hematol 2024; 46:687-694. [PMID: 38665121 DOI: 10.1111/ijlh.14280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 03/22/2024] [Indexed: 07/04/2024]
Abstract
INTRODUCTION The classic Philadelphia chromosome-negative myeloproliferative neoplasms (Ph (-) MPNs), have variable potential for progression to the blast phase (MPN-BP) of the disease. Except initiated by distinct driver mutations, MPN-BP frequently carry similar genetic abnormalities defining acute myeloid leukemia myelodysplasia-related (AML-MR). Because of dissimilar initial pathogenesis, MPN-BP and AML-MR are retained under different disease categories. To determine if separately classifying these entities is justified, we compare MPN-BP with AML-MR patients based on mutational landscape and clinical parameters. METHODS 104 MPN-BP patients and 145 AML-MR patients were identified with available clinical, cytogenetic, and genetic data. RESULTS AML-MR patients presented with a higher blast count (median, 51% vs. 30%) while MPN-BP patients had higher WBC counts, platelet counts and bone marrow cellularity (all p<0.0001). Patients with MPN-BP showed similar genetic mutations with similar mutation pattern (functional domain, hotspot and locus involved by the mutations) but a different mutation rate from AML-MR, with more frequent JAK2, CALR, MPL, ASXL1, IDH2, SETBP1 and SRSF2 mutations and less frequent TP53 and DNMT3A mutations. The overall survival (OS) of MPN-BP (OS post-BP-progression) is comparable to that of AML-MR (median OS, 9.5 months vs. 13.1 months, p=0.20). In addition, the subgroups of MPN-BP show similar OS as AML-MR. When harboring certain mutation such as TP53, ASXL1, DNMT3A, TET2, RUNX1, IDH1, IDH2, EZH2, U2AF1, BCOR and SRSF2, MPN-BP and AML-MR patients carrying the same somatic mutation show no difference in OS. CONCLUSION MPN-BP and AML-MR harbor similar somatic mutations and clinical outcomes, suggesting a unified clinical disease entity.
Collapse
Affiliation(s)
- Dong Chen
- Department of Pathology and Laboratory Medicine, University of Connecticut, Farmington, Connecticut, USA
| | - Julia Geyer
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, Cornell University, New York, New York, USA
| | - Adam Bagg
- Department of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Robert Hasserjian
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Olga K Weinberg
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
5
|
Larue AEM, Atlasi Y. The epigenetic landscape in intestinal stem cells and its deregulation in colorectal cancer. Stem Cells 2024; 42:509-525. [PMID: 38597726 PMCID: PMC11177158 DOI: 10.1093/stmcls/sxae027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 03/25/2024] [Indexed: 04/11/2024]
Abstract
Epigenetic mechanisms play a pivotal role in controlling gene expression and cellular plasticity in both normal physiology and pathophysiological conditions. These mechanisms are particularly important in the regulation of stem cell self-renewal and differentiation, both in embryonic development and within adult tissues. A prime example of this finely tuned epigenetic control is observed in the gastrointestinal lining, where the small intestine undergoes renewal approximately every 3-5 days. How various epigenetic mechanisms modulate chromatin functions in intestinal stem cells (ISCs) is currently an active area of research. In this review, we discuss the main epigenetic mechanisms that control ISC differentiation under normal homeostasis. Furthermore, we explore the dysregulation of these mechanisms in the context of colorectal cancer (CRC) development. By outlining the main epigenetic mechanisms contributing to CRC, we highlight the recent therapeutics development and future directions for colorectal cancer research.
Collapse
Affiliation(s)
- Axelle E M Larue
- Patrick G Johnston Centre for Cancer Research, Queen’s University Belfast, Belfast BT9 7AE, United Kingdom
| | - Yaser Atlasi
- Patrick G Johnston Centre for Cancer Research, Queen’s University Belfast, Belfast BT9 7AE, United Kingdom
| |
Collapse
|
6
|
Han B, Jing Y, Bi X, Lin Y, Li H, Li H, Ru K, Yang S. t(2;2;21;8)(p21;q37;q22;q22), a novel four-way complex translocation involving variant t(8;21) in case of acute myeloid leukemia : A case report and literature review. Cancer Genet 2024; 284-285:1-4. [PMID: 38460349 DOI: 10.1016/j.cancergen.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 08/25/2023] [Accepted: 03/06/2024] [Indexed: 03/11/2024]
Abstract
Chromosomal translocation serves as a crucial diagnostic marker in the classification of acute myeloid leukemia. Among the most prevalent cytogenetic abnormalities is t(8;21)(q22;q22), typically associated with the FAB subtype AML-M2. On occasion, alternative forms of t(8;21) have been observed. This report presents a case of AML with RUNX1::RUNX1T1, wherein the karyotype revealed t(2;2;21;8)(p21;q37;q22;q22), representing the first instance of a variant t(8;21) involving both chromosomes 2. The combination of routine karyotype analysis and fluorescence in situ hybridization proves to be an effective method for identifying complex translocations of t(8;21).
Collapse
MESH Headings
- Humans
- Translocation, Genetic
- Leukemia, Myeloid, Acute/genetics
- Chromosomes, Human, Pair 21/genetics
- Chromosomes, Human, Pair 8/genetics
- Core Binding Factor Alpha 2 Subunit/genetics
- In Situ Hybridization, Fluorescence
- Male
- Chromosomes, Human, Pair 2/genetics
- RUNX1 Translocation Partner 1 Protein/genetics
- Karyotyping
- Female
- Adult
- Oncogene Proteins, Fusion/genetics
Collapse
Affiliation(s)
- Bingbing Han
- Sino-US Diagnostics Lab, Tianjin Enterprise Key Laboratory of Al-aided Hematopathology Diagnosis, 5 Xinghua No.3 branch road, Tianjin, China
| | - Yu Jing
- Department of Haematology, The Fifth Medical centre of Chinese PLA General Hospital, Beijing, China
| | - Xiaoyu Bi
- Sino-US Diagnostics Lab, Tianjin Enterprise Key Laboratory of Al-aided Hematopathology Diagnosis, 5 Xinghua No.3 branch road, Tianjin, China
| | - Yani Lin
- Sino-US Diagnostics Lab, Tianjin Enterprise Key Laboratory of Al-aided Hematopathology Diagnosis, 5 Xinghua No.3 branch road, Tianjin, China
| | - Huilan Li
- Sino-US Diagnostics Lab, Tianjin Enterprise Key Laboratory of Al-aided Hematopathology Diagnosis, 5 Xinghua No.3 branch road, Tianjin, China
| | - Hongyu Li
- Sino-US Diagnostics Lab, Tianjin Enterprise Key Laboratory of Al-aided Hematopathology Diagnosis, 5 Xinghua No.3 branch road, Tianjin, China
| | - Kun Ru
- Sino-US Diagnostics Lab, Tianjin Enterprise Key Laboratory of Al-aided Hematopathology Diagnosis, 5 Xinghua No.3 branch road, Tianjin, China; Department of Pathology and Lab Medicine, Shandong Cancer Hospital, Jinan, Shandong, China
| | - Shaobin Yang
- Sino-US Diagnostics Lab, Tianjin Enterprise Key Laboratory of Al-aided Hematopathology Diagnosis, 5 Xinghua No.3 branch road, Tianjin, China.
| |
Collapse
|
7
|
Santoro N, Salutari P, Di Ianni M, Marra A. Precision Medicine Approaches in Acute Myeloid Leukemia with Adverse Genetics. Int J Mol Sci 2024; 25:4259. [PMID: 38673842 PMCID: PMC11050344 DOI: 10.3390/ijms25084259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/08/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
The treatment of acute myeloid leukemia (AML) with adverse genetics remains unsatisfactory, with very low response rates to standard chemotherapy and shorter durations of remission commonly observed in these patients. The complex biology of AML with adverse genetics is continuously evolving. Herein, we discuss recent advances in the field focusing on the contribution of molecular drivers of leukemia biogenesis and evolution and on the alterations of the immune system that can be exploited with immune-based therapeutic strategies. We focus on the biological rationales for combining targeted therapy and immunotherapy, which are currently being investigated in ongoing trials, and could hopefully ameliorate the poor outcomes of patients affected by AML with adverse genetics.
Collapse
Affiliation(s)
- Nicole Santoro
- Hematology Unit, Department of Hematology and Oncology, Ospedale Civile “Santo Spirito”, 65122 Pescara, Italy; (P.S.); (M.D.I.)
| | - Prassede Salutari
- Hematology Unit, Department of Hematology and Oncology, Ospedale Civile “Santo Spirito”, 65122 Pescara, Italy; (P.S.); (M.D.I.)
| | - Mauro Di Ianni
- Hematology Unit, Department of Hematology and Oncology, Ospedale Civile “Santo Spirito”, 65122 Pescara, Italy; (P.S.); (M.D.I.)
- Department of Medicine and Science of Aging, “G.D’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Andrea Marra
- Laboratory of Molecular Medicine and Biotechnology, Department of Medicine, University Campus Bio-Medico of Rome, 00128 Rome, Italy
- Institute of Translational Pharmacology, National Research Council of Italy (CNR), 00196 Rome, Italy
| |
Collapse
|
8
|
Chaudhary S, Chaudhary P, Ahmad F, Arora N. Acute Myeloid Leukemia and Next-Generation Sequencing Panels for Diagnosis: A Comprehensive Review. J Pediatr Hematol Oncol 2024; 46:125-137. [PMID: 38447075 PMCID: PMC10956683 DOI: 10.1097/mph.0000000000002840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 01/30/2024] [Indexed: 03/08/2024]
Abstract
Acute myeloid leukemia (AML) is a genetically heterogeneous clonal disorder characterized by the accumulation of acquired somatic genetic alterations in hematopoietic progenitor cells, which alter the normal mechanisms of self-renewal, proliferation, and differentiation. Due to significant technological advancements in sequencing technologies in the last 2 decades, classification and prognostic scoring of AML has been refined, and multiple guidelines are now available for the same. The authors have tried to summarize, latest guidelines for AML diagnosis, important markers associated, epigenetics markers, various AML fusions and their importance, etc. Review of literature suggests lack of study or comprehensive information about current NGS panels for AML diagnosis, genes and fusions covered, their technical know-how, etc. To solve this issue, the authors have tried to present detailed review about currently in use next-generation sequencing myeloid panels and their offerings.
Collapse
|
9
|
Johnson SM, Haberberger J, Galeotti J, Ramkissoon L, Coombs CC, Richardson DR, Foster MC, Duncan D, Montgomery ND, Ferguson NL, Zeidner JF. Comprehensive genomic profiling reveals molecular subsets of ASXL1-mutated myeloid neoplasms. Leuk Lymphoma 2024; 65:209-218. [PMID: 37921062 DOI: 10.1080/10428194.2023.2277672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 10/24/2023] [Indexed: 11/04/2023]
Abstract
A large-scale genomic analysis of patients with ASXL1-mutated myeloid disease has not been performed to date. We reviewed comprehensive genomic profiling results from 6043 adults to characterize clinicopathologic features and co-mutation patterns by ASXL1 mutation status. ASXL1 mutations occurred in 1414 patients (23%). Mutation co-occurrence testing revealed strong co-occurrence (p < 0.01) between mutations in ASXL1 and nine genes (SRSF2, U2AF1, RUNX1, SETBP1, EZH2, STAG2, CUX1, CSF3R, CBL). Further analysis of patients with these co-mutations yielded several novel findings. Co-mutation patterns supported that ASXL1/SF3B1 co-mutation may be biologically distinct from ASXL1/non-SF3B1 spliceosome co-mutation. In AML, ASXL1/SRSF2 co-mutated patients frequently harbored STAG2 mutations (42%), which were dependent on the presence of both ASXL1 and SRSF2 mutation (p < 0.05). STAG2 and SETBP1 mutations were also exclusive in ASXL1/SRSF2 co-mutated patients and associated with divergent chronic myeloid phenotypes. Our findings support that certain multi-mutant genotypes may be biologically relevant in ASXL1-mutated myeloid disease.
Collapse
Affiliation(s)
- Steven M Johnson
- Department of Pathology and Laboratory Medicine, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | | | - Jonathan Galeotti
- Department of Pathology and Laboratory Medicine, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Lori Ramkissoon
- Department of Pathology and Laboratory Medicine, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Catherine C Coombs
- Division of Hematology, Department of Medicine, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
- UC Irvine, Irvine, CA, USA
| | - Daniel R Richardson
- Division of Hematology, Department of Medicine, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Matthew C Foster
- Division of Hematology, Department of Medicine, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
- Novartis Pharmaceuticals, Cambridge, MA, USA
| | - Daniel Duncan
- Foundation Medicine, Inc, Cambridge, MA, USA
- GRAIL, Inc, Durham, NC, USA
| | - Nathan D Montgomery
- Department of Pathology and Laboratory Medicine, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
- NeoGenomics Laboratories, Aliso Viejo, CA, USA
| | | | - Joshua F Zeidner
- Division of Hematology, Department of Medicine, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
10
|
Shyu JY, Schlag PA, Karwowska SM, Manohar CF, Truong HM, Longshore JW, Zhang G. Performance of the cobas EZH2 mutation test on clinical samples from non-Hodgkin lymphoma patients. PLoS One 2023; 18:e0292251. [PMID: 38096164 PMCID: PMC10721068 DOI: 10.1371/journal.pone.0292251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 09/17/2023] [Indexed: 12/17/2023] Open
Abstract
OBJECTIVE To present the technical verification and clinical validation of the companion diagnostic assay, cobas® EZH2 Mutation Test (cobas EZH2 Test), targeting gain-of-function EZH2 mutations in follicular lymphoma (FL) and diffuse large B-cell lymphoma (DLBCL). The focus is on patient clinical samples proving that the test met the performance criteria required for FDA approval of a companion diagnostic test. DESIGN Epizyme, Inc., Eisai Co., Ltd., and Roche Molecular Systems, Inc., collaborated to develop the cobas EZH2 Test on an RT-PCR platform. The assay design needed to detect the gain-of-function EZH2 mutations found in FL and DLBCL indications. Thus, the test was optimized for investigational purposes in a clinical trial setting. Part of its technical verification included testing of patient tumor samples with a documented diagnosis of FL and DLBCL procured from commercial vendors, and the clinical validation used patient samples from the Epizyme clinical study. Both the technical performance verification method correlation study (104 clinical commercially acquired samples) and the clinical validation accuracy study (341 patient samples from the therapeutic study) used next-generation sequencing as a reference method to establish true vs. false results by cobas EZH2 Test. The reproducibility study used a 15-member panel of DNA samples with varying EZH2 mutation status from procured clinical FL and DLBCL patient samples under multiple variables. RESULTS Single and rare, infrequent double EZH2 mutations were detected in FL and DLBCL samples. Agreements between results from cobas EZH2 and sequencing were >98% from commercial clinical samples and from the therapeutic study clinical samples. The reproducibility study obtained 178 to 180 valid results for each panel member, with an overall invalid rate of 0.37%. The agreement for each per panel member was 100%. CONCLUSION cobas EZH2 Test data demonstrated that the test is reliable and will perform well in a commercial customer environment.
Collapse
Affiliation(s)
- Johnny Y. Shyu
- Roche Molecular Systems, Inc., Pleasanton, California, United States of America
| | - Peter A. Schlag
- Roche Molecular Systems, Inc., Pleasanton, California, United States of America
| | - Sylwia M. Karwowska
- Roche Molecular Systems, Inc., Pleasanton, California, United States of America
| | - Chitra F. Manohar
- Roche Molecular Systems, Inc., Pleasanton, California, United States of America
| | - Huan M. Truong
- Roche Molecular Systems, Inc., Pleasanton, California, United States of America
| | - John W. Longshore
- Carolinas Pathology Group and Carolinas HealthCare System, Charlotte, North Carolina, United States of America
| | - Guili Zhang
- Roche Molecular Systems, Inc., Pleasanton, California, United States of America
| |
Collapse
|
11
|
Gurney M, Greipp PT, Gliem T, Knudson R, Al-Kali A, Gangat N, Lasho T, Mangaonkar AA, Finke CM, Patnaik MM. TET2 somatic copy number alterations and allelic imbalances in chronic myelomonocytic leukemia. Leuk Res 2023; 134:107391. [PMID: 37769597 DOI: 10.1016/j.leukres.2023.107391] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/10/2023] [Accepted: 09/18/2023] [Indexed: 10/03/2023]
Affiliation(s)
- Mark Gurney
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | - Patricia T Greipp
- Division of Hematopathology, Mayo Clinic, Rochester, MN, USA; Cytogenetics Core Facility, Mayo Clinic, Rochester, MN, USA
| | - Troy Gliem
- Cytogenetics Core Facility, Mayo Clinic, Rochester, MN, USA
| | - Ryan Knudson
- Cytogenetics Core Facility, Mayo Clinic, Rochester, MN, USA
| | - Aref Al-Kali
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | | | - Terra Lasho
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | | | | | | |
Collapse
|
12
|
Heuts BMH, Martens JHA. Understanding blood development and leukemia using sequencing-based technologies and human cell systems. Front Mol Biosci 2023; 10:1266697. [PMID: 37886034 PMCID: PMC10598665 DOI: 10.3389/fmolb.2023.1266697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 09/06/2023] [Indexed: 10/28/2023] Open
Abstract
Our current understanding of human hematopoiesis has undergone significant transformation throughout the years, challenging conventional views. The evolution of high-throughput technologies has enabled the accumulation of diverse data types, offering new avenues for investigating key regulatory processes in blood cell production and disease. In this review, we will explore the opportunities presented by these advancements for unraveling the molecular mechanisms underlying normal and abnormal hematopoiesis. Specifically, we will focus on the importance of enhancer-associated regulatory networks and highlight the crucial role of enhancer-derived transcription regulation. Additionally, we will discuss the unprecedented power of single-cell methods and the progression in using in vitro human blood differentiation system, in particular induced pluripotent stem cell models, in dissecting hematopoietic processes. Furthermore, we will explore the potential of ever more nuanced patient profiling to allow precision medicine approaches. Ultimately, we advocate for a multiparameter, regulatory network-based approach for providing a more holistic understanding of normal hematopoiesis and blood disorders.
Collapse
Affiliation(s)
- Branco M H Heuts
- Department of Molecular Biology, Faculty of Science, Radboud University, Nijmegen, Netherlands
| | - Joost H A Martens
- Department of Molecular Biology, Faculty of Science, Radboud University, Nijmegen, Netherlands
| |
Collapse
|
13
|
Li M, Liu D, Xue F, Zhang H, Yang Q, Sun L, Qu X, Wu X, Zhao H, Liu J, Kang Q, Wang T, An X, Chen L. Stage-specific dual function: EZH2 regulates human erythropoiesis by eliciting histone and non-histone methylation. Haematologica 2023; 108:2487-2502. [PMID: 37021526 PMCID: PMC10483364 DOI: 10.3324/haematol.2022.282016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 03/28/2023] [Indexed: 04/07/2023] Open
Abstract
Enhancer of zeste homolog 2 (EZH2) is the lysine methyltransferase of polycomb repressive complex 2 (PRC2) that catalyzes H3K27 tri-methylation. Aberrant expression and loss-of-function mutations of EZH2 have been demonstrated to be tightly associated with the pathogenesis of various myeloid malignancies characterized by ineffective erythropoiesis, such as myelodysplastic syndrome (MDS). However, the function and mechanism of EZH2 in human erythropoiesis still remains largely unknown. Here, we demonstrated that EZH2 regulates human erythropoiesis in a stage-specific, dual-function manner by catalyzing histone and non-histone methylation. During the early erythropoiesis, EZH2 deficiency caused cell cycle arrest in the G1 phase, which impaired cell growth and differentiation. Chromatin immunoprecipitation sequencing and RNA sequencing discovered that EZH2 knockdown caused a reduction of H3K27me3 and upregulation of cell cycle proteindependent kinase inhibitors. In contrast, EZH2 deficiency led to the generation of abnormal nuclear cells and impaired enucleation during the terminal erythropoiesis. Interestingly, EZH2 deficiency downregulated the methylation of HSP70 by directly interacting with HSP70. RNA-sequencing analysis revealed that the expression of AURKB was significantly downregulated in response to EZH2 deficiency. Furthermore, treatment with an AURKB inhibitor and small hairpin RNAmediated AURKB knockdown also led to nuclear malformation and decreased enucleation efficiency. These findings strongly suggest that EZH2 regulates terminal erythropoiesis through a HSP70 methylation-AURKB axis. Our findings have implications for improved understanding of ineffective erythropoiesis with EZH2 dysfunction.
Collapse
Affiliation(s)
- Mengjia Li
- School of Life Sciences, Zhengzhou University, Science Road 100, Zhengzhou, China 450001
| | - Donghao Liu
- School of Life Sciences, Zhengzhou University, Science Road 100, Zhengzhou, China 450001
| | - Fumin Xue
- Department of Gastroenterology, Children's Hospital affiliated to Zhengzhou University, Zhengzhou, China 450000
| | - Hengchao Zhang
- School of Life Sciences, Zhengzhou University, Science Road 100, Zhengzhou, China 450001
| | - Qianqian Yang
- School of Life Sciences, Zhengzhou University, Science Road 100, Zhengzhou, China 450001
| | - Lei Sun
- School of Life Sciences, Zhengzhou University, Science Road 100, Zhengzhou, China 450001
| | - Xiaoli Qu
- School of Life Sciences, Zhengzhou University, Science Road 100, Zhengzhou, China 450001
| | - Xiuyun Wu
- School of Life Sciences, Zhengzhou University, Science Road 100, Zhengzhou, China 450001
| | - Huizhi Zhao
- School of Life Sciences, Zhengzhou University, Science Road 100, Zhengzhou, China 450001
| | - Jing Liu
- Molecular Biology Research Center and Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China 410078
| | - Qiaozhen Kang
- School of Life Sciences, Zhengzhou University, Science Road 100, Zhengzhou, China 450001
| | - Ting Wang
- School of Life Sciences, Zhengzhou University, Science Road 100, Zhengzhou, China 450001
| | - Xiuli An
- Laboratory of Membrane Biology, New York Blood Center, 310 East, 67th Street, New York, NY 10065.
| | - Lixiang Chen
- School of Life Sciences, Zhengzhou University, Science Road 100, Zhengzhou, China 450001.
| |
Collapse
|
14
|
Noguera NI, Travaglini S, Scalea S, Catalanotto C, Reale A, Zampieri M, Zaza A, Ricciardi MR, Angelini DF, Tafuri A, Ottone T, Voso MT, Zardo G. YY1 Knockdown Relieves the Differentiation Block and Restores Apoptosis in AML Cells. Cancers (Basel) 2023; 15:4010. [PMID: 37568827 PMCID: PMC10417667 DOI: 10.3390/cancers15154010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023] Open
Abstract
In this study we analyzed the expression of Yin and Yang 1 protein (YY1), a member of the noncanonical PcG complexes, in AML patient samples and AML cell lines and the effect of YY1 downregulation on the AML differentiation block. Our results show that YY1 is significantly overexpressed in AML patient samples and AML cell lines and that YY1 knockdown relieves the differentiation block. YY1 downregulation in two AML cell lines (HL-60 and OCI-AML3) and one AML patient sample restored the expression of members of the CEBP protein family, increased the expression of extrinsic growth factors/receptors and surface antigenic markers, induced morphological cell characteristics typical of myeloid differentiation, and sensitized cells to retinoic acid treatment and to apoptosis. Overall, our data show that YY1 is not a secondary regulator of myeloid differentiation but that, if overexpressed, it can play a predominant role in myeloid differentiation block.
Collapse
Affiliation(s)
- Nelida Ines Noguera
- Department of Biomedicine and Prevention, Tor Vergata University, 00133 Rome, Italy; (S.T.); (T.O.); (M.T.V.)
- Unit of Neuro-Oncoematologia, Santa Lucia Foundation IRCCS, 00143 Rome, Italy
| | - Serena Travaglini
- Department of Biomedicine and Prevention, Tor Vergata University, 00133 Rome, Italy; (S.T.); (T.O.); (M.T.V.)
- Unit of Neuro-Oncoematologia, Santa Lucia Foundation IRCCS, 00143 Rome, Italy
| | - Stefania Scalea
- Department of Experimental Medicine, Sapienza University, 00185 Rome, Italy;
| | - Caterina Catalanotto
- Department of Molecular Medicine, Sapienza University, 00185 Rome, Italy; (C.C.); (A.R.); (M.Z.)
| | - Anna Reale
- Department of Molecular Medicine, Sapienza University, 00185 Rome, Italy; (C.C.); (A.R.); (M.Z.)
| | - Michele Zampieri
- Department of Molecular Medicine, Sapienza University, 00185 Rome, Italy; (C.C.); (A.R.); (M.Z.)
| | - Alessandra Zaza
- Unit of Neuro-Oncoematologia, Santa Lucia Foundation IRCCS, 00143 Rome, Italy
- Department of Medical and Surgical Sciences and Biotechnologies, Sapienza University, 00185 Rome, Italy
| | - Maria Rosaria Ricciardi
- Department of Clinical and Molecular Medicine, Sapienza University, 00185 Rome, Italy; (M.R.R.); (A.T.)
| | | | - Agostino Tafuri
- Department of Clinical and Molecular Medicine, Sapienza University, 00185 Rome, Italy; (M.R.R.); (A.T.)
| | - Tiziana Ottone
- Department of Biomedicine and Prevention, Tor Vergata University, 00133 Rome, Italy; (S.T.); (T.O.); (M.T.V.)
- Unit of Neuro-Oncoematologia, Santa Lucia Foundation IRCCS, 00143 Rome, Italy
| | - Maria Teresa Voso
- Department of Biomedicine and Prevention, Tor Vergata University, 00133 Rome, Italy; (S.T.); (T.O.); (M.T.V.)
- Unit of Neuro-Oncoematologia, Santa Lucia Foundation IRCCS, 00143 Rome, Italy
| | - Giuseppe Zardo
- Department of Experimental Medicine, Sapienza University, 00185 Rome, Italy;
| |
Collapse
|
15
|
Georgi JA, Stasik S, Eckardt JN, Zukunft S, Hartwig M, Röllig C, Middeke JM, Oelschlägel U, Krug U, Sauer T, Scholl S, Hochhaus A, Brümmendorf TH, Naumann R, Steffen B, Einsele H, Schaich M, Burchert A, Neubauer A, Schäfer-Eckart K, Schliemann C, Krause SW, Hänel M, Noppeney R, Kaiser U, Baldus CD, Kaufmann M, Müller-Tidow C, Platzbecker U, Berdel WE, Serve H, Ehninger G, Bornhäuser M, Schetelig J, Kroschinsky F, Thiede C. UBTF tandem duplications are rare but recurrent alterations in adult AML and associated with younger age, myelodysplasia, and inferior outcome. Blood Cancer J 2023; 13:88. [PMID: 37236968 DOI: 10.1038/s41408-023-00858-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/03/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Tandem-duplication mutations of the UBTF gene (UBTF-TDs) coding for the upstream binding transcription factor have recently been described in pediatric patients with acute myeloid leukemia (AML) and were found to be associated with particular genetics (trisomy 8 (+8), FLT3-internal tandem duplications (FLT3-ITD), WT1-mutations) and inferior outcome. Due to limited knowledge on UBTF-TDs in adult AML, we screened 4247 newly diagnosed adult AML and higher-risk myelodysplastic syndrome (MDS) patients using high-resolution fragment analysis. UBTF-TDs were overall rare (n = 52/4247; 1.2%), but significantly enriched in younger patients (median age 41 years) and associated with MDS-related morphology as well as significantly lower hemoglobin and platelet levels. Patients with UBTF-TDs had significantly higher rates of +8 (34% vs. 9%), WT1 (52% vs. 7%) and FLT3-ITD (50% vs. 20.8%) co-mutations, whereas UBTF-TDs were mutually exclusive with several class-defining lesions such as mutant NPM1, in-frame CEBPAbZIP mutations as well as t(8;21). Based on the high-variant allele frequency found and the fact that all relapsed patients analyzed (n = 5) retained the UBTF-TD mutation, UBTF-TDs represent early clonal events and are stable over the disease course. In univariate analysis, UBTF-TDs did not represent a significant factor for overall or relapse-free survival in the entire cohort. However, in patients under 50 years of age, who represent the majority of UBTF-mutant patients, UBTF-TDs were an independent prognostic factor for inferior event-free (EFS), relapse-free (RFS) and overall survival (OS), which was confirmed by multivariable analyses including established risk factors such as age and ELN2022 genetic risk groups (EFS [HR: 2.20; 95% CI 1.52-3.17, p < 0.001], RFS [HR: 1.59; 95% CI 1.02-2.46, p = 0.039] and OS [HR: 1.64; 95% CI 1.08-2.49, p = 0.020]). In summary, UBTF-TDs appear to represent a novel class-defining lesion not only in pediatric AML but also younger adults and are associated with myelodysplasia and inferior outcome in these patients.
Collapse
Affiliation(s)
- Julia-Annabell Georgi
- Medizinische Klinik und Poliklinik 1, Universitätsklinikum Carl Gustav Carus, Dresden, Germany
| | - Sebastian Stasik
- Medizinische Klinik und Poliklinik 1, Universitätsklinikum Carl Gustav Carus, Dresden, Germany
| | - Jan-Niklas Eckardt
- Medizinische Klinik und Poliklinik 1, Universitätsklinikum Carl Gustav Carus, Dresden, Germany
| | - Sven Zukunft
- Medizinische Klinik und Poliklinik 1, Universitätsklinikum Carl Gustav Carus, Dresden, Germany
| | - Marita Hartwig
- Medizinische Klinik und Poliklinik 1, Universitätsklinikum Carl Gustav Carus, Dresden, Germany
| | - Christoph Röllig
- Medizinische Klinik und Poliklinik 1, Universitätsklinikum Carl Gustav Carus, Dresden, Germany
| | - Jan Moritz Middeke
- Medizinische Klinik und Poliklinik 1, Universitätsklinikum Carl Gustav Carus, Dresden, Germany
| | - Uta Oelschlägel
- Medizinische Klinik und Poliklinik 1, Universitätsklinikum Carl Gustav Carus, Dresden, Germany
| | - Utz Krug
- Medizinische Klinik 3, Klinikum Leverkusen, Leverkusen, Germany
| | - Tim Sauer
- Universität Heidelberg, Medizinische Klinik und Poliklinik, Abteilung Innere Medizin V, Heidelberg, Germany
| | - Sebastian Scholl
- Klinik für Innere Medizin II, Universitätsklinikum Jena, Jena, Germany
| | - Andreas Hochhaus
- Klinik für Innere Medizin II, Universitätsklinikum Jena, Jena, Germany
| | | | - Ralph Naumann
- Medizinische Klinik III, St. Marien-Krankenhaus Siegen, Siegen, Germany
| | - Björn Steffen
- Medizinische Klinik 2, Hämatologie/Onkologie, Johann Wolfgang Goethe-Universität, Frankfurt am Main, Germany
| | - Hermann Einsele
- Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Markus Schaich
- Klinik für Hämatologie, Onkologie und Palliativmedizin, Rems-Murr-Klinikum Winnenden, Winnenden, Germany
| | - Andreas Burchert
- Klinik für Innere Medizin, Schwerpunkt Hämatologie, Onkologie und Immunologie, Philipps Universität Marburg, Marburg, Germany
| | - Andreas Neubauer
- Klinik für Innere Medizin, Schwerpunkt Hämatologie, Onkologie und Immunologie, Philipps Universität Marburg, Marburg, Germany
| | - Kerstin Schäfer-Eckart
- Klinikum Nürnberg, Paracelsus Medizinische Privatuniversität, Medizinische Klinik 5, Nürnberg, Germany
| | | | - Stefan W Krause
- Medizinische Klinik 5, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Mathias Hänel
- Klinik für Innere Medizin III, Klinikum Chemnitz, Chemnitz, Germany
| | - Richard Noppeney
- Klinik für Hämatologie, Universitätsklinikum Essen, Essen, Germany
| | - Ulrich Kaiser
- Medizinische Klinik II, St. Bernward Krankenhaus, Hildesheim, Germany
| | - Claudia D Baldus
- Klinik für Innere Medizin II, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Martin Kaufmann
- Abteilung für Hämatologie, Onkologie und Palliativmedizin, Robert-Bosch-Krankenhaus, Stuttgart, Germany
| | - Carsten Müller-Tidow
- Universität Heidelberg, Medizinische Klinik und Poliklinik, Abteilung Innere Medizin V, Heidelberg, Germany
| | - Uwe Platzbecker
- Klinik und Poliklinik für Hämatologie, Zelltherapie und Hämostaseologie, Universitätsklinikum Leipzig, Leipzig, Germany
| | - Wolfgang E Berdel
- Medizinische Klinik A, Universitätsklinikum Münster, Münster, Germany
| | - Hubert Serve
- Medizinische Klinik 2, Hämatologie/Onkologie, Johann Wolfgang Goethe-Universität, Frankfurt am Main, Germany
| | | | - Martin Bornhäuser
- Medizinische Klinik und Poliklinik 1, Universitätsklinikum Carl Gustav Carus, Dresden, Germany
- National Center for Tumor Diseases NCT, Dresden, Germany
| | - Johannes Schetelig
- Medizinische Klinik und Poliklinik 1, Universitätsklinikum Carl Gustav Carus, Dresden, Germany
- DKMS Clinical Trials Unit, Dresden, Germany
| | - Frank Kroschinsky
- Medizinische Klinik und Poliklinik 1, Universitätsklinikum Carl Gustav Carus, Dresden, Germany
| | - Christian Thiede
- Medizinische Klinik und Poliklinik 1, Universitätsklinikum Carl Gustav Carus, Dresden, Germany.
- AgenDix GmbH, Dresden, Germany.
| |
Collapse
|
16
|
Zavras PD, Sinanidis I, Tsakiroglou P, Karantanos T. Understanding the Continuum between High-Risk Myelodysplastic Syndrome and Acute Myeloid Leukemia. Int J Mol Sci 2023; 24:5018. [PMID: 36902450 PMCID: PMC10002503 DOI: 10.3390/ijms24055018] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023] Open
Abstract
Myelodysplastic syndrome (MDS) is a clonal hematopoietic neoplasm characterized by bone marrow dysplasia, failure of hematopoiesis and variable risk of progression to acute myeloid leukemia (AML). Recent large-scale studies have demonstrated that distinct molecular abnormalities detected at earlier stages of MDS alter disease biology and predict progression to AML. Consistently, various studies analyzing these diseases at the single-cell level have identified specific patterns of progression strongly associated with genomic alterations. These pre-clinical results have solidified the conclusion that high-risk MDS and AML arising from MDS or AML with MDS-related changes (AML-MRC) represent a continuum of the same disease. AML-MRC is distinguished from de novo AML by the presence of certain chromosomal abnormalities, such as deletion of 5q, 7/7q, 20q and complex karyotype and somatic mutations, which are also present in MDS and carry crucial prognostic implications. Recent changes in the classification and prognostication of MDS and AML by the International Consensus Classification (ICC) and the World Health Organization (WHO) reflect these advances. Finally, a better understanding of the biology of high-risk MDS and the mechanisms of disease progression have led to the introduction of novel therapeutic approaches, such as the addition of venetoclax to hypomethylating agents and, more recently, triplet therapies and agents targeting specific mutations, including FLT3 and IDH1/2. In this review, we analyze the pre-clinical data supporting that high-risk MDS and AML-MRC share the same genetic abnormalities and represent a continuum, describe the recent changes in the classification of these neoplasms and summarize the advances in the management of patients with these neoplasms.
Collapse
Affiliation(s)
| | | | | | - Theodoros Karantanos
- Division of Hematologic Malignancies and Bone Marrow Transplantation, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD 21231, USA
| |
Collapse
|
17
|
Urabe A, Chi S, Minami Y. The Immuno-Oncology and Genomic Aspects of DNA-Hypomethylating Therapeutics in Acute Myeloid Leukemia. Int J Mol Sci 2023; 24:ijms24043727. [PMID: 36835136 PMCID: PMC9961620 DOI: 10.3390/ijms24043727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/30/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023] Open
Abstract
Hypomethylating agents (HMAs) have been used for decades in the treatment of hematologic neoplasms, and now, have gathered attention again in terms of their combination with potent molecular-targeted agents such as a BCL-6 inhibitor venetoclax and an IDH1 inhibitor ivosidenib, as well as a novel immune-checkpoint inhibitor (anit-CD47 antibody) megrolimab. Several studies have shown that leukemic cells have a distinct immunological microenvironment, which is at least partially due to genetic alterations such as the TP53 mutation and epigenetic dysregulation. HMAs possibly improve intrinsic anti-leukemic immunity and sensitivity to immune therapies such as PD-1/PD-L1 inhibitors and anti-CD47 agents. This review describes the immuno-oncological backgrounds of the leukemic microenvironment and the therapeutic mechanisms of HMAs, as well as current clinical trials of HMAs and/or venetoclax-based combination therapies.
Collapse
Affiliation(s)
| | | | - Yosuke Minami
- Correspondence: ; Tel.: +81-4-7133-1111; Fax: +81-7133-6502
| |
Collapse
|
18
|
Clinical characteristics and outcomes of EZH2-mutant myelodysplastic syndrome: A large single institution analysis of 1774 patients. Leuk Res 2023; 124:106999. [PMID: 36542963 DOI: 10.1016/j.leukres.2022.106999] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 11/26/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
EZH2 mutations in myeloid neoplasms are loss of function type, and have been linked to poor overall survival (OS) in patients with myelodysplastic syndrome (MDS). However, the specific determinants of outcomes in EZH2-mutant (mut) MDS are not well characterized. In this single-center retrospective study, clinical and genomic data were collected on 1774 patients with MDS treated at Moffitt Cancer Center. In our cohort, 83 (4.7%) patients had a pathogenic EZH2 mutation. Patients with EZH2mut MDS were older than EZH2-wild type (wt) group (median age- 72 vs. 69 years, p = 0.010). The most common co-occurring mutation in EZH2mut MDS was ASXL1, with a significantly higher frequency than EZH2wt (54% vs. 19%, p < 0.001). Patients with EZH2mut MDS had lower response rates to hypomethylating agents compared to EZH2wt MDS (26% vs. 39%; p = 0.050). Median OS of patients with EZH2mut MDS was 30.8 months, with a significantly worse OS than EZH2wt group (35.5 vs. 61.2 months, p = 0.003) in the lower-risk IPSS-R categories. Among patients with EZH2mut MDS, co-presence of ASXL1 or RUNX1 mutations was associated with inferior median OS compared to their wt counterparts (26.8 vs. 48.7 months, p = 0.031). Concurrent chromosome 7 abnormalities (12%) were also associated with significantly worse OS (median OS- 20.8 vs. 35.5 months, p = 0.002) in EZH2mut MDS. Future clinical trials should explore the potential role of novel targeted therapies in improving outcomes in patients with EZH2mut MDS.
Collapse
|
19
|
Makkar H, Majhi RK, Goel H, Gupta AK, Chopra A, Tanwar P, Seth R. Acute myeloid leukemia: novel mutations and their clinical implications. AMERICAN JOURNAL OF BLOOD RESEARCH 2023; 13:12-27. [PMID: 36937458 PMCID: PMC10017594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 01/09/2023] [Indexed: 03/21/2023]
Abstract
Acute myeloid leukemia (AML) is a heterogenous and challenging hematological malignancy with suboptimal outcomes. The implications of advanced technologies in the genetic characterization of AML have enhanced the understanding of individualized patient risk, which has also led to the development of new therapeutic strategies. A comprehensive study of novel mutations is essential to moderate the complicacies in patient management and achieve optimal outcomes in AML. In this review, we summarized the clinical relevance of important novel mutations, including TET2, ETV6, SATB1, EZH2, PTPN11, and U2AF1, which impact the prognosis of AML. TET2 mutation can lead to DNA hypermethylation, and gene fusion, and mutation in ETV6 disrupts hematopoietic transcription machinery, SATB1 downregulation aggravates the disease, and EZH2 mutation confers resistance to chemotherapy. PTPN11 mutation influences the RAS-MAPK signaling pathway, and U2AF1 alters the splicing of downstream mRNA. The systemic influence of these mutations has adverse consequences. Therefore, extensive research on novel mutations and their mechanism of action in the pathogenesis of AML is vital. This study lays out the perspective of expanding the apprehension about AML and novel drug targets. The combination of advanced genetic techniques, risk stratification, ongoing improvements, and innovations in treatment strategy will undoubtedly lead to improved survival outcomes in AML.
Collapse
Affiliation(s)
- Harshita Makkar
- Division of Pediatric Oncology, Department of Pediatrics, All India Institute of Medical SciencesNew Delhi 110029, India
| | - Ravi Kumar Majhi
- Division of Pediatric Oncology, Department of Pediatrics, All India Institute of Medical SciencesNew Delhi 110029, India
| | - Harsh Goel
- Laboratory Oncology Unit, Dr. B.R.A. IRCH, All India Institute of Medical SciencesNew Delhi 110029, India
| | - Aditya Kumar Gupta
- Division of Pediatric Oncology, Department of Pediatrics, All India Institute of Medical SciencesNew Delhi 110029, India
| | - Anita Chopra
- Laboratory Oncology Unit, Dr. B.R.A. IRCH, All India Institute of Medical SciencesNew Delhi 110029, India
| | - Pranay Tanwar
- Laboratory Oncology Unit, Dr. B.R.A. IRCH, All India Institute of Medical SciencesNew Delhi 110029, India
| | - Rachna Seth
- Division of Pediatric Oncology, Department of Pediatrics, All India Institute of Medical SciencesNew Delhi 110029, India
| |
Collapse
|
20
|
Aryal S, Zhang Y, Wren S, Li C, Lu R. Molecular regulators of HOXA9 in acute myeloid leukemia. FEBS J 2023; 290:321-339. [PMID: 34743404 DOI: 10.1111/febs.16268] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 09/30/2021] [Accepted: 11/05/2021] [Indexed: 02/05/2023]
Abstract
Dysregulation of the oncogenic transcription factor HOXA9 is a prominent feature for most aggressive acute myeloid leukemia cases and a strong indicator of poor prognosis in patients. Leukemia subtypes with hallmark overexpression of HOXA9 include those carrying MLL gene rearrangements, NPM1c mutations, and other genetic alternations. A growing body of evidence indicates that HOXA9 dysregulation is both sufficient and necessary for leukemic transformation. The HOXA9 mRNA and protein regulation includes multilayered controls by transcription factors (such as CDX2/4 and USF2/1), epigenetic factors (such as MLL-menin-LEDGF, DOT1L, ENL, HBO1, NPM1c-XPO1, and polycomb proteins), microRNAs (such as miR-126 and miR-196b), long noncoding RNAs (such as HOTTIP), three-dimensional chromatin interactions, and post-translational protein modifications. Recently, insights into the dynamic regulation of HOXA9 have led to an advanced understanding of the HOXA9 regulome and provided new cancer therapeutic opportunities, including developing inhibitors targeting DOT1L, menin, and ENL proteins. This review summarizes recent advances in understanding the molecular mechanisms controlling HOXA9 regulation and the pharmacological approaches that target HOXA9 regulators to treat HOXA9-driven acute myeloid leukemia.
Collapse
Affiliation(s)
- Sajesan Aryal
- Division of Hematology and Oncology & O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, AL, USA
| | - Yang Zhang
- Department of Tumor Cell Biology & Cancer Biology Program/Comprehensive Cancer Center, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Spencer Wren
- Division of Hematology and Oncology & O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, AL, USA
| | - Chunliang Li
- Department of Tumor Cell Biology & Cancer Biology Program/Comprehensive Cancer Center, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Rui Lu
- Division of Hematology and Oncology & O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, AL, USA
| |
Collapse
|
21
|
In Pursuit of Genetic Prognostic Factors and Treatment Approaches in Secondary Acute Myeloid Leukemia—A Narrative Review of Current Knowledge. J Clin Med 2022; 11:jcm11154283. [PMID: 35893374 PMCID: PMC9332027 DOI: 10.3390/jcm11154283] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 07/01/2022] [Accepted: 07/15/2022] [Indexed: 02/05/2023] Open
Abstract
Secondary acute myeloid leukemia can be divided into two categories: AML evolving from the antecedent hematological condition (AHD-AML) and therapy related AML (t-AML). AHD-AML can evolve from hematological conditions such as myelodysplastic syndromes, myeloproliferative neoplasms, MDS/MPN overlap syndromes, Fanconi anemia, and aplastic anemia. Leukemic transformation occurs as a consequence of the clonal evolution—a process of the acquisition of mutations in clones, while previous mutations are also passed on, leading to somatic mutations accumulation. Compared de novo AML, secondary AML is generally associated with poorer response to chemotherapy and poorer prognosis. The therapeutic options for patients with s-AML have been confirmed to be limited, as s-AML has often been analyzed either both with de novo AML or completely excluded from clinical trials. The treatment of s-AML was not in any way different than de novo AML, until, that is, the introduction of CPX-351—liposomal daunorubicin and cytarabine. CPX-351 significantly improved the overall survival and progression free survival in elderly patients with s-AML. The only definitive treatment in s-AML at this time is allogeneic hematopoietic cell transplantation. A better understanding of the genetics and epigenetics of s-AML would allow us to determine precise biologic drivers leading to leukogenesis and thus help to apply a targeted treatment, improving prognosis.
Collapse
|
22
|
Clinical experience with venetoclax in patients with newly diagnosed, relapsed, or refractory acute myeloid leukemia. J Cancer Res Clin Oncol 2022; 148:3191-3202. [PMID: 35099591 PMCID: PMC9508061 DOI: 10.1007/s00432-022-03930-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 01/20/2022] [Indexed: 10/26/2022]
Abstract
Abstract
Background
Diagnosis of acute myeloid leukemia (AML) is associated with poor outcome in elderly and unfit patients. Recently, approval of the BCL-2 inhibitor venetoclax (VEN) in combination with hypo-methylating agents (HMA) led to a significant improvement of response rates and survival. Further, application in the relapsed or refractory (r/r) AML setting or in context of allogeneic stem cell transplantation (alloHSCT) seems feasible.
Methods and patients
Fifty-six consecutive adult AML patients on VEN from January 2019 to June 2021 were analyzed retrospectively. Patients received VEN either as first-line treatment, as subsequent therapy (r/r AML excluding prior alloHSCT), or at relapse after alloHSCT. VEN was administered orally in 28-day cycles either combined with HMA or low-dose cytarabine (LDAC).
Results
After a median follow-up of 11.5 (range 6.1–22.3) months, median overall survival (OS) from start of VEN treatment was 13.3 (2.2–20.5) months, 5.0 (0.8–24.3) months and 4.0 (1.5–22.1) months for first-line, subsequent line treatment and at relapse post-alloHSCT, respectively. Median OS was 11.5 (10–22.3) months from start of VEN when subsequent alloHSCT was carried out. Relapse-free survival (RFS) for the total cohort was 10.2 (2.2 – 24.3) months. Overall response rate (composite complete remission + partial remission) was 51.8% for the total cohort (61.1% for VEN first-line treatment, 52.2% for subsequent line and 42.8% at relapse post-alloHSCT). Subgroup analysis revealed a significantly reduced median OS in FLT3-ITD mutated AML with 3.4 (1.9–4.9) months versus 10.4 (0.8–24.3) months for non-mutated cases, (HR 4.45, 95% CI 0.89–22.13, p = 0.0002). Patients harboring NPM1 or IDH1/2 mutations lacking co-occurrence of FLT3-ITD showed a survival advantage over patients without those mutations (11.2 (5–24.3) months versus 5.0 (0.8–22.1) months, respectively, (HR 0.53, 95% CI 0.23 – 1.21, p = 0.131). Multivariate analysis revealed mutated NPM1 as a significant prognostic variable for achieving complete remission (CR) (HR 19.14, 95% CI 2.30 – 436.2, p < 0.05). The most common adverse events were hematological, with grade 3 and 4 neutropenia and thrombocytopenia reported in 44.6% and 14.5% of patients, respectively.
Conclusion
Detailed analyses on efficacy for common clinical scenarios, such as first-line treatment, subsequent therapy (r/r AML), and application prior to and post-alloHSCT, are presented. The findings suggest VEN treatment combinations efficacious not only in first-line setting but also in r/r AML. Furthermore, VEN might play a role in a subgroup of patients with failure to conventional chemotherapy as a salvage regimen aiming for potential curative alloHSCT.
Collapse
|
23
|
Inhibition of the deubiquitinating enzyme USP47 as a novel targeted therapy for hematologic malignancies expressing mutant EZH2. Leukemia 2022; 36:1048-1057. [PMID: 35034955 DOI: 10.1038/s41375-021-01494-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 12/02/2021] [Accepted: 12/07/2021] [Indexed: 11/08/2022]
Abstract
Activating mutations in EZH2, the catalytic component of PRC2, promote cell proliferation, tumorigenesis, and metastasis through enzymatic or non-enzymatic activity. The EZH2-Y641 gain-of-function mutation is one of the most significant in diffuse large B-cell lymphoma (DLBCL). Although EZH2 kinase inhibitors, such as EPZ-6438, provide clinical benefit, certain cancer cells are resistant to the enzymatic inhibition of EZH2 because of the inability to functionally target mutant EZH2, or because of cells' dependence on the non-histone methyltransferase activity of EZH2. Consequently, destroying mutant EZH2 protein may be more effective in targeting EZH2 mutant cancers that are dependent on the non-catalytic activity of EZH2. Here, using extensive selectivity profiling, combined with genetic and animal model studies, we identified USP47 as a novel regulator of mutant EZH2. Inhibition of USP47 would be anticipated to block the function of mutated EZH2 through induction of EZH2 degradation by promoting its ubiquitination. Moreover, targeting of USP47 leads to death of mutant EZH2-positive cells in vitro and in vivo. Taken together, we propose targeting USP47 with a small molecule inhibitor as a novel potential therapy for DLBCL and other hematologic malignancies characterized by mutant EZH2 expression.
Collapse
|
24
|
Fontana D, Gambacorti-Passerini C, Piazza R. Molecular Pathogenesis of BCR-ABL-Negative Atypical Chronic Myeloid Leukemia. Front Oncol 2021; 11:756348. [PMID: 34858828 PMCID: PMC8631780 DOI: 10.3389/fonc.2021.756348] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/22/2021] [Indexed: 11/30/2022] Open
Abstract
Atypical chronic myeloid leukemia is a rare disease whose pathogenesis has long been debated. It currently belongs to the group of myelodysplastic/myeloproliferative disorders. In this review, an overview on the current knowledge about diagnosis, prognosis, and genetics is presented, with a major focus on the recent molecular findings. We describe here the molecular pathogenesis of the disease, focusing on the mechanisms of action of the main mutations as well as on gene expression profiling. We also present the treatment options focusing on emerging targeted therapies.
Collapse
Affiliation(s)
- Diletta Fontana
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Carlo Gambacorti-Passerini
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.,Hematology and Clinical Research Unit, San Gerardo Hospital, Monza, Italy
| | - Rocco Piazza
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.,Hematology and Clinical Research Unit, San Gerardo Hospital, Monza, Italy.,Bicocca Bioinformatics, Biostatistics and Bioimaging Centre (B4), University of Milano-Bicocca, Milan, Italy
| |
Collapse
|
25
|
Kirtonia A, Ashrafizadeh M, Zarrabi A, Hushmandi K, Zabolian A, Bejandi AK, Rani R, Pandey AK, Baligar P, Kumar V, Das BC, Garg M. Long noncoding RNAs: A novel insight in the leukemogenesis and drug resistance in acute myeloid leukemia. J Cell Physiol 2021; 237:450-465. [PMID: 34569616 DOI: 10.1002/jcp.30590] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 08/10/2021] [Accepted: 09/01/2021] [Indexed: 12/19/2022]
Abstract
Acute myeloid leukemia (AML) is a common hematological disorder with heterogeneous nature that resulted from blocked myeloid differentiation and an enhanced number of immature myeloid progenitors. During several decades, different factors, including cytogenetic, genetic, and epigenetic have been reported to contribute to the pathogenesis of AML by inhibiting the differentiation and ensuring the proliferation of myeloid blast cells. Recently, long noncoding RNAs (lncRNAs) have been considered as potential diagnostic, therapeutic, and prognostic factors in different human malignancies including AML. Altered expression of lncRNAs is correlated with the transformation of hematopoietic stem and progenitor cells into leukemic blast cells because of their distinct role in the key cellular processes. We discuss the significant role of lncRNAs in the proliferation, survival, differentiation, leukemic stem cells in AML and their involvement in different molecular pathways (insulin-like growth factor type I receptor, FLT3, c-KIT, Wnt, phosphatidylinositol 3-kinase/protein kinase-B, microRNAs), and associated mechanisms such as autophagy, apoptosis, and glucose metabolism. In addition, we aim to highlight the role of lncRNAs as reliable biomarkers for diagnosis, prognosis, and drug resistance for precision medicine in AML.
Collapse
Affiliation(s)
- Anuradha Kirtonia
- Amity Institute of Molecular Medicine and Stem cell Research (AIMMSCR), Amity University, Noida, Uttar Pradesh, India
| | - Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Tuzla, Istanbul, Turkey.,Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul, Turkey
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul, Turkey.,Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Sariyer, Istanbul, Turkey
| | - Kiavash Hushmandi
- Division of Epidemiology and Zoonoses, Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Amirhossein Zabolian
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Atefe K Bejandi
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Reshma Rani
- Amity Institute of Biotechnology (AIB), Amity University, Noida, Uttar Pradesh, India
| | - Amit K Pandey
- Amity Institute of Biotechnology (AIB), Amity University, Gurgaon, Haryana, India
| | - Prakash Baligar
- Amity Institute of Molecular Medicine and Stem cell Research (AIMMSCR), Amity University, Noida, Uttar Pradesh, India
| | - Vinit Kumar
- Amity Institute of Molecular Medicine and Stem cell Research (AIMMSCR), Amity University, Noida, Uttar Pradesh, India
| | - Bhudev C Das
- Amity Institute of Molecular Medicine and Stem cell Research (AIMMSCR), Amity University, Noida, Uttar Pradesh, India
| | - Manoj Garg
- Amity Institute of Molecular Medicine and Stem cell Research (AIMMSCR), Amity University, Noida, Uttar Pradesh, India
| |
Collapse
|
26
|
Lee P, Yim R, Yung Y, Chu HT, Yip PK, Gill H. Molecular Targeted Therapy and Immunotherapy for Myelodysplastic Syndrome. Int J Mol Sci 2021; 22:10232. [PMID: 34638574 PMCID: PMC8508686 DOI: 10.3390/ijms221910232] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/17/2021] [Accepted: 09/21/2021] [Indexed: 12/22/2022] Open
Abstract
Myelodysplastic syndrome (MDS) is a heterogeneous, clonal hematological disorder characterized by ineffective hematopoiesis, cytopenia, morphologic dysplasia, and predisposition to acute myeloid leukemia (AML). Stem cell genomic instability, microenvironmental aberrations, and somatic mutations contribute to leukemic transformation. The hypomethylating agents (HMAs), azacitidine and decitabine are the standard of care for patients with higher-risk MDS. Although these agents induce responses in up to 40-60% of patients, primary or secondary drug resistance is relatively common. To improve the treatment outcome, combinational therapies comprising HMA with targeted therapy or immunotherapy are being evaluated and are under continuous development. This review provides a comprehensive update of the molecular pathogenesis and immune-dysregulations involved in MDS, mechanisms of resistance to HMA, and strategies to overcome HMA resistance.
Collapse
Affiliation(s)
| | | | | | | | | | - Harinder Gill
- Division of Haematology, Medical Oncology and Haemopoietic Stem Cell Transplantation, Department of Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China; (P.L.); (R.Y.); (Y.Y.); (H.-T.C.); (P.-K.Y.)
| |
Collapse
|
27
|
Stasik S, Eckardt JN, Kramer M, Röllig C, Krämer A, Scholl S, Hochhaus A, Crysandt M, Brümmendorf TH, Naumann R, Steffen B, Kunzmann V, Einsele H, Schaich M, Burchert A, Neubauer A, Schäfer-Eckart K, Schliemann C, Krause S, Herbst R, Hänel M, Frickhofen N, Noppeney R, Kaiser U, Baldus CD, Kaufmann M, Rácil Z, Platzbecker U, Berdel WE, Mayer J, Serve H, Müller-Tidow C, Ehninger G, Bornhäuser M, Schetelig J, Middeke JM, Thiede C. Impact of PTPN11 mutations on clinical outcome analyzed in 1529 patients with acute myeloid leukemia. Blood Adv 2021; 5:3279-3289. [PMID: 34459887 PMCID: PMC8525221 DOI: 10.1182/bloodadvances.2021004631] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 04/13/2021] [Indexed: 12/18/2022] Open
Abstract
The tyrosine-protein phosphatase nonreceptor type 11 (PTPN11) is an important regulator of RAS signaling and frequently affected by mutations in patients with acute myeloid leukemia (AML). Despite the relevance for leukemogenesis and as a potential therapeutic target, the prognostic role is controversial. To investigate the prognostic impact of PTPN11 mutations, we analyzed 1529 adult AML patients using next-generation sequencing. PTPN11 mutations were detected in 106 of 1529 (6.93%) patients (median VAF: 24%) in dominant (36%) and subclonal (64%) configuration. Patients with PTPN11 mutations were associated with concomitant mutations in NPM1 (63%), DNMT3A (37%), and NRAS (21%) and had a higher rate of European LeukemiaNet (ELN) favorable cytogenetics (57.8% vs 39.1%; P < .001) and higher white blood cell counts (P = .007) compared with PTPN11 wild-type patients. In a multivariable analysis, PTPN11 mutations were independently associated with poor overall survival (hazard ratio [HR]: 1.75; P < .001), relapse-free survival (HR: 1.52; P = .013), and a lower rate of complete remission (odds ratio: 0.46; P = .008). Importantly, the deleterious effect of PTPN11 mutations was confined predominantly to the ELN favorable-risk group and patients with subclonal PTPN11 mutations (HR: 2.28; P < .001) but not found with dominant PTPN11 mutations (HR: 1.07; P = .775), presumably because of significant differences within the rate and spectrum of associated comutations. In conclusion, our data suggest an overall poor prognostic impact of PTPN11 mutations in AML, which is significantly modified by the underlying cytogenetics and the clonal context in which they occur.
Collapse
Affiliation(s)
- Sebastian Stasik
- Medizinische Klinik und Poliklinik I, Universitätsklinikum Carl Gustav Carus, Dresden, Germany
| | - Jan-Niklas Eckardt
- Medizinische Klinik und Poliklinik I, Universitätsklinikum Carl Gustav Carus, Dresden, Germany
| | - Michael Kramer
- Medizinische Klinik und Poliklinik I, Universitätsklinikum Carl Gustav Carus, Dresden, Germany
| | - Christoph Röllig
- Medizinische Klinik und Poliklinik I, Universitätsklinikum Carl Gustav Carus, Dresden, Germany
| | - Alwin Krämer
- Medizinische Klinik V, Universitätsklinikum Heidelberg, Heidelberg, Germany
| | - Sebastian Scholl
- Klinik für Innere Medizin II, Universitätsklinikum Jena, Jena, Germany
| | - Andreas Hochhaus
- Klinik für Innere Medizin II, Universitätsklinikum Jena, Jena, Germany
| | - Martina Crysandt
- Klinik für Hämatologie, Onkologie, Hämostasiologie und Stammzelltransplantation , Uniklinik RWTH Aachen, Aachen, Germany
| | - Tim H Brümmendorf
- Klinik für Hämatologie, Onkologie, Hämostasiologie und Stammzelltransplantation , Uniklinik RWTH Aachen, Aachen, Germany
| | - Ralph Naumann
- Medizinische Klinik III, St. Marien-Krankenhaus Siegen, Siegen, Germany
| | - Björn Steffen
- Medizinische Klinik II, Universitätsklinikum Frankfurt, Frankfurt am Main, Germany
| | - Volker Kunzmann
- Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Hermann Einsele
- Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Markus Schaich
- Klinik für Hämatologie, Onkologie und Palliativmedizin, Rems-Murr-Klinikum Winnenden, Winnenden, Germany
| | - Andreas Burchert
- Klinik für Hämatologie, Onkologie, Immunologie, Philipps Universität Marburg, Marburg, Germany
| | - Andreas Neubauer
- Klinik für Hämatologie, Onkologie, Immunologie, Philipps Universität Marburg, Marburg, Germany
| | - Kerstin Schäfer-Eckart
- Klinik für Innere Medizin V, Paracelsus Medizinische Privatuniversität, Klinikum Nürnberg Nord, Nürnberg, Germany
| | | | - Stefan Krause
- Medizinische Klinik V, Paracelsus Medizinische Privatuniversität, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Regina Herbst
- Medizinische Klinik III, Klinikum Chemnitz, Chemnitz, Germany
| | - Mathias Hänel
- Medizinische Klinik III, Klinikum Chemnitz, Chemnitz, Germany
| | | | - Richard Noppeney
- Klinik für Hämatologie, Universitätsklinikum Essen, Essen, Germany
| | - Ulrich Kaiser
- Medizinische Klinik II, St. Bernward Krankenhaus, Hildesheim, Germany
| | - Claudia D Baldus
- Hämatologie und Onkologie, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Martin Kaufmann
- Abteilung für Hämatologie, Onkologie und Palliativmedizin, Robert-Bosch-Krankenhaus, Stuttgart, Germany
| | - Zdenek Rácil
- Masaryk University and University Hospital, Department of Internal Medicine, Hematology and Oncology, Brno, Czech Republic
| | - Uwe Platzbecker
- Medizinische Klinik und Poliklinik I, Hämatologie und Zelltherapie, Universitätsklinikum Leipzig, Leipzig, Germany
| | - Wolfgang E Berdel
- Medizinische Klinik A, Universitätsklinikum Münster, Münster, Germany
| | - Jiri Mayer
- Masaryk University and University Hospital, Department of Internal Medicine, Hematology and Oncology, Brno, Czech Republic
| | - Hubert Serve
- Medizinische Klinik II, Universitätsklinikum Frankfurt, Frankfurt am Main, Germany
| | | | - Gerhard Ehninger
- Medizinische Klinik und Poliklinik I, Universitätsklinikum Carl Gustav Carus, Dresden, Germany
| | - Martin Bornhäuser
- Medizinische Klinik und Poliklinik I, Universitätsklinikum Carl Gustav Carus, Dresden, Germany
- National Center for Tumor Diseases, Dresden, Germany; and
| | - Johannes Schetelig
- Medizinische Klinik und Poliklinik I, Universitätsklinikum Carl Gustav Carus, Dresden, Germany
- DKMS Clinical Trials Unit, Dresden, Germany
| | - Jan M Middeke
- Medizinische Klinik und Poliklinik I, Universitätsklinikum Carl Gustav Carus, Dresden, Germany
| | - Christian Thiede
- Medizinische Klinik und Poliklinik I, Universitätsklinikum Carl Gustav Carus, Dresden, Germany
| |
Collapse
|
28
|
Sasca D, Guezguez B, Kühn MWM. Next generation epigenetic modulators to target myeloid neoplasms. Curr Opin Hematol 2021; 28:356-363. [PMID: 34267079 DOI: 10.1097/moh.0000000000000673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
PURPOSE OF REVIEW Comprehensive sequencing studies aimed at determining the genetic landscape of myeloid neoplasms have identified epigenetic regulators to be among the most commonly mutated genes. Detailed studies have also revealed a number of epigenetic vulnerabilities. The purpose of this review is to outline these vulnerabilities and to discuss the new generation of drugs that exploit them. RECENT FINDINGS In addition to deoxyribonucleic acid-methylation, novel epigenetic dependencies have recently been discovered in various myeloid neoplasms and many of them can be targeted pharmacologically. These include not only chromatin writers, readers, and erasers but also chromatin movers that shift nucleosomes to allow access for transcription. Inhibitors of protein-protein interactions represent a novel promising class of drugs that allow disassembly of oncogenic multiprotein complexes. SUMMARY An improved understanding of disease-specific epigenetic vulnerabilities has led to the development of second-generation mechanism-based epigenetic drugs against myeloid neoplasms. Many of these drugs have been introduced into clinical trials and synergistic drug combination regimens have been shown to enhance efficacy and potentially prevent drug resistance.
Collapse
Affiliation(s)
- Daniel Sasca
- Department of Hematology, Oncology, and Pulmonary Medicine, University Medical Center, Johannes Gutenberg-University Mainz, Mainz
| | - Borhane Guezguez
- Department of Hematology, Oncology, and Pulmonary Medicine, University Medical Center, Johannes Gutenberg-University Mainz, Mainz
- German Cancer Research Center (DKFZ), Heidelberg
- German Cancer Consortium (DKTK), Mainz, Germany
| | - Michael W M Kühn
- Department of Hematology, Oncology, and Pulmonary Medicine, University Medical Center, Johannes Gutenberg-University Mainz, Mainz
| |
Collapse
|
29
|
CEBPA Mutations in 4708 Patients with Acute Myeloid Leukemia - Differential Impact of bZIP and TAD Mutations on Outcome. Blood 2021; 139:87-103. [PMID: 34320176 DOI: 10.1182/blood.2020009680] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 07/18/2021] [Indexed: 11/20/2022] Open
Abstract
Biallelic mutations of the CEBPA gene (CEBPAbi) define a distinct entity associated with favorable prognosis, however the role of monoallelic mutations (CEBPAsm) is poorly understood. We retrospectively analyzed 4708 adult AML patients recruited into Study Alliance Leukemia trials to investigate the prognostic impact of CEBPAsm. CEBPA mutations were identified in 240 patients (5.1%), 131 CEBPAbi and 109 CEBPAsm (60 affecting the amino-terminal transactivation domains (CEBPAsmTAD) and 49 the carboxy-terminal DNA-binding or basic leucine zipper region (CEBPAsmbZIP)). Interestingly, CEBPAbi and CEBPAsmbZIP patients shared several clinical factors, i.e. were significantly younger (median 46 years and 50 years) and had higher WBC counts at diagnosis (median 23.7 and 35.7 109/l) compared to CEBPAsmTAD patients (median age 63 yrs., median WBC 13.1 109/l; p<.001). Co-mutations were also similar in both groups, e.g. GATA2 mutations (35.1% CEBPAbi; 36.7% CEBPAsmbZIP vs. 6.7% CEBPAsmTAD; p<.001) or NPM1 mutations (3.1% CEBPAbi; 8.2% CEBPAsmbZIP vs. 38.3% CEBPAsmTAD; p<.001). CEBPAbi and CEBPAsmbZIP, but not CEBPAsmTAD were associated with significantly improved overall (median OS: 103 and 63 vs. 13 months) and event-free survival (median EFS: 20.7 and 17.1 vs. 5.7 months), in univariate and multivariable analyses. More detailed analysis revealed that the clinical and molecular features as well as the favorable survival were confined to patients showing in-frame mutations in bZIP (CEBPAbZIP-inf). When grouping patients into CEBPAbZIP-inf and CEBPAother (including CEBPAsmTAD and other non-CEBPAbZIP-inf patients), only CEBPAbZIP-inf patients showed superior CR rates and the longest median OS and EFS, arguing for a previously undefined prognostic role of this type of mutations.
Collapse
|
30
|
Clinical Correlations of Polycomb Repressive Complex 2 in Different Tumor Types. Cancers (Basel) 2021; 13:cancers13133155. [PMID: 34202528 PMCID: PMC8267669 DOI: 10.3390/cancers13133155] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 06/20/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary PRC2 (Polycomb repressive complex 2) is a catalytic multi-subunit complex involved in transcriptional repression through the methylation of lysine 27 at histone 3 (H3K27me1/2/3). Dysregulation of PRC2 has been linked to tumor development and progression. Here, we performed a comprehensive analysis of data in the genomic and transcriptomic (cBioPortal, KMplot) database portals of clinical tumor samples and evaluated clinical correlations of EZH2, SUZ12, and EED. Next, we developed an original Python application enabling the identification of genes cooperating with PRC2 in oncogenic processes for the analysis of the DepMap CRISPR knockout database. Our study identified cancer types that are most likely to be responsive to PRC2 inhibitors. By analyzing co-dependencies with other genes, this analysis also provides indications of prognostic biomarkers and new therapeutic regimens. Abstract PRC2 (Polycomb repressive complex 2) is an evolutionarily conserved protein complex required to maintain transcriptional repression. The core PRC2 complex includes EZH2, SUZ12, and EED proteins and methylates histone H3K27. PRC2 is known to contribute to carcinogenesis and several small molecule inhibitors targeting PRC2 have been developed. The present study aimed to identify the cancer types in which PRC2 targeting drugs could be beneficial. We queried genomic and transcriptomic (cBioPortal, KMplot) database portals of clinical tumor samples to evaluate clinical correlations of PRC2 subunit genes. EZH2, SUZ12, and EED gene amplification was most frequently found in prostate cancer, whereas lymphoid malignancies (DLBCL) frequently showed EZH2 mutations. In both cases, PRC2 alterations were associated with poor prognosis. Moreover, higher expression of PRC2 subunits was correlated with poor survival in renal and liver cancers as well as gliomas. Finally, we generated a Python application to analyze the correlation of EZH2/SUZ12/EED gene knockouts by CRISPR with the alterations detected in the cancer cell lines using DepMap data. As a result, we were able to identify mutations that correlated significantly with tumor cell sensitivity to PRC2 knockout, including SWI/SNF, COMPASS/COMPASS-like subunits and BCL2, warranting the investigation of these genes as potential markers of sensitivity to PRC2-targeting drugs.
Collapse
|
31
|
de Oliveira Lisboa M, Brofman PRS, Schmid-Braz AT, Rangel-Pozzo A, Mai S. Chromosomal Instability in Acute Myeloid Leukemia. Cancers (Basel) 2021; 13:cancers13112655. [PMID: 34071283 PMCID: PMC8198625 DOI: 10.3390/cancers13112655] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/23/2021] [Accepted: 05/26/2021] [Indexed: 12/20/2022] Open
Abstract
Chromosomal instability (CIN), the increasing rate in which cells acquire new chromosomal alterations, is one of the hallmarks of cancer. Many studies highlighted CIN as an important mechanism in the origin, progression, and relapse of acute myeloid leukemia (AML). The ambivalent feature of CIN as a cancer-promoting or cancer-suppressing mechanism might explain the prognostic variability. The latter, however, is described in very few studies. This review highlights the important CIN mechanisms in AML, showing that CIN signatures can occur largely in all the three major AML types (de novo AML, secondary-AML, and therapy-related-AML). CIN features in AML could also be age-related and reflect the heterogeneity of the disease. Although most of these abnormalities show an adverse prognostic value, they also offer a strong new perspective on personalized therapy approaches, which goes beyond assessing CIN in vitro in patient tumor samples to predict prognosis. Current and emerging AML therapies are exploring CIN to improve AML treatment, which includes blocking CIN or increasing CIN beyond the limit threshold to induce cell death. We argue that the characterization of CIN features, not included yet in the routine diagnostic of AML patients, might provide a better stratification of patients and be extended to a more personalized therapeutic approach.
Collapse
Affiliation(s)
- Mateus de Oliveira Lisboa
- Core for Cell Technology, School of Medicine, Pontifícia Universidade Católica do Paraná—PUCPR, Curitiba 80215-901, Paraná, Brazil; (M.d.O.L.); (P.R.S.B.)
| | - Paulo Roberto Slud Brofman
- Core for Cell Technology, School of Medicine, Pontifícia Universidade Católica do Paraná—PUCPR, Curitiba 80215-901, Paraná, Brazil; (M.d.O.L.); (P.R.S.B.)
| | - Ana Teresa Schmid-Braz
- Hospital das Clínicas, Universidade Federal do Paraná, Curitiba 80060-240, Paraná, Brazil;
| | - Aline Rangel-Pozzo
- Department of Physiology and Pathophysiology, University of Manitoba, Cell Biology, CancerCare Manitoba Research Institute, Winnipeg, MB R3C 2B7, Canada
- Correspondence: (A.R.-P.); (S.M.); Tel.: +1-(204)787-4125 (S.M.)
| | - Sabine Mai
- Department of Physiology and Pathophysiology, University of Manitoba, Cell Biology, CancerCare Manitoba Research Institute, Winnipeg, MB R3C 2B7, Canada
- Correspondence: (A.R.-P.); (S.M.); Tel.: +1-(204)787-4125 (S.M.)
| |
Collapse
|
32
|
Disruption of YY1-EZH2 Interaction Using Synthetic Peptides Inhibits Breast Cancer Development. Cancers (Basel) 2021; 13:cancers13102402. [PMID: 34065631 PMCID: PMC8156467 DOI: 10.3390/cancers13102402] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 05/12/2021] [Accepted: 05/14/2021] [Indexed: 12/31/2022] Open
Abstract
Simple Summary Both Yin Yang 1 (YY1) and enhancer of zeste homolog 2 (EZH2) are oncogenes with overexpressed statuses in cancers. As a transcription factor, YY1 recruits EZH2 through its oncoprotein binding (OPB) domain to repress gene expression. In this study, we identified the interaction domain of YY1 on EZH2 protein with amino acids 493–519, named the YY1 protein binding (YPB) domain. Synthetic peptides using YPB and OPB domain sequences effectively blocked endogenous YY1-EZH2 interaction. Functionally, YPB and OPB peptides could efficiently inhibit the proliferation of breast cancer cells, promote their apoptosis, and reduce tumor growth in a xenograft mouse model. Using chromatin immunoprecipitation DNA sequencing (ChIP-seq) analysis, we discovered that YPB and OPB peptides could interfere with H3K27 trimethylation of multiple genes. Eventually, we identified that YPB and OPB peptides primarily targeted the PTENP1 gene and validated its importance in the anticancer activity of the two peptides. Abstract Enhancer of zeste homolog 2 (EZH2) is a methyltransferase to mediate lysine 27 trimethylation in histone H3 (i.e., H3K27me3) and repress gene expression. In solid tumors, EZH2 promotes oncogenesis and is considered a therapeutic target. As a transcription factor, Yin Yang 1 (YY1) recruits EZH2 through its oncoprotein binding (OPB) domain to establish gene repression. In this study, we mapped the YY1 protein binding (YPB) domain on EZH2 to a region of 27 amino acids. Both YPB and OPB domain synthetic peptides could disrupt YY1EZH2 interaction, markedly reduce breast cancer cell viability, and efficiently inhibit tumor growth in a xenograft mouse model. We analyzed MDA-MB-231 cells treated with YPB, OPB, and control peptides by chromatin immunoprecipitation DNA sequencing (ChIP-seq) using an antibody against H3K27me3. YPB and OPB treatments altered H3K27me3 on 465 and 1137 genes, respectively, compared to the control. Of these genes, 145 overlapped between the two peptides. Among them, PTENP1, the PTEN pseudogene, showed reduced H3K27me3 signal when treated by either YPB or OPB peptide. Consistently, the two peptides enhanced both PTENP1 and PTEN expression with concomitantly reduced AKT activation. Further studies validated PTENP1′s contribution to the anticancer activity of YPB and OPB peptides.
Collapse
|
33
|
Jiang X, Jiang L, Cheng J, Chen F, Ni J, Yin C, Wang Q, Wang Z, Fang D, Yi Z, Yu G, Zhong Q, Carter BZ, Meng F. Inhibition of EZH2 by chidamide exerts antileukemia activity and increases chemosensitivity through Smo/Gli-1 pathway in acute myeloid leukemia. J Transl Med 2021; 19:117. [PMID: 33743723 PMCID: PMC7981995 DOI: 10.1186/s12967-021-02789-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 03/15/2021] [Indexed: 12/17/2022] Open
Abstract
Background Epigenetic dysregulation plays important roles in leukemogenesis and the progression of acute myeloid leukemia (AML). Histone acetyltransferases (HATs) and histone deacetylases (HDACs) reciprocally regulate the acetylation and deacetylation of nuclear histones. Aberrant activation of HDACs results in uncontrolled proliferation and blockade of differentiation, and HDAC inhibition has been investigated as epigenetic therapeutic strategy against AML. Methods Cell growth was assessed with CCK-8 assay, and apoptosis was evaluated by flow cytometry in AML cell lines and CD45 + and CD34 + CD38- cells from patient samples after staining with Annexin V-fluorescein isothiocyanate (FITC)/propidium iodide (PI). EZH2 was silenced with short hairpin RNA (shRNA) or overexpressed by lentiviral transfection. Changes in signaling pathways were detected by western blotting. The effect of chidamide or EZH2-specific shRNA (shEZH2) in combination with adriamycin was studied in vivo in leukemia-bearing nude mouse models. Results In this study, we investigated the antileukemia effects of HDAC inhibitor chidamide and its combinatorial activity with cytotoxic agent adriamycin in AML cells. We demonstrated that chidamide suppressed the levels of EZH2, H3K27me3 and DNMT3A, exerted potential antileukemia activity and increased the sensitivity to adriamycin through disruption of Smo/Gli-1 pathway and downstream signaling target p-AKT in AML cells and stem/progenitor cells. In addition to decreasing the levels of H3K27me3 and DNMT3A, inhibition of EZH2 either pharmacologically by chidamide or genetically by shEZH2 suppressed the activity of Smo/Gli-1 pathway and increased the antileukemia activity of adriamycin against AML in vitro and in vivo. Conclusions Inhibition of EZH2 by chidamide has antileukemia activity and increases the chemosensitivity to adriamycin through Smo/Gli-1 pathway in AML cells (Fig. 5). These findings support the rational combination of HDAC inhibitors and chemotherapy for the treatment of AML. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-021-02789-3.
Collapse
Affiliation(s)
- Xuejie Jiang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.
| | - Ling Jiang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Jiaying Cheng
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Fang Chen
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Jinle Ni
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Changxin Yin
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Qiang Wang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Zhixiang Wang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Dan Fang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Zhengshan Yi
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Guopan Yu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Qingxiu Zhong
- Department of Hematology, Kanghua Hospital, Dongguan, 523080, Guangdong, China
| | - Bing Z Carter
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Fanyi Meng
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China. .,Department of Hematology, Kanghua Hospital, Dongguan, 523080, Guangdong, China.
| |
Collapse
|
34
|
Middeke JM, Teipel R, Röllig C, Stasik S, Zebisch A, Sill H, Kramer M, Scholl S, Hochhaus A, Jost E, Brümmendorf TH, Naumann R, Steffen B, Serve H, Altmann H, Kunzmann V, Einsele H, Parmentier S, Schaich M, Burchert A, Neubauer A, Schliemann C, Berdel WE, Sockel K, Stölzel F, Platzbecker U, Ehninger G, Bornhäuser M, Schetelig J, Thiede C. Decitabine treatment in 311 patients with acute myeloid leukemia: outcome and impact of TP53 mutations - a registry based analysis. Leuk Lymphoma 2021; 62:1432-1440. [PMID: 33399480 DOI: 10.1080/10428194.2020.1864354] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
We performed a registry-based analysis of 311 AML patients treated with decitabine in a standard of care setting to assess response and survival data with a distinct focus on the impact of the TP53 mutation status. Median age was 73 years. 172 patients received decitabine first-line and 139 in r/r disease. The ORR (whole cohort) was 30% with a median overall survival of 4.7 months. First-line patients achieved better responses than r/r-patients (ORR: 38% vs. 21%) resulting in a median OS of 5.8 months vs. 3.9 months. NGS based mutation analysis was performed in 180 patients. 20 patients (11%) harbored a TP53 mutation. Response rates and survival did not differ significantly between TP53 mutated patients and wild-type patients. This analysis of a large cohort of AML patients provides response rates and OS data after decitabine treatment. Interestingly, outcome was not negatively influenced by a TP53 mutation.
Collapse
Affiliation(s)
- Jan M Middeke
- Medizinische Klinik und Poliklinik I, Universitätsklinikum Carl Gustav Carus der TU Dresden, Dresden, Germany
| | - Raphael Teipel
- Medizinische Klinik und Poliklinik I, Universitätsklinikum Carl Gustav Carus der TU Dresden, Dresden, Germany
| | - Christoph Röllig
- Medizinische Klinik und Poliklinik I, Universitätsklinikum Carl Gustav Carus der TU Dresden, Dresden, Germany
| | - Sebastian Stasik
- Medizinische Klinik und Poliklinik I, Universitätsklinikum Carl Gustav Carus der TU Dresden, Dresden, Germany
| | - Armin Zebisch
- Klinische Abteilung für Hämatologie, Medizinische Universität Graz, Graz, Austria.,Otto Loewi Forschungszentrum für Gefäßbiologie, Immunologie und Entzündung, Lehrstuhl für Pharmakologie, Medizinische Universität Graz, Graz, Austria
| | - Heinz Sill
- Klinische Abteilung für Hämatologie, Medizinische Universität Graz, Graz, Austria
| | - Michael Kramer
- Medizinische Klinik und Poliklinik I, Universitätsklinikum Carl Gustav Carus der TU Dresden, Dresden, Germany
| | - Sebastian Scholl
- Klinik für Innere Medizin II, Universitätsklinikum Jena, Jena, Germany
| | - Andreas Hochhaus
- Klinik für Innere Medizin II, Universitätsklinikum Jena, Jena, Germany
| | - Edgar Jost
- Medizinische Klinik IV, Uniklinik RWTH Aachen, Aachen, Germany
| | | | - Ralph Naumann
- Medizinische Klinik III, St. Marien-Krankenhaus Siegen, Siegen, Germany
| | - Björn Steffen
- Medizinische Klinik 2, Hämatologie/Onkologie, Johann Wolfgang Goethe-Universität, Frankfurt am Main, Germany
| | - Hubert Serve
- Medizinische Klinik 2, Hämatologie/Onkologie, Johann Wolfgang Goethe-Universität, Frankfurt am Main, Germany
| | - Heidi Altmann
- Medizinische Klinik und Poliklinik I, Universitätsklinikum Carl Gustav Carus der TU Dresden, Dresden, Germany
| | - Volker Kunzmann
- Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Hermann Einsele
- Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Stefani Parmentier
- Klinik für Hämatologie, Onkologie und Palliativmedizin, Rems-Murr-Klinikum Winnenden, Winnenden, Germany
| | - Markus Schaich
- Klinik für Hämatologie, Onkologie und Palliativmedizin, Rems-Murr-Klinikum Winnenden, Winnenden, Germany
| | - Andreas Burchert
- Klinik für Innere Medizin, Schwerpunkt Hämatologie, Onkologie und Immunologie, Philipps Universität Marburg, Germany, Marburg
| | - Andreas Neubauer
- Klinik für Innere Medizin, Schwerpunkt Hämatologie, Onkologie und Immunologie, Philipps Universität Marburg, Germany, Marburg
| | | | - Wolfgang E Berdel
- Medizinische Klinik A, Universitätsklinikum Münster, Germany, Münster
| | - Katja Sockel
- Medizinische Klinik und Poliklinik I, Universitätsklinikum Carl Gustav Carus der TU Dresden, Dresden, Germany
| | - Friedrich Stölzel
- Medizinische Klinik und Poliklinik I, Universitätsklinikum Carl Gustav Carus der TU Dresden, Dresden, Germany
| | - Uwe Platzbecker
- Medizinische Klinik und Poliklinik I - Hämatologie, Zelltherapie und Hämostaseologie, Universitätsklinikum Leipzig, Leipzig, Germany
| | - Gerhard Ehninger
- Medizinische Klinik und Poliklinik I, Universitätsklinikum Carl Gustav Carus der TU Dresden, Dresden, Germany
| | - Martin Bornhäuser
- Medizinische Klinik und Poliklinik I, Universitätsklinikum Carl Gustav Carus der TU Dresden, Dresden, Germany
| | - Johannes Schetelig
- Medizinische Klinik und Poliklinik I, Universitätsklinikum Carl Gustav Carus der TU Dresden, Dresden, Germany.,DKMS Clinical Trials Unit, Dresden, Germany
| | - Christian Thiede
- Medizinische Klinik und Poliklinik I, Universitätsklinikum Carl Gustav Carus der TU Dresden, Dresden, Germany
| | | |
Collapse
|