1
|
Ciantra Z, Paraskevopoulou V, Aifantis I. The rewired immune microenvironment in leukemia. Nat Immunol 2025; 26:351-365. [PMID: 40021898 DOI: 10.1038/s41590-025-02096-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 01/15/2025] [Indexed: 03/03/2025]
Abstract
Leukemias are a class of human cancers that originate from hematopoietic progenitors and are characterized by extensive remodeling of the immune microenvironment. Leukemic cells, on transformation, acquire the ability to evade immune recognition but, despite undergoing genetic and epigenetic changes, retain their characteristic immature immune signature. For this and other reasons, leukemias are often refractory to immune therapies. In the present Review, we cover these areas as a means of improving outcomes from a deeper understanding of immune rewiring, inflammatory signaling and the barriers to successful implementation of immune therapies.
Collapse
Affiliation(s)
- Zoe Ciantra
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
- Laura & Isaac Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, NY, USA
| | - Varvara Paraskevopoulou
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
- Laura & Isaac Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, NY, USA
| | - Iannis Aifantis
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA.
- Laura & Isaac Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
2
|
Zhu P, Yang L, Wu Y, Shi J, Lai X, Liu L, Ye Y, Yu J, Zhao Y, Yuan X, Fu H, Cai Z, Huang H, Luo Y. Graft CD8 T-cell-based risk system predicts survival in antithymocyte globulin-based myeloablative haploidentical peripheral blood stem cell transplantation. Clin Transl Immunology 2024; 13:e1484. [PMID: 38223258 PMCID: PMC10786671 DOI: 10.1002/cti2.1484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/04/2023] [Accepted: 01/04/2024] [Indexed: 01/16/2024] Open
Abstract
Objective This study investigated the cellular composition of peripheral blood grafts for anti-thymocyte globulin (ATG)-based myeloablative haploidentical haematopoietic stem cell transplantation (haplo-HSCT). Methods Clinical characteristics were retrospectively evaluated in a training cohort with ATG-based myeloablative haplo-HSCT between January 2016 and February 2020 and confirmed in a validation cohort between March 2020 and June 2021. Results A higher dose of graft CD8+ T cells (≥ 0.85 × 108 kg-1) was significantly improved overall survival (OS; hazard ratio [HR], 1.750; P = 0.002) and disease-free survival (DFS; HR, 1.751; P < 0.001) in the training cohort, according to multivariate Cox regression analysis. Higher doses of mononuclear cells (MNCs) demonstrated better OS (HR, 1.517; P = 0.038) and DFS (HR, 1.532; P = 0.027). Older patient age (> 46 years), older donor age (≥ 50 years) and a higher refined disease risk index (rDRI) were also related to OS. A graft CD8+ T-cell risk system based on graft CD8+ T-cell dose, donor age and rDRI was constructed using a nomogram model after LASSO Cox regression analysis. It showed acceptable discrimination, with a C-index of 0.62 and 0.63, respectively. Graft CD8+ T-cell dose was negatively correlated with donor age (P < 0.001) and positively correlated with a higher lymphocyte percentage in the peripheral blood before mobilisation (P < 0.001). Conclusion A higher CD8+ T-cell dose in peripheral blood-derived grafts improves patients' survival with ATG-based myeloablative haplo-HSCT. Younger donors with higher lymphocyte percentages improved patients' survival with an intermediate rDRI risk.
Collapse
Affiliation(s)
- Panpan Zhu
- Bone Marrow Transplantation Center, the First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Liangzhu LaboratoryZhejiang University Medical CenterHangzhouChina
- Institute of HematologyZhejiang UniversityHangzhouChina
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity TherapyHangzhouChina
| | - Luxin Yang
- Bone Marrow Transplantation Center, the First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Liangzhu LaboratoryZhejiang University Medical CenterHangzhouChina
- Institute of HematologyZhejiang UniversityHangzhouChina
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity TherapyHangzhouChina
| | - Yibo Wu
- Bone Marrow Transplantation Center, the First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Liangzhu LaboratoryZhejiang University Medical CenterHangzhouChina
- Institute of HematologyZhejiang UniversityHangzhouChina
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity TherapyHangzhouChina
| | - Jimin Shi
- Bone Marrow Transplantation Center, the First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Liangzhu LaboratoryZhejiang University Medical CenterHangzhouChina
- Institute of HematologyZhejiang UniversityHangzhouChina
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity TherapyHangzhouChina
| | - Xiaoyu Lai
- Bone Marrow Transplantation Center, the First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Liangzhu LaboratoryZhejiang University Medical CenterHangzhouChina
- Institute of HematologyZhejiang UniversityHangzhouChina
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity TherapyHangzhouChina
| | - Lizhen Liu
- Bone Marrow Transplantation Center, the First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Liangzhu LaboratoryZhejiang University Medical CenterHangzhouChina
- Institute of HematologyZhejiang UniversityHangzhouChina
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity TherapyHangzhouChina
| | - Yishan Ye
- Bone Marrow Transplantation Center, the First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Liangzhu LaboratoryZhejiang University Medical CenterHangzhouChina
- Institute of HematologyZhejiang UniversityHangzhouChina
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity TherapyHangzhouChina
| | - Jian Yu
- Bone Marrow Transplantation Center, the First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Liangzhu LaboratoryZhejiang University Medical CenterHangzhouChina
- Institute of HematologyZhejiang UniversityHangzhouChina
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity TherapyHangzhouChina
| | - Yanmin Zhao
- Bone Marrow Transplantation Center, the First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Liangzhu LaboratoryZhejiang University Medical CenterHangzhouChina
- Institute of HematologyZhejiang UniversityHangzhouChina
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity TherapyHangzhouChina
| | - Xiaolin Yuan
- Bone Marrow Transplantation Center, the First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Liangzhu LaboratoryZhejiang University Medical CenterHangzhouChina
- Institute of HematologyZhejiang UniversityHangzhouChina
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity TherapyHangzhouChina
| | - Huarui Fu
- Bone Marrow Transplantation Center, the First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Liangzhu LaboratoryZhejiang University Medical CenterHangzhouChina
- Institute of HematologyZhejiang UniversityHangzhouChina
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity TherapyHangzhouChina
| | - Zhen Cai
- Bone Marrow Transplantation Center, the First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Liangzhu LaboratoryZhejiang University Medical CenterHangzhouChina
- Institute of HematologyZhejiang UniversityHangzhouChina
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity TherapyHangzhouChina
| | - He Huang
- Bone Marrow Transplantation Center, the First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Liangzhu LaboratoryZhejiang University Medical CenterHangzhouChina
- Institute of HematologyZhejiang UniversityHangzhouChina
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity TherapyHangzhouChina
| | - Yi Luo
- Bone Marrow Transplantation Center, the First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Liangzhu LaboratoryZhejiang University Medical CenterHangzhouChina
- Institute of HematologyZhejiang UniversityHangzhouChina
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity TherapyHangzhouChina
| |
Collapse
|
3
|
Çubukçu HC, Mesutoğlu PY, Seval GC, Beksaç M. Ex vivo expansion of natural killer cells for hematological cancer immunotherapy: a systematic review and meta-analysis. Clin Exp Med 2023; 23:2503-2533. [PMID: 36333526 DOI: 10.1007/s10238-022-00923-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022]
Abstract
The present systematic review aimed to investigate natural killer (NK) cell ex vivo expansion protocols within the scope of clinical trials targeting hematological cancer and to conduct a meta-analysis to assess the effect of NK cell infusion on survival. Research articles of clinical studies in which cell products produced by ex vivo expansion, consisting of a certain amount of NK cells and infused to patients with hematological cancer, were included in the systematic review. We conducted a proportion analysis with random effects for product purity and viability values. Studies having control groups were included in the survival meta-analysis. Among 11.028 identified records, 21 were included in the systematic review. We observed statistically significant heterogeneity for viability (I2 = 97.83%, p < 0.001) and purity values (I2 = 99.95%, p < 0.001), which was attributed to the diversity among isolation and expansion protocols. In addition, the survival meta-analysis findings suggested that NK cell therapy favors disease-free survival (DFS) of patients with myeloid malignancies but limited to only two clinical studies (odds ratio = 3.40 (confidence interval:1.27-9.10), p = 0.01). While included protocols yielded cell products with acceptable viability, the utility of immunomagnetic methods; feeder cells such as K562 expressing membrane-bound IL15 and 4-1BBL or expressing membrane-bound IL21 and 4-1BBL might be preferable to achieve better purity. In conclusion, NK cell therapy has a potential to improve DFS of patients with myeloid malignancies.
Collapse
Affiliation(s)
- Hikmet Can Çubukçu
- Interdisciplinary Stem Cells and Regenerative Medicine, Ankara University Stem Cell Institute, Ankara, Turkey
- Autism, Special Mental Needs and Rare Diseases Department, General Directorate of Health Services, Turkish Ministry of Health, Ankara, Turkey
| | | | | | - Meral Beksaç
- Department of Hematology, Ankara University, Ankara, Turkey.
| |
Collapse
|
4
|
Naik S, Triplett BM. Selective depletion of naïve T cells by targeting CD45RA. Front Oncol 2023; 12:1009143. [PMID: 36776371 PMCID: PMC9911795 DOI: 10.3389/fonc.2022.1009143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 11/22/2022] [Indexed: 01/28/2023] Open
Affiliation(s)
- Swati Naik
- *Correspondence: Swati Naik, ; Brandon M. Triplett,
| | | |
Collapse
|
5
|
Serroukh Y, Hébert J, Busque L, Mercier F, Rudd CE, Assouline S, Lachance S, Delisle JS. Blasts in context: the impact of the immune environment on acute myeloid leukemia prognosis and treatment. Blood Rev 2023; 57:100991. [PMID: 35941029 DOI: 10.1016/j.blre.2022.100991] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/22/2022] [Accepted: 07/13/2022] [Indexed: 01/28/2023]
Abstract
Acute myeloid leukemia (AML) is a cancer that originates from the bone marrow (BM). Under physiological conditions, the bone marrow supports the homeostasis of immune cells and hosts memory lymphoid cells. In this review, we summarize our present understanding of the role of the immune microenvironment on healthy bone marrow and on the development of AML, with a focus on T cells and other lymphoid cells. The types and function of different immune cells involved in the AML microenvironment as well as their putative role in the onset of disease and response to treatment are presented. We also describe how the immune context predicts the response to immunotherapy in AML and how these therapies modulate the immune status of the bone marrow. Finally, we focus on allogeneic stem cell transplantation and summarize the current understanding of the immune environment in the post-transplant bone marrow, the factors associated with immune escape and relevant strategies to prevent and treat relapse.
Collapse
Affiliation(s)
- Yasmina Serroukh
- Centre de recherche de l'Hôpital Maisonneuve-Rosemont, 5415 Boul. de L'Assomption, Montréal, Canada; Erasmus Medical center Cancer Institute, University Medical Center Rotterdam, Department of Hematology, Rotterdam, the Netherlands; Department of Medicine, Université de Montréal, Montreal, Canada; Institute for Hematology-Oncology, Transplantation, Cell and Gene Therapy, Hôpital Maisonneuve-Rosemont, Montreal, Canada.
| | - Josée Hébert
- Centre de recherche de l'Hôpital Maisonneuve-Rosemont, 5415 Boul. de L'Assomption, Montréal, Canada; Department of Medicine, Université de Montréal, Montreal, Canada; Institute for Hematology-Oncology, Transplantation, Cell and Gene Therapy, Hôpital Maisonneuve-Rosemont, Montreal, Canada; The Quebec Leukemia Cell Bank, Canada
| | - Lambert Busque
- Centre de recherche de l'Hôpital Maisonneuve-Rosemont, 5415 Boul. de L'Assomption, Montréal, Canada; Department of Medicine, Université de Montréal, Montreal, Canada; Institute for Hematology-Oncology, Transplantation, Cell and Gene Therapy, Hôpital Maisonneuve-Rosemont, Montreal, Canada
| | - François Mercier
- Division of Hematology and Experimental Medicine, Department of Medicine, McGill University, 3755 Côte-Sainte-Catherine Road, Montreal, Canada; Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Côte-Sainte-Catherine Road, Montreal, Canada
| | - Christopher E Rudd
- Centre de recherche de l'Hôpital Maisonneuve-Rosemont, 5415 Boul. de L'Assomption, Montréal, Canada; Department of Medicine, Université de Montréal, Montreal, Canada; Institute for Hematology-Oncology, Transplantation, Cell and Gene Therapy, Hôpital Maisonneuve-Rosemont, Montreal, Canada
| | - Sarit Assouline
- Division of Hematology and Experimental Medicine, Department of Medicine, McGill University, 3755 Côte-Sainte-Catherine Road, Montreal, Canada; Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Côte-Sainte-Catherine Road, Montreal, Canada
| | - Silvy Lachance
- Department of Medicine, Université de Montréal, Montreal, Canada; Institute for Hematology-Oncology, Transplantation, Cell and Gene Therapy, Hôpital Maisonneuve-Rosemont, Montreal, Canada
| | - Jean-Sébastien Delisle
- Centre de recherche de l'Hôpital Maisonneuve-Rosemont, 5415 Boul. de L'Assomption, Montréal, Canada; Department of Medicine, Université de Montréal, Montreal, Canada; Institute for Hematology-Oncology, Transplantation, Cell and Gene Therapy, Hôpital Maisonneuve-Rosemont, Montreal, Canada
| |
Collapse
|
6
|
Saliba RM, Alousi AM, Pidala J, Arora M, Spellman SR, Hemmer MT, Wang T, Abboud C, Ahmed S, Antin JH, Beitinjaneh A, Buchbinder D, Byrne M, Cahn JY, Choe H, Hanna R, Hematti P, Kamble RT, Kitko CL, Laughlin M, Lekakis L, MacMillan ML, Martino R, Mehta PA, Nishihori T, Patel SS, Perales MA, Rangarajan HG, Ringdén O, Rosenthal J, Savani BN, Schultz KR, Seo S, Teshima T, van der Poel M, Verdonck LF, Weisdorf D, Wirk B, Yared JA, Schriber J, Champlin RE, Ciurea SO. Characteristics of Graft-Versus-Host Disease (GvHD) After Post-Transplantation Cyclophosphamide Versus Conventional GvHD Prophylaxis. Transplant Cell Ther 2022; 28:681-693. [PMID: 35853610 PMCID: PMC10141544 DOI: 10.1016/j.jtct.2022.07.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 06/23/2022] [Accepted: 07/12/2022] [Indexed: 02/02/2023]
Abstract
Post-transplantation cyclophosphamide (PTCy) has been shown to effectively control graft-versus-host disease (GvHD) in haploidentical (Haplo) transplantations. In this retrospective registry study, we compared GvHD organ distribution, severity, and outcomes in patients with GvHD occurring after Haplo transplantation with PTCy GvHD prophylaxis (Haplo/PTCy) versus HLA-matched unrelated donor transplantation with conventional prophylaxis (MUD/conventional). We evaluated 2 cohorts: patients with grade 2 to 4 acute GvHD (aGvHD) including 264 and 1163 recipients of Haplo and MUD transplants; and patients with any chronic GvHD (cGvHD) including 206 and 1018 recipients of Haplo and MUD transplants, respectively. In comparison with MUD/conventional transplantation ± antithymocyte globulin (ATG), grade 3-4 aGvHD (28% versus 39%, P = .001), stage 3-4 lower gastrointestinal (GI) tract aGvHD (14% versus 21%, P = .01), and chronic GI GvHD (21% versus 31%, P = .006) were less common after Haplo/PTCy transplantation. In patients with grade 2-4 aGvHD, cGvHD rate after Haplo/PTCY was also lower (hazard ratio [HR] = .4, P < .001) in comparison with MUD/conventional transplantation without ATG in the nonmyeloablative conditioning setting. Irrespective of the use of ATG, non-relapse mortality rate was lower (HR = .6, P = .01) after Haplo/PTCy transplantation, except for transplants that were from a female donor into a male recipient. In patients with cGvHD, irrespective of ATG use, Haplo/PTCy transplantation had lower non-relapse mortality rates (HR = .6, P = .04). Mortality rate was higher (HR = 1.6, P = .03) during, but not after (HR = .9, P = .6) the first 6 months after cGvHD diagnosis. Our results suggest that PTCy-based GvHD prophylaxis mitigates the development of GI GvHD and may translate into lower GvHD-related non-relapse mortality rate.
Collapse
Affiliation(s)
- Rima M Saliba
- Department of Stem Cell Transplantation and Cellular Therapy, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Amin M Alousi
- Department of Stem Cell Transplantation and Cellular Therapy, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Joseph Pidala
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Mukta Arora
- CIBMTR® (Center for International Blood and Marrow Transplant Research), National Marrow Donor Program/Be the Match, Minneapolis, Minnesota; Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota Medical Center, Minneapolis, Minnesota
| | - Stephen R Spellman
- CIBMTR® (Center for International Blood and Marrow Transplant Research), National Marrow Donor Program/Be the Match, Minneapolis, Minnesota
| | - Michael T Hemmer
- CIBMTR® (Center for International Blood and Marrow Transplant Research), Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Tao Wang
- CIBMTR® (Center for International Blood and Marrow Transplant Research), Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin; Divsion of Biostatistics, Institute for Health and Equity, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Camille Abboud
- Washington University in St. Louis School of Medicine, Division of Oncology, Section of BMT and Leukemia, St. Louis, Missouri
| | - Sairah Ahmed
- Department of Lymphoma-Myeloma, The University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Joseph H Antin
- Division of Hematologic Malignancies, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Amer Beitinjaneh
- Division of Transplantation and Cellular Therapy, University of Miami Hospital and Clinics, Sylvester Comprehensive Cancer Center, Miami, Florida
| | - David Buchbinder
- Division of Pediatric Hematology, Children's Hospital of Orange County, Orange, California
| | - Michael Byrne
- Vanderbilt University Medical Center, Nashville, Tennessee
| | - Jean-Yves Cahn
- Department of Hematology, CHU Grenoble Alpes, Université Grenoble Alpes, Grenoble, France
| | - Hannah Choe
- The Ohio State University Wexner Medical Center, James Comprehensive Cancer Center, Columbus, Ohio
| | | | - Peiman Hematti
- Division of Hematology/Oncology/Bone Marrow Transplantation, Department of Medicine, University of Wisconsin, Madison, Wisconsin
| | - Rammurti T Kamble
- Division of Hematology and Oncology, Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas
| | - Carrie L Kitko
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Mary Laughlin
- Medical Director, Cleveland Cord Blood Center, Cleveland, Ohio
| | - Lazaros Lekakis
- Division of Transplantation and Cellular Therapy, University of Miami Hospital and Clinics, Sylvester Comprehensive Cancer Center, Miami, Florida
| | - Margaret L MacMillan
- Blood and Marrow Transplant Program, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota
| | - Rodrigo Martino
- Division of Clinical Hematology, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Parinda A Mehta
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Taiga Nishihori
- Department of Blood & Marrow Transplant and Cellular Immunotherapy (BMT CI), Moffitt Cancer Center, Tampa, Florida
| | - Sagar S Patel
- Blood and Marrow Transplant Program, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - Miguel-Angel Perales
- Adult Bone Marrow Transplant Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Hemalatha G Rangarajan
- Department of Pediatric Hematology, Oncology, Blood and Marrow Transplantation, Nationwide Children's Hospital, Columbus, Ohio
| | - Olov Ringdén
- Translational Cell Therapy Group, CLINTEC (Clinical Science, Intervention and Technology), Karolinska Institutet, Stockholm, Sweden
| | | | - Bipin N Savani
- Division of Hematology/Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Kirk R Schultz
- Department of Pediatric Hematology, Oncology and Bone Marrow Transplant, British Columbia's Children's Hospital, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Sachiko Seo
- Department of Hematology and Oncology, Dokkyo Medical University, Tochigi, Japan
| | - Takanori Teshima
- Department of Hematology, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Marjolein van der Poel
- Department of Internal Medicine, Division of Hematology, GROW School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Leo F Verdonck
- Department of Hematology/Oncology, Isala Clinic, Zwolle, The Netherlands
| | - Daniel Weisdorf
- Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota, Minnesota
| | - Baldeep Wirk
- Bone Marrow Transplant Program, Penn State Cancer Institute, Hershey, Pennsylvania
| | - Jean A Yared
- Transplantation & Cellular Therapy Program, Division of Hematology/Oncology, Department of Medicine, Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, Maryland
| | - Jeffrey Schriber
- Cancer Treatment Centers of America Comprehensive Care and Research Center, Phoenix, Arizona
| | - Richard E Champlin
- Department of Stem Cell Transplantation and Cellular Therapy, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Stefan O Ciurea
- Hematopoietic Stem Cell Transplantation and Cellular Therapy Program, University of California, Irvine, Orange, California
| |
Collapse
|
7
|
Ciurea SO, Kongtim P, Soebbing D, Trikha P, Behbehani G, Rondon G, Olson A, Bashir Q, Gulbis AM, Indreshpal K, Rezvani K, Shpall EJ, Bassett R, Cao K, Martin AS, Devine S, Horowitz M, Pasquini M, Lee DA, Champlin RE. Decrease post-transplant relapse using donor-derived expanded NK-cells. Leukemia 2021; 36:155-164. [PMID: 34312462 PMCID: PMC8727305 DOI: 10.1038/s41375-021-01349-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/02/2021] [Accepted: 07/12/2021] [Indexed: 01/12/2023]
Abstract
In this phase I/II clinical trial, we investigated the safety and efficacy of high doses of mb-IL21 ex vivo expanded donor-derived NK cells to decrease relapse in 25 patients with myeloid malignancies receiving haploidentical stem-cell transplantation (HSCT). Three doses of donor NK cells (1 × 105-1 × 108 cells/kg/dose) were administered on days -2, +7, and +28. Results were compared with an independent contemporaneously treated case-matched cohort of 160 patients from the CIBMTR database.After a median follow-up of 24 months, the 2-year relapse rate was 4% vs. 38% (p = 0.014), and disease-free survival (DFS) was 66% vs. 44% (p = 0.1) in the cases and controls, respectively. Only one relapse occurred in the study group, in a patient with the high level of donor-specific anti-HLA antibodies (DSA) presented before transplantation. The 2-year relapse and DFS in patients without DSA was 0% vs. 40% and 72% vs. 44%, respectively with HR for DFS in controls of 2.64 (p = 0.029). NK cells in recipient blood were increased at day +30 in a dose-dependent manner compared with historical controls, and had a proliferating, mature, highly cytotoxic, NKG2C+/KIR+ phenotype.Administration of donor-derived expanded NK cells after haploidentical transplantation was safe, associated with NK cell-dominant immune reconstitution early post-transplant, preserved T-cell reconstitution, and improved relapse and DFS. TRIAL REGISTRATION: NCT01904136 ( https://clinicaltrials.gov/ct2/show/NCT01904136 ).
Collapse
Affiliation(s)
- Stefan O Ciurea
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
| | - Piyanuch Kongtim
- Division of Hematology/Oncology, Department of Medicine, University of California Irvine, Irvine, CA, USA
| | - Doris Soebbing
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Prashant Trikha
- Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Gregory Behbehani
- Division of Hematology, The Ohio State University, Columbus, OH, USA
| | - Gabriela Rondon
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Amanda Olson
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Qaiser Bashir
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Alison M Gulbis
- Division of Pharmacy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kaur Indreshpal
- GMP Laboratory, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Katayoun Rezvani
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,GMP Laboratory, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Elizabeth J Shpall
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,GMP Laboratory, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Roland Bassett
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kai Cao
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Andrew St Martin
- Center for International Bone Marrow Transplant Research, Milwaukee, WI, USA
| | | | - Mary Horowitz
- Center for International Bone Marrow Transplant Research, Milwaukee, WI, USA
| | - Marcelo Pasquini
- Center for International Bone Marrow Transplant Research, Milwaukee, WI, USA
| | - Dean A Lee
- Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Richard E Champlin
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|