1
|
Tarantino S, Labopin M, Zeiser R, Stelljes M, Schroeder T, Kröger N, Bethge W, Passweg J, Bornhäuser M, Schmid C, Tischer J, Eder M, Brissot E, Esteve J, Nagler A, Mohty M, Ciceri F. Allogeneic stem cell transplantation in de novo core-binding factor acute myeloid leukemia in active disease: a study from the Acute Leukemia Working Party of the European Society for Blood and Marrow Transplantation. Bone Marrow Transplant 2025:10.1038/s41409-025-02596-0. [PMID: 40269277 DOI: 10.1038/s41409-025-02596-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 03/02/2025] [Accepted: 04/07/2025] [Indexed: 04/25/2025]
Abstract
Core-binding factor acute myeloid leukemia (CBF-AML) generally has a favorable prognosis, with allogeneic hematopoietic stem cell transplantation (allo-SCT) recommended for relapsed/ refractory (R/R) cases achieving second complete remission (CR). However, clinical outcomes remain suboptimal for patients who relapse or fail to achieve CR following induction chemotherapy. Allo-SCT in non-CR is a potential strategy for such patients, though supporting evidence in CBF-AML is limited. To assess outcomes and prognostic factors of allo-SCT in R/R CBF-AML with active disease, we conducted a retrospective analysis of 610 patients with CBF-AML in non-CR undergoing allo-SCT from 2010 to 2021 across 174 centers within the European Society for Blood and Marrow Transplantation. Graft sources included matched sibling (MSD, n = 151), unrelated (UD, n = 368), and haploidentical donors (Haplo, n = 91). Among patients, 124 had inv(16), and 486 had t(8;21). Two-year overall survival (OS) and leukemia-free survival (LFS) were 53.6% and 42.7%, respectively. Haplo-SCT showed inferior OS compared to MSD (HR 1.79, p = 0.003) and UD (HR 1.64, p = 0.004) and reduced chronic graft-versus-host disease. Patients with t(8;21) exhibited higher relapse incidence (HR 2.04, p = 0.002) and poorer survival outcomes than those with inv(16). These findings confirm the therapeutic role of allo-SCT in R/R CBF-AML in non-CR, supporting its favorable risk profile.
Collapse
Affiliation(s)
- Sara Tarantino
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.
- Department of Hematology and Cell therapy, Saint Antoine Hospital, Paris, France.
- Hematology Division and Bone Marrow Unit, IRCCS San Gerardo, Monza, Italy.
- Sorbonne University, Paris, France.
| | | | - Robert Zeiser
- Leiter der Abteilung für Tumorimmunologie und Immunregulation Klinik für Innere Medizin, Schwerpunkt Hämatologie, Onkologie und Stammzelltransplantation, Universitätsklinikum Freiburg, Hugstetter Str, 55 79106, Freiburg, Germany
| | | | | | - Nicolaus Kröger
- Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Jakob Passweg
- University Hospital, Hematology - Basel, Basel, Switzerland
| | | | | | | | | | - Eolia Brissot
- Department of Hematology and Cell therapy, Saint Antoine Hospital, Paris, France
- Sorbonne University, Paris, France
- EBMT Paris study office / CEREST-TC, Paris, France
| | - Jordi Esteve
- Hospital Clinic Institut d'investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Arnon Nagler
- Hematology Division, Chaim Sheba Medical Center and Tel Aviv University, Tel-Hashomer, Ramat-Gan, Israel
| | - Mohamad Mohty
- Department of Hematology and Cell therapy, Saint Antoine Hospital, Paris, France
- Sorbonne University, Paris, France
- EBMT Paris study office / CEREST-TC, Paris, France
| | - Fabio Ciceri
- Unit of Hematology and Bone Marrow Transplantation, IRCCS San Raffaele Hospital, Vita-Salute San Raffaele University, Milano, Italy
| |
Collapse
|
2
|
Mosna F, Borlenghi E, Litzow M, Byrd JC, Papayannidis C, Tecchio C, Ferrara F, Marcucci G, Cairoli R, Morgan EA, Gurrieri C, Yeung CCS, Deeg HJ, Capelli D, Candoni A, Gotlib JR, Lunghi M, Pullarkat S, Lanza F, Galimberti S, Forghieri F, Venditti A, Festuccia M, Audisio E, Marvalle D, Rigolin GM, Roti G, DiBona E, Visani G, Albano F, Eisfeld AK, Valent P, Huls G, Borthakur G, Krampera M, Martinelli G, Kröger N, Sperotto A, Gottardi M. Long-term survival can be achieved in a significant fraction of older patients with core-binding factor acute myeloid leukemia treated with intensive chemotherapy. Haematologica 2025; 110:608-620. [PMID: 39385741 PMCID: PMC11873700 DOI: 10.3324/haematol.2024.285448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 09/30/2024] [Indexed: 10/12/2024] Open
Abstract
Acute myeloid leukemia (AML) is mainly a disease of the elderly: however, knowledge about the outcomes of treatment of core-binding factor (CBF) AML in an older population is limited. We retrospectively collected data on 229 patients with CBF-AML followed long-term in the last two decades. The 5-year overall survival was 44.2% (95% confidence interval [95% CI]: 39.9-47.5) and the 5-year event-free survival was 32.9% (95% CI: 25.5-40.1). In a subgroup of patients ≥70 years old who completed intensive therapy (induction + ≥3 courses of consolidation including autologous stem cell transplantation: 10 patients) the median event-free survival was 11.8 months (95% CI: 9.4-15.2) and overall survival was 40.0% (95% CI: 36.4- 44.1) at 5 years. In univariate analysis, age ≥70 years (hazard ratio [HR]=1.78, 95% CI: 1.15-2.54, P=0.008), failure to achieve remission following induction (HR=8.96, 95% CI: 5.5-13.8; P<0.0001), no consolidation therapy (HR=0.75, 95% CI: 0.47-1.84, P=0.04) and fewer than three cycles of consolidation (HR=1.48, 95% CI: 0.75-3.2; P=0.0004) predicted poorer event-free survival. Our study shows that intensive therapy, in selected older CBF-AML patients, leads to longer survival. Achieving a complete remission seems to be the most important first step and at least three cycles of consolidation, an important second one. The analysis suggests that these patients should not be excluded from studies with intensive therapies.
Collapse
MESH Headings
- Humans
- Leukemia, Myeloid, Acute/mortality
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/therapy
- Leukemia, Myeloid, Acute/diagnosis
- Male
- Aged
- Female
- Core Binding Factors/genetics
- Core Binding Factors/metabolism
- Retrospective Studies
- Middle Aged
- Aged, 80 and over
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Adult
- Hematopoietic Stem Cell Transplantation
- Age Factors
- Treatment Outcome
Collapse
Affiliation(s)
- Federico Mosna
- Hematology and BMTU, Hospital Hospital of Bolzano (SABES - ASDAA), Teaching Hospital of Paracelsus Medical University (PUM), Bolzano (BZ)
| | | | - Mark Litzow
- Division of Hematology, Mayo Clinic, Rochester Minnesota
| | - John C Byrd
- Department of Internal Medicine, University of Cincinnati, Cincinnati Ohio
| | - Cristina Papayannidis
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia "Seragnoli", Bologna
| | - Cristina Tecchio
- Hematology and Bone Marrow Transplantation Unit, Section of Biomedicine of Innovation, Department of Engineering for Innovative Medicine, University of Verona
| | | | - Guido Marcucci
- Dept. of Hematological Malignancies Translational Science, City of Hope, Duarte California
| | - Roberto Cairoli
- Hematology, ASST Grande Ospedale Metropolitano Niguarda, Milano
| | - Elizabeth A Morgan
- Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston Massachusetts
| | | | - Cecilia C S Yeung
- Translational Science and Therapeutics Division, Fred Hutchinson Cencer Center, Seattle, WA
| | - H Joachim Deeg
- Translational Science and Therapeutics Division, Fred Hutchinson Cencer Center, Seattle, WA
| | - Debora Capelli
- Ospedali Riuniti di Ancona - Azienda Ospedaliero Universitaria delle Marche, Ancona
| | - Anna Candoni
- Hematology, Azienda Ospedaliero-Universitaria di Udine, Udine
| | - Jason R Gotlib
- Hematology, Stanford Cancer Center Palo Alto, Palo Alto California
| | | | - Sheeja Pullarkat
- Department of Pathology, David Geffen School of Medicine at UCLA, Los Angeles CA
| | - Francesco Lanza
- Dip DIMEC-Universita' degli Studi di Bologna, UO Ematologia - Rete Trapianti CSE Romagna and Centro Studi Clinici Fase 1, Ospedale di Ravenna
| | - Sara Galimberti
- Hematology, Department of Clinical and Experimental Medicine, University of Pisa
| | - Fabio Forghieri
- Hematology, Azienda Ospedaliero-Universitaria di Modena, Modena
| | - Adriano Venditti
- Hematology, Dept. of Biomedicine and Prevention, University "Tor Vergata", Rome
| | | | - Ernesta Audisio
- Hematology, Città della Salute e della Scienza di Torino, University of Turin, Torino
| | - Denise Marvalle
- Hematology and Cellular Therapy, Ospedale Mazzoni, Ascoli Piceno
| | | | - Giovanni Roti
- Hematology, Azienda Ospedaliero-Universitaria di Parma, Parma
| | - Eros DiBona
- Hematology, Ospedale "San Bortolo", Azienda ULSS8 Berica, Vicenza
| | | | - Francesco Albano
- Hematology and Stem Cell Transplant Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari "Aldo Moro", Bari
| | - Ann-Kathrin Eisfeld
- Clara D. Bloomfield Center for Leukemia Outcomes Research, 31Division of Hematology, Department of Internal Medicine, The Ohio State Universisty, Columbus, Ohio
| | - Peter Valent
- Department of Internal Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Vienna, Austria; Ludwig Boltzmann Institute for Hematology and Oncoloy, Medical University of Vienna, Vienna
| | - Gerwin Huls
- Hematology, University of Groningen, Groningen
| | | | - Mauro Krampera
- Hematology and Bone Marrow Transplantation Unit, Section of Biomedicine of Innovation, Department of Engineering for Innovative Medicine, University of Verona
| | - Giovanni Martinelli
- Istituto Romagnolo per lo Studio dei Tumori "Dino Amadori", IRST-IRCCS Meldola
| | - Nicolaus Kröger
- Dept. of Stem Cell Transplantation with Research Dept. Cell and Gene Therapy, University Medical Center Hamburg-Eppendorf, Hamburg
| | - Alessandra Sperotto
- Oncohematology, Dept. Of Oncology, Veneto Institute of Oncology IOV-IRCCS, Padua
| | - Michele Gottardi
- Oncohematology, Dept. Of Oncology, Veneto Institute of Oncology IOV-IRCCS, Padua.
| |
Collapse
|
3
|
Ngo D, Blackmon A, Al Malki MM. Dasatinib maintenance following allogeneic transplantation in acute myeloid leukemia with KIT mutation. Bone Marrow Transplant 2025; 60:83-85. [PMID: 39379697 DOI: 10.1038/s41409-024-02425-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 10/10/2024]
Affiliation(s)
- Dat Ngo
- Department of Pharmacy, City of Hope, Duarte, CA, USA.
| | - Amanda Blackmon
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, USA
| | - Monzr M Al Malki
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, USA
| |
Collapse
|
4
|
Nagler A, Labopin M, Salmenniemi U, Wu D, Blaise D, Rambaldi A, Reményi P, Forcade E, Socié G, Chevallier P, von dem Borne P, Burns D, Schmid C, Maertens J, Kröger N, Bug G, Aljurf M, Vydra J, Halaburda K, Ciceri F, Mohty M. Trends in allogeneic transplantation for favorable risk acute myeloid leukemia in first remission: a longitudinal study of >15 years from the ALWP of the EBMT. Bone Marrow Transplant 2024; 59:1563-1576. [PMID: 39164484 DOI: 10.1038/s41409-024-02379-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/19/2024] [Accepted: 07/23/2024] [Indexed: 08/22/2024]
Abstract
We assessed outcomes of allogeneic transplantation (HSCT) in favorable risk AML in CR1 over 3 time periods. 1850 patients were included, 2005 to 2009- 222, 2010 to 2014 -392, and 2015 to 2021-1236; 526 with t (8:21), 625 with inv (16), and 699 with NPM1mutFLT3WT. Patients transplanted in 2015-2021 were older (p < 0.0001) with more patients ≥60 years of age (p < 0.0001). The most frequent diagnosis in 2015-2021 was NPM1mutFLT3WT vs. t (8:21) in the 2 earlier periods, (p < 0001). Haploidentical transplants (Haplo) increased from 5.9% to 14.5% (p < 0.0001). Graft-versus-host disease (GVHD) prophylaxis with post-transplant cyclophosphamide (PTCy) was more frequent in 2015-2021 vs. the other 2 periods (p < 0.0001). On multivariate analysis, incidence of total chronic GVHD was reduced in HSCTs performed ≥2015 vs. those performed in 2005-2009, hazard ratio (HR) = 0.74 (95% CI 0.56-0.99, p = 0.046) and GVHD-free, relapse-free survival (GRFS) improved for patients transplanted from 2010-2014 vs. those transplanted in 2005-2009, HR = 0.74 (95% CI 0.56-0.98, p = 0.037). Other HSCT outcomes did not differ with no improvement ≥2015. LFS, OS, and GRFS were inferior in patients with t (8:21) with HR = 1.32 (95% CI 1.03-1.68, p = 0.026), HR = 1.38 (95% CI 1.04-1.83, p = 0.027) and HR = 01.25 (95% CI 1.02-1.53, p = 0.035), respectively. In conclusion, this retrospective analysis of HSCT in patients with favorable risk AML, transplanted over 16 years showed an increased number of transplants in patients ≥60 years, from Haplo donors with PTCy. Most importantly, 3-year GRFS improved ≥2010 and total chronic GVHD reduced ≥2015, with no significant change in other HSCT outcomes.
Collapse
Affiliation(s)
- Arnon Nagler
- Division of Hematology, Sheba Medical Center, Tel Hashomer, Israel.
| | - Myriam Labopin
- EBMT Paris study office; Department of Haematology, Saint Antoine Hospital; INSERM UMR 938, Sorbonne University, Paris, France
- Sorbonne University, Department of Haematology, Saint Antoine Hospital; INSERM UMR 938, Paris, France
| | | | - Depei Wu
- First Affiliated Hospital of Soochow University, Suzhou, China
| | - Didier Blaise
- Programme de Transplantation & Therapie Cellulaire, Marseille, France
| | - Alessandro Rambaldi
- Department of Oncology and Hematology, University of Milan and Azienda Socio-Sanitaria Territoriale Papa Giovanni XXIII, Bergamo, Italy
| | | | | | - Gérard Socié
- University Paris Cité, INSERM UMR 976, APHP- Saint-Louis Hospital, BMT Unit, Paris, France
| | | | | | - David Burns
- University Hospital Birmingham NHS Trust, Stoke, UK
| | | | | | | | - Gesine Bug
- Goethe-Universitaet, Frankfurt Main, Germany
| | - Mahmoud Aljurf
- King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
| | - Jan Vydra
- Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | | | - Fabio Ciceri
- IRCCS Osspedale San Raffaele, Vita-Salute San Raffaele University Haematology and BMT, Milano, Italy
| | - Mohamad Mohty
- EBMT Paris study office; Department of Haematology, Saint Antoine Hospital; INSERM UMR 938, Sorbonne University, Paris, France
- Sorbonne University, Department of Haematology, Saint Antoine Hospital; INSERM UMR 938, Paris, France
| |
Collapse
|
5
|
Ye Y, Labopin M, Gérard S, Yakoub-Agha I, Blau IW, Aljurf M, Forcade E, Gedde-Dahl T, Burns D, Vydra J, Halahleh K, Hamladji RM, Bazarbachi A, Nagler A, Brissot E, Li L, Luo Y, Zhao Y, Ciceri F, Huang H, Mohty M, Gorin NC. Lower relapse incidence with haploidentical versus matched sibling or unrelated donor hematopoietic cell transplantation for core-binding factor AML patients in CR2: A study from the Global Committee and the Acute Leukemia Working Party of the European Society for Blood and Marrow Transplantation. Am J Hematol 2024; 99:1290-1299. [PMID: 38654658 DOI: 10.1002/ajh.27342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/26/2024] [Accepted: 04/11/2024] [Indexed: 04/26/2024]
Abstract
Allogeneic hematopoietic cell transplantation (allo-HCT) is recommended for core-binding factor mutated (CBF) AML patients achieving second complete remission (CR2). However, approximately 20% of patients may relapse after transplant and donor preference remains unclear. We compared in this EBMT global multicenter registry-based analysis the allo-HCT outcomes using either haploidentical (Haplo), matched siblings donors (MSD), or 10/10 matched unrelated donors (MUD). Data from 865 de novo adult CBF AML patients in CR2 receiving allo-HCT in 227 EBMT centers from 2010 to 2022 were analyzed, in which 329 MSD, 374 MUD, and 162 Haplo-HCTs were included. For the entire cohort, 503 (58%) patients were inv(16)/CBFB-MYH11 and 362 patients (42%) were t(8;21)/RUNX1-RUNX1T1 AML. On multivariate analysis, Haplo-HCT was associated with a lower Relapse Incidence (RI) compared to either MSD (hazard ratio [HR] = 0.56, 95% CI 0.32-0.97; p < .05) or MUD (HR = 0.57, 95% CI: 0.33-0.99, p < .05). No significant difference was observed among the 3 types of donors on LFS, OS and GRFS. CBF-AML with t(8;21) was associated with both higher RI (HR = 1.79, 95% CI 1.3-2.47; p < .01) and higher NRM (HR = 1.58, 95% CI 1.1-2.27; p < .01) than CBF-AML with inv(16), which led to worse LFS, OS and GRFS. To conclude, for CBF-AML patients in CR2, Haplo-HCTs were associated with a lower RI compared to MSD and MUD allo-HCTs. There was no difference on LFS, OS or GRFS. CBF AML patients with inv(16) had a better progonosis than those with t(8;21) after allo-HCT in CR2.
Collapse
Affiliation(s)
- Yishan Ye
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Myriam Labopin
- EBMT Paris Study Office, Hôpital Saint Antoine 184, Paris Cedex 12, France
| | | | | | - Igor Wolfgang Blau
- Department of Hematology, Charité-Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Mahmoud Aljurf
- King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
| | | | | | - David Burns
- University Hospital Birmingham NHSTrust, Birmingham, UK
| | - Jan Vydra
- Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | | | | | - Ali Bazarbachi
- Bone Marrow Transplantation Program, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Arnon Nagler
- Department of Bone Marrow Transplantation, Chaim Sheba Medical Center, Tel-Hashomer, Israel
| | - Eolia Brissot
- EBMT Paris Study Office, Hôpital Saint Antoine 184, Paris Cedex 12, France
- Department of Hematology and Cell therapy, Hospital Saint-Antoine, Sorbonne University, Paris, France
| | - Lin Li
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yi Luo
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yanmin Zhao
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Fabio Ciceri
- Ospedale San Raffaele s.r.l., Haematology and BMT, Milano, Italy
| | - He Huang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Mohamad Mohty
- EBMT Paris Study Office, Hôpital Saint Antoine 184, Paris Cedex 12, France
- Department of Hematology and Cell therapy, Hospital Saint-Antoine, Sorbonne University, Paris, France
| | - Norbert Claude Gorin
- EBMT Paris Study Office, Hôpital Saint Antoine 184, Paris Cedex 12, France
- Department of Hematology and Cell therapy, Hospital Saint-Antoine, Sorbonne University, Paris, France
| |
Collapse
|
6
|
Marchesini M, Gherli A, Simoncini E, Tor LMD, Montanaro A, Thongon N, Vento F, Liverani C, Cerretani E, D'Antuono A, Pagliaro L, Zamponi R, Spadazzi C, Follini E, Cambò B, Giaimo M, Falco A, Sammarelli G, Todaro G, Bonomini S, Adami V, Piazza S, Corbo C, Lorusso B, Mezzasoma F, Lagrasta CAM, Martelli MP, La Starza R, Cuneo A, Aversa F, Mecucci C, Quaini F, Colla S, Roti G. Orthogonal proteogenomic analysis identifies the druggable PA2G4-MYC axis in 3q26 AML. Nat Commun 2024; 15:4739. [PMID: 38834613 PMCID: PMC11150407 DOI: 10.1038/s41467-024-48953-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/20/2024] [Indexed: 06/06/2024] Open
Abstract
The overexpression of the ecotropic viral integration site-1 gene (EVI1/MECOM) marks the most lethal acute myeloid leukemia (AML) subgroup carrying chromosome 3q26 abnormalities. By taking advantage of the intersectionality of high-throughput cell-based and gene expression screens selective and pan-histone deacetylase inhibitors (HDACis) emerge as potent repressors of EVI1. To understand the mechanism driving on-target anti-leukemia activity of this compound class, here we dissect the expression dynamics of the bone marrow leukemia cells of patients treated with HDACi and reconstitute the EVI1 chromatin-associated co-transcriptional complex merging on the role of proliferation-associated 2G4 (PA2G4) protein. PA2G4 overexpression rescues AML cells from the inhibitory effects of HDACis, while genetic and small molecule inhibition of PA2G4 abrogates EVI1 in 3q26 AML cells, including in patient-derived leukemia xenografts. This study positions PA2G4 at the crosstalk of the EVI1 leukemogenic signal for developing new therapeutics and urges the use of HDACis-based combination therapies in patients with 3q26 AML.
Collapse
MESH Headings
- Animals
- Female
- Humans
- Mice
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Cell Proliferation/genetics
- Chromosomes, Human, Pair 3/genetics
- Gene Expression Regulation, Leukemic/drug effects
- Histone Deacetylase Inhibitors/pharmacology
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- MDS1 and EVI1 Complex Locus Protein/metabolism
- MDS1 and EVI1 Complex Locus Protein/genetics
- Proteogenomics/methods
- Proto-Oncogene Proteins c-myc/metabolism
- Proto-Oncogene Proteins c-myc/genetics
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Matteo Marchesini
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Translational Hematology and Chemogenomics Laboratory, University of Parma, Parma, Italy
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Andrea Gherli
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Translational Hematology and Chemogenomics Laboratory, University of Parma, Parma, Italy
| | - Elisa Simoncini
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Translational Hematology and Chemogenomics Laboratory, University of Parma, Parma, Italy
| | - Lucas Moron Dalla Tor
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Translational Hematology and Chemogenomics Laboratory, University of Parma, Parma, Italy
| | - Anna Montanaro
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Translational Hematology and Chemogenomics Laboratory, University of Parma, Parma, Italy
| | - Natthakan Thongon
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Federica Vento
- Translational Hematology and Chemogenomics Laboratory, University of Parma, Parma, Italy
- Department of Medical Science, University of Ferrara, Ferrara, Italy
| | - Chiara Liverani
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Elisa Cerretani
- Translational Hematology and Chemogenomics Laboratory, University of Parma, Parma, Italy
- Department of Medical Science, University of Ferrara, Ferrara, Italy
| | - Anna D'Antuono
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Translational Hematology and Chemogenomics Laboratory, University of Parma, Parma, Italy
| | - Luca Pagliaro
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Translational Hematology and Chemogenomics Laboratory, University of Parma, Parma, Italy
- Hematology and BMT Unit, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Raffaella Zamponi
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Translational Hematology and Chemogenomics Laboratory, University of Parma, Parma, Italy
| | - Chiara Spadazzi
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Elena Follini
- Hematology and BMT Unit, Azienda USL Piacenza, Piacenza, Italy
| | - Benedetta Cambò
- Hematology and BMT Unit, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Mariateresa Giaimo
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Translational Hematology and Chemogenomics Laboratory, University of Parma, Parma, Italy
- Hematology and BMT Unit, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Angela Falco
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Gabriella Sammarelli
- Hematology and BMT Unit, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Giannalisa Todaro
- Hematology and BMT Unit, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Sabrina Bonomini
- Hematology and BMT Unit, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Valentina Adami
- High-Throughput Screening Core Facility, CIBIO, University of Trento, Trento, Italy
| | - Silvano Piazza
- High-Throughput Screening Core Facility, CIBIO, University of Trento, Trento, Italy
- Computational Biology group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Claudia Corbo
- University of Milano-Bicocca, Department of Medicine and Surgery, NANOMIB Center, Monza, Italy
- IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| | - Bruno Lorusso
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Federica Mezzasoma
- Institute of Hematology and Center for Hemato-Oncology Research, University of Perugia and Santa Maria Della Misericordia Hospital, Perugia, Italy
| | | | - Maria Paola Martelli
- Institute of Hematology and Center for Hemato-Oncology Research, University of Perugia and Santa Maria Della Misericordia Hospital, Perugia, Italy
| | - Roberta La Starza
- Institute of Hematology and Center for Hemato-Oncology Research, University of Perugia and Santa Maria Della Misericordia Hospital, Perugia, Italy
| | - Antonio Cuneo
- Department of Medical Science, University of Ferrara, Ferrara, Italy
- Hematology Unit, Azienda Ospedaliera-Universitaria S.ANNA, University of Ferrara, Ferrara, Italy
| | | | - Cristina Mecucci
- Institute of Hematology and Center for Hemato-Oncology Research, University of Perugia and Santa Maria Della Misericordia Hospital, Perugia, Italy
| | - Federico Quaini
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Simona Colla
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Giovanni Roti
- Department of Medicine and Surgery, University of Parma, Parma, Italy.
- Translational Hematology and Chemogenomics Laboratory, University of Parma, Parma, Italy.
- Hematology and BMT Unit, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy.
| |
Collapse
|
7
|
Jia X, Liao N, Yu S, Li H, Liu H, Zhang H, Xu J, Yao Y, He H, Yu G, Liu Q, Zhang Y, Shi P. Impact of measurable residual disease in combination with CD19 on postremission therapy choices for adult t(8;21) acute myeloid leukemia in first complete remission. Cancer Med 2024; 13:e7074. [PMID: 38457215 PMCID: PMC10922018 DOI: 10.1002/cam4.7074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 02/08/2024] [Accepted: 02/20/2024] [Indexed: 03/09/2024] Open
Abstract
BACKGROUND The post-remission therapy (PRT) choices for adult t(8;21) acute myeloid leukemia (AML) in first complete remission (CR1) need to be further explored. AIMS We aimed to investigate the impact of measurable residual disease (MRD) combined with CD19 on PRT choices for adult t(8;21) AML in CR1. METHODS A total of 150 t(8;21) AML patients were enrolled, including 67 underwent chemotherapy (CMT) and 83 allogeneic hematopoietic stem cell transplantation (allo-SCT) as PRT in CR1. Subgroup analyses were performed according to MRD level after three cycles of chemotherapy combined with CD19 expression. RESULTS Multivariate analysis indicated MRDhigh after three courses of treatment (HR, 0.14 [95% CI, 0.03-0.66]; p = 0.013) and CD19 negativity (HR, 0.14 [95% CI, 0.02-0.96]; p = 0.045) were risk factors for relapse, while allo-SCT was protective factor for relapse (HR, 0.34 [95% CI, 0.15-0.75]; p = 0.008). Grouped by MRD after three courses of chemotherapy, allo-SCT had lower CIR (p < 0.001) and better OS (p = 0.003) than CMT for MRDhigh patients, CMT showed a higher CIR (35.99% vs. 15.34%, p = 0.100) but comparable OS (p = 0.588) than allo-SCT for MRDlow patients. Grouped by CD19 expression, allo-SCT demonstrated lower CIR (p < 0.001) and better OS (p = 0.002) than CMT for CD19- patients. CMT had a higher CIR (41.37% vs. 10.48%, p = 0.007) but comparable OS (p = 0.147) than allo-SCT for CD19+ patients. Grouped by MRD combined with CD19, MRDhigh /CD19+ subsets were identified out of CD19+ patients benefiting from allo-SCT with lower CIR (p = 0.002) and superior OS (p = 0.020) than CMT. CMT preserved comparable CIR (p = 0.939) and OS (p = 0.658) with allo-SCT for MRDlow /CD19+ patients. MRDlow /CD19- subsets were also identified from MRDlow patients requiring allo-SCT with lower CIR (p < 0.001) and superior OS (p = 0.008) than CMT. Allo-SCT maintained lower CIR (p < 0.001) and superior OS (p = 0.008) than CMT for MRDhigh /CD19- patients. CONCLUSIONS MRD combined with CD19 might optimize PRT choices for adult t(8;21) AML patients in CR1.
Collapse
Affiliation(s)
- Xi Jia
- Department of Hematology, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
- Clinical Medical Research Center of Hematological Diseases of Guangdong ProvinceGuangzhouChina
| | - Naying Liao
- Department of Hematology, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
- Clinical Medical Research Center of Hematological Diseases of Guangdong ProvinceGuangzhouChina
| | - Sijian Yu
- Department of Hematology, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
- Clinical Medical Research Center of Hematological Diseases of Guangdong ProvinceGuangzhouChina
| | - Huan Li
- Department of Hematology, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
- Clinical Medical Research Center of Hematological Diseases of Guangdong ProvinceGuangzhouChina
| | - Hui Liu
- Department of Hematology, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
- Clinical Medical Research Center of Hematological Diseases of Guangdong ProvinceGuangzhouChina
| | - Haiyan Zhang
- Department of Hematology, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
- Clinical Medical Research Center of Hematological Diseases of Guangdong ProvinceGuangzhouChina
| | - Jun Xu
- Department of Hematology, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
- Clinical Medical Research Center of Hematological Diseases of Guangdong ProvinceGuangzhouChina
| | - Yunqian Yao
- Department of Hematology, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
- Clinical Medical Research Center of Hematological Diseases of Guangdong ProvinceGuangzhouChina
| | - Han He
- Department of Hematology, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
- Clinical Medical Research Center of Hematological Diseases of Guangdong ProvinceGuangzhouChina
| | - Guopan Yu
- Department of Hematology, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
- Clinical Medical Research Center of Hematological Diseases of Guangdong ProvinceGuangzhouChina
| | - Qifa Liu
- Department of Hematology, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
- Clinical Medical Research Center of Hematological Diseases of Guangdong ProvinceGuangzhouChina
| | - Yu Zhang
- Department of Hematology, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
- Clinical Medical Research Center of Hematological Diseases of Guangdong ProvinceGuangzhouChina
| | - Pengcheng Shi
- Department of Hematology, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
- Clinical Medical Research Center of Hematological Diseases of Guangdong ProvinceGuangzhouChina
| |
Collapse
|
8
|
Guo W, Liu X, Wang M, Liu J, Cao Y, Zheng Y, Zhai W, Chen X, Zhang R, Ma Q, Yang D, Wei J, He Y, Pang A, Feng S, Han M, Jiang E. Application of prophylactic or pre-emptive therapy after allogeneic transplantation for high-risk patients with t(8;21) acute myeloid leukemia. Hematology 2023; 28:2205739. [PMID: 37104677 DOI: 10.1080/16078454.2023.2205739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023] Open
Abstract
OBJECTIVES To determine the impact of pretransplant measurable residual disease (pre-MRD) and the efficacy of maintenance therapy in t(8;21) acute myeloid leukemia (AML) patients after allogeneic hematopoietic cell transplantation (allo-HCT). METHODS We retrospectively analyzed 100 t(8;21) AML patients who underwent allo-HCT between 2013 and 2022. 40 patients received pre-emptive therapy including immunosuppressant adjustment, azacitidine, and donor lymphocyte infusion (DLI) combined with chemotherapy. 23 patients received prophylactic therapy, including azacitidine or chidamide. RESULTS Patients with a positive pre-MRD (pre-MRDpos) had a higher 3-year cumulative incidence of relapse (CIR) (25.90% [95% CI, 13.87%-39.70%] vs 5.00% [95% CI, 0.88%-15.01%]; P = 0.008). Pre-MRDpos patients were less likely to have a superior 3-year disease-free survival (DFS) (40.83% [95% CI, 20.80%-80.16%]) if their MRD was still positive at 28 days after transplantation (post-MRD28pos). The 3-year DFS and CIR were 53.17% (95% CI, 38.31% - 73.80%) and 34.87% (95% CI, 18.84% - 51.44%), respectively, for patients receiving pre-emptive interventions after molecular relapse. The 3-year DFS and CIR were 90.00% (95%CI, 77.77% - 100%) and 5.00% (95%CI, 0.31% - 21.10%), respectively, for high-risk patients receiving prophylactic therapy. In most patients, epigenetic-drug-induced adverse events were reversible with dose adjustment or temporary discontinuation. CONCLUSION Patients with pre-MRDpos and post-MRD28pos were more likely to have higher rates of relapse and inferior DFS, even after receiving pre-emptive interventions. Prophylactic therapy may be a better option for high-risk t(8;21) AML patients; however, this warrants further investigation.
Collapse
Affiliation(s)
- Wenwen Guo
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, People's Republic of China
| | - Xin Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, People's Republic of China
| | - Mingyang Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, People's Republic of China
| | - Jia Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, People's Republic of China
| | - Yigeng Cao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, People's Republic of China
| | - Yawei Zheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, People's Republic of China
| | - Weihua Zhai
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, People's Republic of China
| | - Xin Chen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, People's Republic of China
| | - Rongli Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, People's Republic of China
| | - Qiaoling Ma
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, People's Republic of China
| | - Donglin Yang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, People's Republic of China
| | - Jialin Wei
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, People's Republic of China
| | - Yi He
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, People's Republic of China
| | - Aiming Pang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, People's Republic of China
| | - Sizhou Feng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, People's Republic of China
| | - Mingzhe Han
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, People's Republic of China
| | - Erlie Jiang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, People's Republic of China
- Tianjin Institutes of Health Science, Tianjin, People's Republic of China
| |
Collapse
|
9
|
Darwish C, Farina K, Tremblay D. The core concepts of core binding factor acute myeloid leukemia: Current considerations for prognosis and treatment. Blood Rev 2023; 62:101117. [PMID: 37524647 DOI: 10.1016/j.blre.2023.101117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/04/2023] [Accepted: 07/21/2023] [Indexed: 08/02/2023]
Abstract
Core binding factor acute myeloid leukemia (CBF AML), defined by t(8;21) or inv(16), is a subset of favorable risk AML. Despite its association with a high complete remission rate after induction and relatively good prognosis overall compared with other subtypes of AML, relapse risk after induction chemotherapy remains high. Optimizing treatment planning to promote recurrence free survival and increase the likelihood of survival after relapse is imperative to improving outcomes. Recent areas of research have included evaluation of the role of gemtuzumab in induction and consolidation, the relative benefit of increased cycles of high dose cytarabine in consolidation, the utility of hypomethylating agents and kinase inhibitors, and the most appropriate timing of stem cell transplant. Surveillance with measurable residual disease testing is increasingly being utilized for monitoring disease in remission, and ongoing investigation seeks to determine how to use this tool for early identification of patients who would benefit from proceeding to transplant. In this review, we outline the current therapeutic approach from diagnosis to relapse while highlighting the active areas of investigation in each stage of treatment.
Collapse
Affiliation(s)
- Christina Darwish
- Tisch Cancer Institute, Division of Hematology/Oncology, Icahn School of Medicine at Mount Sinai, One Gustave L Levy Place, Box 1079, New York, NY 10029, USA
| | - Kyle Farina
- Department of Pharmacy Practice, The Mount Sinai Hospital, New York, NY 10029, USA
| | - Douglas Tremblay
- Tisch Cancer Institute, Division of Hematology/Oncology, Icahn School of Medicine at Mount Sinai, One Gustave L Levy Place, Box 1079, New York, NY 10029, USA.
| |
Collapse
|
10
|
Yu WJ, Sun YQ, Xu LP, Zhang XH, Liu KY, Huang XJ, Wang Y. Comparison of outcomes for patients with acute myeloid leukemia undergoing haploidentical stem cell transplantation in first and second complete remission. Ann Hematol 2023:10.1007/s00277-023-05324-0. [PMID: 37344697 DOI: 10.1007/s00277-023-05324-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/13/2022] [Indexed: 06/23/2023]
Abstract
There was no consensus on whether prognostic advantages existed when transplant conducted at first complete remission (CR1) stage than at second complete remission (CR2) stage for patients with AML who received haploidentical hematological stem cell transplantation (haplo-HSCT). In 768 consecutive AML patients who received haplo-HSCT from January 2014 to December 2017, a 1:2 ratio matched-pair analysis was performed, 69 patients who in CR2 group and 138 CR1 patients were enrolled. Hematopoietic recovery, graft versus host disease (GVHD), relapse, transplant related mortality (TRM), disease-free survival (DFS) and overall survival (OS) were compared in two groups, and further evaluated in low-, intermediate-, and high-risk subgroups. The cumulative incidences of 30-day myeloid recovery and 90-day platelet recovery were comparable in CR1 and CR2 groups. The cumulative incidences of grade II-IV and grade III-IV aGVHD were not significantly different. The cumulative incidences of relapse at 3-year and 5-year in these two groups were 12.4% versus 11.6% (P = 0.880) and 12.4% versus 17.5% (P = 0.322). The cumulative incidences of TRM at 3-year and 5-year were both 10.9% versus 23.2% (P = 0.019). The probability of DFS at 3-year and 5-year were 76.7% versus 65.2% (P = 0.029) and 76.7% versus 59.3% (P = 0.009). The probability of OS at 3-year and 5-year were 81.8% versus 68.1% (P = 0.026) and 76.7% versus 59.3% (P = 0.026). In the intermediate-risk group, TRM was lower in CR1 group, DFS and OS of CR1 group were superior to CR2 group. In conclusion, haplo-HSCT at CR1 stage was of better prognosis for intermediate-risk AML patients than at CR2 stage.
Collapse
Affiliation(s)
- Wen-Jing Yu
- Peking University People's Hospital, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University Institute of Hematology, No. 11 Xizhimen South Street, Xicheng District, Beijing, 100044, China
| | - Yu-Qian Sun
- Peking University People's Hospital, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University Institute of Hematology, No. 11 Xizhimen South Street, Xicheng District, Beijing, 100044, China
| | - Lan-Ping Xu
- Peking University People's Hospital, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University Institute of Hematology, No. 11 Xizhimen South Street, Xicheng District, Beijing, 100044, China
| | - Xiao-Hui Zhang
- Peking University People's Hospital, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University Institute of Hematology, No. 11 Xizhimen South Street, Xicheng District, Beijing, 100044, China
| | - Kai-Yan Liu
- Peking University People's Hospital, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University Institute of Hematology, No. 11 Xizhimen South Street, Xicheng District, Beijing, 100044, China
| | - Xiao-Jun Huang
- Peking University People's Hospital, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University Institute of Hematology, No. 11 Xizhimen South Street, Xicheng District, Beijing, 100044, China
- Peking-Tsinghua Center for Life Sciences, Beijing, 100871, China
- Collaborative Innovation Center of Hematology China, Peking University, Beijing, 100871, China
| | - Yu Wang
- Peking University People's Hospital, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University Institute of Hematology, No. 11 Xizhimen South Street, Xicheng District, Beijing, 100044, China.
- Collaborative Innovation Center of Hematology China, Peking University, Beijing, 100871, China.
| |
Collapse
|
11
|
Zhou W, Chen G, Gong D, Gao Y, Yu L. Risk factors for post-transplant relapse and survival in younger adult patients with t(8;21)(q22;q22) acute myeloid leukemia undergoing allogeneic hematopoietic stem cell transplantation: A multicenter retrospective study. Front Oncol 2023; 13:1138853. [PMID: 36845681 PMCID: PMC9948242 DOI: 10.3389/fonc.2023.1138853] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 01/27/2023] [Indexed: 02/11/2023] Open
Abstract
Background Outcomes of patients with t(8;21)(q22;q22) acute myeloid leukemia (AML) after allogeneic hematopoietic stem cell transplantation (allo-HSCT) remain heterogeneous. Methods To identify the risk factors for relapse and survival after allo-HSCT in t(8;21) AML patients, we retrospectively evaluated the clinical and prognostic information of 142 patients with t(8;21) AML undergoing allo-HSCT between January 2002 and September 2018 at 15 hematology research centers in China. Results Twenty-nine patients (20%) relapsed after undergoing allo-HSCT. A > 1-log reduction in RUNX1/RUNX1T1-based minimal residual disease (MRD) directly before allo-HSCT and a > 3-log reduction within the first 3 months after allo-HSCT were associated with a significantly lower post-transplant 3-year cumulative incidence of relapse (CIR, 9% vs. 62% and 10% vs. 47%,all P < 0.001), whereas transplantation during the second complete remission (CR2, 39% vs. 17% during CR1, P = 0.022), during relapse (62% vs. 17% during CR1, P < 0.001) and KIT D816 mutations at diagnosis (49% vs. 18%, P = 0.039) were related to a significantly higher 3-year CIR. Multivariate analysis demonstrated that a > 1-log reduction in MRD directly before transplantation (CIR: hazard ratio(HR), 0.21 [0.03-0.71], P = 0.029; overall survival (OS): HR = 0.27 [0.08-0.93], P = 0.038) and a > 3-log reduction in post-transplant MRD within the first 3 months (CIR: HR = 0.25 [0.07-0.89], P = 0.019; OS: HR = 0.38 [0.15-0.96], P = 0.040) were independent favorable prognostic factors, and transplantation during relapse (CIR: HR = 5.55 [1.23-11.56], P = 0.041; OS: HR = 4.07 [1.82-20.12], P = 0.045) were independent adverse prognostic factors for post-transplant relapse and survival in patients with t(8;21) AML. Conclusion Our study suggests that for patients with t(8;21) AML undergoing allo-HSCT, it would be better to receive transplantation during CR1 with a MRD directly before transplantation achieving at least 1-log reduction. MRD monitoring in the first 3 months after allo-HSCT might be robust in predicting relapse and adverse survival after allo-HSCT.
Collapse
Affiliation(s)
- Wei Zhou
- Central Laboratory, Shenzhen University General Hospital, Shenzhen University Medical School, Shenzhen, Guangdong, China,Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, Guangdong, China
| | - Guofeng Chen
- Department of Endoscopy, National Clinical Research Center for Cancer, Key Laboratory of Molecular Cancer Epidemiology of Tianjin, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Dan Gong
- Department of Hematology, Chinese PLA No. 965 Hospital, Jilin, China
| | - Yi Gao
- School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, Guangdong, China
| | - Li Yu
- Department of Hematology and Oncology, International Cancer Center, Shenzhen Key Laboratory of Precision Medicine for Hematological Malignancies, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University Medical School, Shenzhen, Guangdong, China,*Correspondence: Li Yu,
| |
Collapse
|
12
|
Deeg HJ. Not all patients with AML over 60 years of age should be offered early allogeneic stem cell transplantation. Blood Adv 2022; 6:1623-1627. [PMID: 34607346 PMCID: PMC8905709 DOI: 10.1182/bloodadvances.2021004799] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- H. Joachim Deeg
- Fred Hutchinson Cancer Research Center and the University of Washington School of Medicine, Seattle, WA
| |
Collapse
|
13
|
The Evolving Role of Allogeneic Stem Cell Transplant in the Era of Molecularly Targeted Agents. Cancer J 2022; 28:78-84. [DOI: 10.1097/ppo.0000000000000575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
14
|
Talami A, Bettelli F, Pioli V, Giusti D, Gilioli A, Colasante C, Galassi L, Giubbolini R, Catellani H, Donatelli F, Maffei R, Martinelli S, Barozzi P, Potenza L, Marasca R, Trenti T, Tagliafico E, Comoli P, Luppi M, Forghieri F. How to Improve Prognostication in Acute Myeloid Leukemia with CBFB-MYH11 Fusion Transcript: Focus on the Role of Molecular Measurable Residual Disease (MRD) Monitoring. Biomedicines 2021; 9:biomedicines9080953. [PMID: 34440157 PMCID: PMC8391269 DOI: 10.3390/biomedicines9080953] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/13/2021] [Accepted: 07/29/2021] [Indexed: 12/12/2022] Open
Abstract
Acute myeloid leukemia (AML) carrying inv(16)/t(16;16), resulting in fusion transcript CBFB-MYH11, belongs to the favorable-risk category. However, even if most patients obtain morphological complete remission after induction, approximately 30% of cases eventually relapse. While well-established clinical features and concomitant cytogenetic/molecular lesions have been recognized to be relevant to predict prognosis at disease onset, the independent prognostic impact of measurable residual disease (MRD) monitoring by quantitative real-time reverse transcriptase polymerase chain reaction (qRT-PCR), mainly in predicting relapse, actually supersedes other prognostic factors. Although the ELN Working Party recently indicated that patients affected with CBFB-MYH11 AML should have MRD assessment at informative clinical timepoints, at least after two cycles of intensive chemotherapy and after the end of treatment, several controversies could be raised, especially on the frequency of subsequent serial monitoring, the most significant MRD thresholds (most commonly 0.1%) and on the best source to be analyzed, namely, bone marrow or peripheral blood samples. Moreover, persisting low-level MRD positivity at the end of treatment is relatively common and not predictive of relapse, provided that transcript levels remain stably below specific thresholds. Rising MRD levels suggestive of molecular relapse/progression should thus be confirmed in subsequent samples. Further prospective studies would be required to optimize post-remission monitoring and to define effective MRD-based therapeutic strategies.
Collapse
Affiliation(s)
- Annalisa Talami
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Azienda Ospedaliero-Universitaria di Modena, 41124 Modena, Italy; (A.T.); (F.B.); (V.P.); (D.G.); (A.G.); (C.C.); (L.G.); (R.G.); (H.C.); (F.D.); (R.M.); (S.M.); (P.B.); (L.P.); (R.M.)
| | - Francesca Bettelli
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Azienda Ospedaliero-Universitaria di Modena, 41124 Modena, Italy; (A.T.); (F.B.); (V.P.); (D.G.); (A.G.); (C.C.); (L.G.); (R.G.); (H.C.); (F.D.); (R.M.); (S.M.); (P.B.); (L.P.); (R.M.)
| | - Valeria Pioli
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Azienda Ospedaliero-Universitaria di Modena, 41124 Modena, Italy; (A.T.); (F.B.); (V.P.); (D.G.); (A.G.); (C.C.); (L.G.); (R.G.); (H.C.); (F.D.); (R.M.); (S.M.); (P.B.); (L.P.); (R.M.)
| | - Davide Giusti
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Azienda Ospedaliero-Universitaria di Modena, 41124 Modena, Italy; (A.T.); (F.B.); (V.P.); (D.G.); (A.G.); (C.C.); (L.G.); (R.G.); (H.C.); (F.D.); (R.M.); (S.M.); (P.B.); (L.P.); (R.M.)
| | - Andrea Gilioli
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Azienda Ospedaliero-Universitaria di Modena, 41124 Modena, Italy; (A.T.); (F.B.); (V.P.); (D.G.); (A.G.); (C.C.); (L.G.); (R.G.); (H.C.); (F.D.); (R.M.); (S.M.); (P.B.); (L.P.); (R.M.)
| | - Corrado Colasante
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Azienda Ospedaliero-Universitaria di Modena, 41124 Modena, Italy; (A.T.); (F.B.); (V.P.); (D.G.); (A.G.); (C.C.); (L.G.); (R.G.); (H.C.); (F.D.); (R.M.); (S.M.); (P.B.); (L.P.); (R.M.)
| | - Laura Galassi
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Azienda Ospedaliero-Universitaria di Modena, 41124 Modena, Italy; (A.T.); (F.B.); (V.P.); (D.G.); (A.G.); (C.C.); (L.G.); (R.G.); (H.C.); (F.D.); (R.M.); (S.M.); (P.B.); (L.P.); (R.M.)
| | - Rachele Giubbolini
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Azienda Ospedaliero-Universitaria di Modena, 41124 Modena, Italy; (A.T.); (F.B.); (V.P.); (D.G.); (A.G.); (C.C.); (L.G.); (R.G.); (H.C.); (F.D.); (R.M.); (S.M.); (P.B.); (L.P.); (R.M.)
| | - Hillary Catellani
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Azienda Ospedaliero-Universitaria di Modena, 41124 Modena, Italy; (A.T.); (F.B.); (V.P.); (D.G.); (A.G.); (C.C.); (L.G.); (R.G.); (H.C.); (F.D.); (R.M.); (S.M.); (P.B.); (L.P.); (R.M.)
| | - Francesca Donatelli
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Azienda Ospedaliero-Universitaria di Modena, 41124 Modena, Italy; (A.T.); (F.B.); (V.P.); (D.G.); (A.G.); (C.C.); (L.G.); (R.G.); (H.C.); (F.D.); (R.M.); (S.M.); (P.B.); (L.P.); (R.M.)
| | - Rossana Maffei
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Azienda Ospedaliero-Universitaria di Modena, 41124 Modena, Italy; (A.T.); (F.B.); (V.P.); (D.G.); (A.G.); (C.C.); (L.G.); (R.G.); (H.C.); (F.D.); (R.M.); (S.M.); (P.B.); (L.P.); (R.M.)
| | - Silvia Martinelli
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Azienda Ospedaliero-Universitaria di Modena, 41124 Modena, Italy; (A.T.); (F.B.); (V.P.); (D.G.); (A.G.); (C.C.); (L.G.); (R.G.); (H.C.); (F.D.); (R.M.); (S.M.); (P.B.); (L.P.); (R.M.)
| | - Patrizia Barozzi
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Azienda Ospedaliero-Universitaria di Modena, 41124 Modena, Italy; (A.T.); (F.B.); (V.P.); (D.G.); (A.G.); (C.C.); (L.G.); (R.G.); (H.C.); (F.D.); (R.M.); (S.M.); (P.B.); (L.P.); (R.M.)
| | - Leonardo Potenza
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Azienda Ospedaliero-Universitaria di Modena, 41124 Modena, Italy; (A.T.); (F.B.); (V.P.); (D.G.); (A.G.); (C.C.); (L.G.); (R.G.); (H.C.); (F.D.); (R.M.); (S.M.); (P.B.); (L.P.); (R.M.)
| | - Roberto Marasca
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Azienda Ospedaliero-Universitaria di Modena, 41124 Modena, Italy; (A.T.); (F.B.); (V.P.); (D.G.); (A.G.); (C.C.); (L.G.); (R.G.); (H.C.); (F.D.); (R.M.); (S.M.); (P.B.); (L.P.); (R.M.)
| | - Tommaso Trenti
- Department of Laboratory Medicine and Pathology, Unità Sanitaria Locale, 41126 Modena, Italy;
| | - Enrico Tagliafico
- Center for Genome Research, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Azienda Ospedaliero-Universitaria di Modena, 41124 Modena, Italy;
| | - Patrizia Comoli
- Pediatric Hematology/Oncology Unit and Cell Factory, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San Matteo, 27100 Pavia, Italy;
| | - Mario Luppi
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Azienda Ospedaliero-Universitaria di Modena, 41124 Modena, Italy; (A.T.); (F.B.); (V.P.); (D.G.); (A.G.); (C.C.); (L.G.); (R.G.); (H.C.); (F.D.); (R.M.); (S.M.); (P.B.); (L.P.); (R.M.)
- Correspondence: (M.L.); (F.F.); Tel.: +39-059-4222447 (F.F.); Fax: +39-059-4222386 (F.F.)
| | - Fabio Forghieri
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Azienda Ospedaliero-Universitaria di Modena, 41124 Modena, Italy; (A.T.); (F.B.); (V.P.); (D.G.); (A.G.); (C.C.); (L.G.); (R.G.); (H.C.); (F.D.); (R.M.); (S.M.); (P.B.); (L.P.); (R.M.)
- Correspondence: (M.L.); (F.F.); Tel.: +39-059-4222447 (F.F.); Fax: +39-059-4222386 (F.F.)
| |
Collapse
|
15
|
Prognostic value of measurable residual disease at allogeneic transplantation for adults with core binding factor acute myeloid leukemia in complete remission. Bone Marrow Transplant 2021; 56:2779-2787. [PMID: 34272486 DOI: 10.1038/s41409-021-01409-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 07/05/2021] [Indexed: 12/14/2022]
Abstract
Pretransplant measurable residual disease (MRD) has been shown to be associated with relapse incidence following allogeneic hematopoietic cell transplantation (HCT) for acute myeloid leukemia (AML). However, it remains less clear whether pretransplant MRD status affects transplant outcomes in core binding factor AML (CBF-AML). We retrospectively evaluated the effect of pretransplant MRD, which was measured by a polymerase chain reaction of RUNX1-RUNX1T1 or CBFB-MYH11 fusion transcripts, on transplant outcomes for a cohort of 959 adult patients with t(8;21) or inv(16) AML treated by allogeneic HCT during complete remission (CR), between 2000 and 2018. Multivariate analysis showed the absence of pretransplant MRD was significantly associated with lower relapse (hazard ratio [HR], 0.46; P < 0.001), treatment failure (HR, 0.66; P = 0.004), and overall mortality (HR, 0.72; P = 0.037) among patients with t(8;21). However, pretransplant MRD negativity was not associated with relapse (HR, 0.73; P = 0.420), treatment failure (HR, 0.64; P = 0.063), or overall mortality (HR, 0.69; P = 0.149) among patients with inv(16). In subgroup analysis, pretransplant MRD status significantly affected relapse and LFS only in patients with t(8;21) undergoing allogeneic HCT during CR2. In conclusion, our data demonstrate the different prognostic values of pretransplant MRD for CBF-AML, highlighting the need to develop effective therapeutic strategies for such MRD-positive patients.
Collapse
|
16
|
Loke J, Buka R, Craddock C. Allogeneic Stem Cell Transplantation for Acute Myeloid Leukemia: Who, When, and How? Front Immunol 2021; 12:659595. [PMID: 34012445 PMCID: PMC8126705 DOI: 10.3389/fimmu.2021.659595] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/23/2021] [Indexed: 12/28/2022] Open
Abstract
Although the majority of patients with acute myeloid leukemia (AML) treated with intensive chemotherapy achieve a complete remission (CR), many are destined to relapse if treated with intensive chemotherapy alone. Allogeneic stem cell transplant (allo-SCT) represents a pivotally important treatment strategy in fit adults with AML because of its augmented anti-leukemic activity consequent upon dose intensification and the genesis of a potent graft-versus-leukemia effect. Increased donor availability coupled with the advent of reduced intensity conditioning (RIC) regimens has dramatically increased transplant access and consequently allo-SCT is now a key component of the treatment algorithm in both patients with AML in first CR (CR1) and advanced disease. Although transplant related mortality has fallen steadily over recent decades there has been no real progress in reducing the risk of disease relapse which remains the major cause of transplant failure and represents a major area of unmet need. A number of therapeutic approaches with the potential to reduce disease relapse, including advances in induction chemotherapy, the development of novel conditioning regimens and the emergence of the concept of post-transplant maintenance, are currently under development. Furthermore, the use of genetics and measurable residual disease technology in disease assessment has improved the identification of patients who are likely to benefit from an allo-SCT which now represents an increasingly personalized therapy. Future progress in optimizing transplant outcome will be dependent on the successful delivery by the international transplant community of randomized prospective clinical trials which permit examination of current and future transplant therapies with the same degree of rigor as is routinely adopted for non-transplant therapies.
Collapse
Affiliation(s)
- Justin Loke
- Centre for Clinical Haematology, Queen Elizabeth Hospital, Birmingham, United Kingdom
- CRUK Clinical Trials Unit, University of Birmingham, Birmingham, United Kingdom
| | - Richard Buka
- Centre for Clinical Haematology, Queen Elizabeth Hospital, Birmingham, United Kingdom
- CRUK Clinical Trials Unit, University of Birmingham, Birmingham, United Kingdom
| | - Charles Craddock
- Centre for Clinical Haematology, Queen Elizabeth Hospital, Birmingham, United Kingdom
- CRUK Clinical Trials Unit, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
17
|
Allogeneic Hematopoietic Stem Cell Transplantation Improved Survival for Adult Core Binding Factor Acute Myelogenous Leukemia Patients with Intermediate- and Adverse-Risk Genetics in the 2017 European LeukemiaNet. Transplant Cell Ther 2020; 27:173.e1-173.e9. [PMID: 33830030 DOI: 10.1016/j.jtct.2020.10.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 10/08/2020] [Accepted: 10/21/2020] [Indexed: 12/21/2022]
Abstract
The use of allogeneic hematopoietic stem cell transplantation (allo-HSCT) for consolidation therapy in patients with core binding factor (CBF) acute myelogenous leukemia (AML) with intermediate- and adverse-risk genetics remains controversial. We retrospectively analyzed the clinical outcomes of 286 CBF-AML patients with intermediate- and adverse-risk genetics in first complete remission following consolidation with chemotherapy (n = 122), auto-HSCT (n = 27), or allo-HSCT (n = 137) between January 2009 and December 2018 at our center. Patients with allo-HSCT showed superior 5-year overall survival (OS; 74% versus 38% or 49%; P < .001) and progression-free survival (PFS; 74% versus 26% or 49%; P < .001) and lower cumulative incidence of relapse (CIR; 9% versus 69% or 31%; P < .001) compared with chemotherapy alone or auto-HSCT. In the allo-HSCT group, minimal residual disease (MRD) at the second and third months after allo-HSCT could predict relapse in t(8;21) patients (2 months: PCIR = .002; 3 months: PCIR < .001) but not in inv(16) patients. Moreover, positive MRD after 2 courses of consolidation chemotherapy before allo-HSCT was an independent risk factor for survival in CBF-AML patients with intermediate- and adverse-risk genetics, whereas haploidentical donor (haplo-) HSCT could overcome the adverse prognosis (5-year OS, 87%; 5-year PFS, 81%; 5-year CIR, 7%). Allo-HSCT could be the optimal first-line consolidation therapy for patients with intermediate- and adverse-risk genetics, and haplo-HSCT could improve survival for patients with positive MRD after 2 courses of consolidation chemotherapy.
Collapse
|
18
|
Zhao Z, Zhou Y, Wang J, Zhang T, Li J, Zhang B, Li Q, Deng S. The value of 18F-FDG PET/CT in the prediction of clinical outcomes of patients with acute leukemia treated with allogeneic hematopoietic stem cell transplantation. Oncol Lett 2020; 20:175. [PMID: 32934742 PMCID: PMC7471646 DOI: 10.3892/ol.2020.12036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 06/12/2020] [Indexed: 11/26/2022] Open
Abstract
The present study aimed to determine whether 18F-FDG PET/CT performed before and/or after allogeneic hematopoietic stem cell transplantation (allo-HSCT) can predict clinical outcomes in acute leukemia (AL). A total of 79 examinations comprising 72 patients with AL who underwent 18F-FDG PET/CT before and/or after allo-HSCT were retrospectively enrolled between January 2011 and January 2019. Outcomes were assessed using overall survival (OS) and disease-free survival (DFS). A total of 63 examinations were PET-positive, while 16 examinations were PET-negative. Increased BM and splenic 18F-FDG uptake were observed in 24 (19/79) and 14% (11/79) of examinations, respectively. 18F-FDG-avid lymph nodes were observed in 38% (30/79) of examinations. ENEMES involvement was detected in 44% (35/79) of examinations. The presence of ENEMES involvement [OS hazard ratio (HR), 6.399; 95% confidence interval (CI), 1.843–22.224; P=0.003; post-HSCT OS: HR, 7.203; 95% CI, 1.510–34.369; P=0.013; DFS HR, 3.671; 95% CI, 1.145–11.768; P=0.029], post-transplantation minimal residual disease (DFS HR, 4.381; 95% CI, 1.594–12.040; P=0.004; pre-HSCT OS HR, 11.455; 95% CI, 1.336–98.179; P=0.026) and disease status (OS HR, 0.330; 95% CI, 0.128–0.848; P=0.021; post-HSCT OS HR, 0.195; 95% CI, 0.050–0.762; P=0.019; DFS: HR, 0.278; 95% CI, 0.091–0.851; P=0.025) could serve as an adverse prognostic factor in patients with AL treated with allo-HSCT. 18F-FDG PET/CT before and/or after allo-HSCT was a predictor for OS and DFS in patients with AL. ENEMES involvement detected using 18F-FDG PET/CT may help identify patients with AL who are likely to have unfavorable clinical outcomes.
Collapse
Affiliation(s)
- Zixuan Zhao
- Department of Nuclear Medicine, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Yeye Zhou
- Department of Nuclear Medicine, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Jing Wang
- Department of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Tongtong Zhang
- Department of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Jihui Li
- Department of Nuclear Medicine, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Bin Zhang
- Department of Nuclear Medicine, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Qingru Li
- Department of Nuclear Medicine, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Shengming Deng
- Department of Nuclear Medicine, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| |
Collapse
|
19
|
Hu GH, Cheng YF, Lu AD, Wang Y, Zuo YX, Yan CH, Wu J, Sun YQ, Suo P, Chen YH, Chen H, Jia YP, Liu KY, Han W, Xu LP, Zhang LP, Huang XJ. Allogeneic hematopoietic stem cell transplantation can improve the prognosis of high-risk pediatric t(8;21) acute myeloid leukemia in first remission based on MRD-guided treatment. BMC Cancer 2020; 20:553. [PMID: 32539815 PMCID: PMC7294617 DOI: 10.1186/s12885-020-07043-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 06/04/2020] [Indexed: 12/22/2022] Open
Abstract
Background Pediatric acute myeloid leukemia (AML) with t(8;21) (q22;q22) is classified as a low-risk group. However, relapse is still the main factor affecting survival. We aimed to investigate the effect of allogeneic hematopoietic stem cell transplantation (allo-HSCT) on reducing recurrence and improving the survival of high-risk pediatric t(8;21) AML based on minimal residual disease (MRD)-guided treatment, and to further explore the prognostic factors to guide risk stratification treatment and identify who will benefit from allo-HSCT. Methods Overall, 129 newly diagnosed pediatric t(8;21) AML patients were included in this study. Patients were divided into high-risk and low-risk group according to RUNX1-RUNX1T1 transcript levels after 2 cycles of consolidation chemotherapy. High-risk patients were divided into HSCT group and chemotherapy group according to their treatment choices. The characteristics and outcomes of 125 patients were analyzed. Results For high-risk patients, allo-HSCT could improve 5-year relapse-free survival (RFS) rate compared to chemotherapy (87.4% vs. 61.9%; P = 0.026). Five-year overall survival (OS) rate in high-risk HSCT group had a trend for better than that in high-risk chemotherapy group (82.8% vs. 71.4%; P = 0.260). The 5-year RFS rate of patients with a c-KIT mutation in high-risk HSCT group had a trend for better than that of patients with a c-KIT mutation in high-risk chemotherapy group (82.9% vs. 75%; P = 0.400). Extramedullary infiltration (EI) at diagnosis was associated with a high cumulative incidence of relapse for high-risk patients (50% vs. 18.4%; P = 0.004); allo-HSCT can improve the RFS (P = 0.009). Conclusions allo-HSCT can improve the prognosis of high-risk pediatric t(8;21) AML based on MRD-guided treatment. Patients with a c-KIT mutation may benefit from allo-HSCT. EI is an independent prognostic factor for high-risk patients and allo-HSCT can improve the prognosis.
Collapse
Affiliation(s)
- Guan-Hua Hu
- Department of Pediatrics, Peking University People's Hospital, Peking University, No. 11, Xizhimen South Street, Xicheng District, Beijing, 100044, China
| | - Yi-Fei Cheng
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking-Tsinghua Center for Life Science, Research Unit of Key Technique for Diagnosis and Treatment of Hematologic Malignancies, Chinese Academic of Medical Sciences, No.11, Xizhimen South Street, Xicheng District, Beijing, 100044, China
| | - Ai-Dong Lu
- Department of Pediatrics, Peking University People's Hospital, Peking University, No. 11, Xizhimen South Street, Xicheng District, Beijing, 100044, China
| | - Yu Wang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking-Tsinghua Center for Life Science, Research Unit of Key Technique for Diagnosis and Treatment of Hematologic Malignancies, Chinese Academic of Medical Sciences, No.11, Xizhimen South Street, Xicheng District, Beijing, 100044, China
| | - Ying-Xi Zuo
- Department of Pediatrics, Peking University People's Hospital, Peking University, No. 11, Xizhimen South Street, Xicheng District, Beijing, 100044, China
| | - Chen-Hua Yan
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking-Tsinghua Center for Life Science, Research Unit of Key Technique for Diagnosis and Treatment of Hematologic Malignancies, Chinese Academic of Medical Sciences, No.11, Xizhimen South Street, Xicheng District, Beijing, 100044, China
| | - Jun Wu
- Department of Pediatrics, Peking University People's Hospital, Peking University, No. 11, Xizhimen South Street, Xicheng District, Beijing, 100044, China
| | - Yu-Qian Sun
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking-Tsinghua Center for Life Science, Research Unit of Key Technique for Diagnosis and Treatment of Hematologic Malignancies, Chinese Academic of Medical Sciences, No.11, Xizhimen South Street, Xicheng District, Beijing, 100044, China
| | - Pan Suo
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking-Tsinghua Center for Life Science, Research Unit of Key Technique for Diagnosis and Treatment of Hematologic Malignancies, Chinese Academic of Medical Sciences, No.11, Xizhimen South Street, Xicheng District, Beijing, 100044, China
| | - Yu-Hong Chen
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking-Tsinghua Center for Life Science, Research Unit of Key Technique for Diagnosis and Treatment of Hematologic Malignancies, Chinese Academic of Medical Sciences, No.11, Xizhimen South Street, Xicheng District, Beijing, 100044, China
| | - Huan Chen
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking-Tsinghua Center for Life Science, Research Unit of Key Technique for Diagnosis and Treatment of Hematologic Malignancies, Chinese Academic of Medical Sciences, No.11, Xizhimen South Street, Xicheng District, Beijing, 100044, China
| | - Yue-Ping Jia
- Department of Pediatrics, Peking University People's Hospital, Peking University, No. 11, Xizhimen South Street, Xicheng District, Beijing, 100044, China
| | - Kai-Yan Liu
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking-Tsinghua Center for Life Science, Research Unit of Key Technique for Diagnosis and Treatment of Hematologic Malignancies, Chinese Academic of Medical Sciences, No.11, Xizhimen South Street, Xicheng District, Beijing, 100044, China
| | - Wei Han
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking-Tsinghua Center for Life Science, Research Unit of Key Technique for Diagnosis and Treatment of Hematologic Malignancies, Chinese Academic of Medical Sciences, No.11, Xizhimen South Street, Xicheng District, Beijing, 100044, China
| | - Lan-Ping Xu
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking-Tsinghua Center for Life Science, Research Unit of Key Technique for Diagnosis and Treatment of Hematologic Malignancies, Chinese Academic of Medical Sciences, No.11, Xizhimen South Street, Xicheng District, Beijing, 100044, China
| | - Le-Ping Zhang
- Department of Pediatrics, Peking University People's Hospital, Peking University, No. 11, Xizhimen South Street, Xicheng District, Beijing, 100044, China.
| | - Xiao-Jun Huang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking-Tsinghua Center for Life Science, Research Unit of Key Technique for Diagnosis and Treatment of Hematologic Malignancies, Chinese Academic of Medical Sciences, No.11, Xizhimen South Street, Xicheng District, Beijing, 100044, China.
| |
Collapse
|
20
|
Litzow MR. The increasing complexity of the management of core-binding factor acute myeloid leukemia. Haematologica 2020; 105:1475-1477. [PMID: 32482754 DOI: 10.3324/haematol.2020.249110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Mark R Litzow
- Division of Hematology and Transplant Center, Mayo Clinic Rochester, Rochester, MN, USA
| |
Collapse
|
21
|
High rate of durable remissions post autologous stem cell transplantation for core-binding factor acute myeloid leukaemia in second complete remission. Bone Marrow Transplant 2020; 55:2207-2210. [PMID: 32376971 DOI: 10.1038/s41409-020-0924-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/18/2020] [Accepted: 04/23/2020] [Indexed: 11/08/2022]
|