1
|
Poloni A, Raaschou-Jensen K, Mohedo FH, Paolini S, Oliva EN, Buccisano F, Vasconcelos A, Kim I, Makwana A, Bernasconi D, Rosettani B, Prebet T, Santini V. Lenalidomide in Transfusion-Dependent IPSS Low- or Intermediate-1-Risk Myelodysplastic Syndromes and Isolated Del(5q): Results of a European Postauthorization Safety Surveillance Study. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2025; 25:e131-e142. [PMID: 39516085 DOI: 10.1016/j.clml.2024.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/02/2024] [Accepted: 10/02/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND This noninterventional postauthorization safety study assessed the safety and effectiveness of lenalidomide in patients with transfusion-dependent, International Prognostic Scoring System (IPSS) Low- or Intermediate (Int)-1-risk myelodysplastic syndromes (MDS) associated with isolated deletion of 5q (del[5q]) who were treated in routine care. PATIENTS AND METHODS Eligible adult patients in the lenalidomide cohort had transfusion-dependent, IPSS Low- or Int-1-risk MDS and isolated del(5q) and had received ≥ 1 dose of lenalidomide between 2014 and 2022. The primary endpoint was the 24-month cumulative incidence of acute myeloid leukemia (AML) progression. Overall survival (OS) was estimated by Kaplan-Meier analysis and safety data were collected. RESULTS In total, 296 patients received ≥ 1 dose of lenalidomide (lenalidomide cohort, safety population) and 277 had received ≥ 1 complete cycle of lenalidomide (primary population). In the safety population, 44.3% of patients completed 3-year follow-up and 55.1% discontinued, with 33.1% discontinuing due to death. In the primary population, 24-month cumulative incidence of AML progression was 12.7% (95% confidence interval, 8.9%-17.1%) and estimated OS probability was 78.3% at 24 months and 63.9% at 36 months. Grade 3/4 treatment-emergent adverse events were experienced by 67.2% of the safety population, and these led to discontinuation in 35.5% of patients. There were no new safety signals. CONCLUSION These real-world data support the established benefit-risk profile of lenalidomide in transfusion-dependent IPSS Low- or Int-1-risk MDS with isolated del(5q).
Collapse
Affiliation(s)
- Antonella Poloni
- Hematology Clinic, Azienda Ospedaliera Universitaria delle Marche, Università Politecnica delle Marche, Ancona, Italy.
| | | | - Francisca Hernandez Mohedo
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA); Hematology Department, Virgen de las Nieves University Hospital, Granada, Spain
| | - Stefania Paolini
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia "Seràgnoli," Bologna, Italy
| | | | - Francesco Buccisano
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | | | - Iris Kim
- Bristol Myers Squibb, Princeton, NJ
| | | | | | | | | | - Valeria Santini
- MDS Unit, AOU Careggi, MD, PhD, University of Florence, Florence, Italy
| |
Collapse
|
2
|
Faria C, Tzankov A. Progression in Myeloid Neoplasms: Beyond the Myeloblast. Pathobiology 2023; 91:55-75. [PMID: 37232015 PMCID: PMC10857805 DOI: 10.1159/000530940] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 04/28/2023] [Indexed: 05/27/2023] Open
Abstract
Disease progression in myelodysplastic syndromes (MDS), myelodysplastic-myeloproliferative neoplasms (MDS/MPN), and myeloproliferative neoplasms (MPN), altogether referred to as myeloid neoplasms (MN), is a major source of mortality. Apart from transformation to acute myeloid leukemia, the clinical progression of MN is mostly due to the overgrowth of pre-existing hematopoiesis by the MN without an additional transforming event. Still, MN may evolve along other recurrent yet less well-known scenarios: (1) acquisition of MPN features in MDS or (2) MDS features in MPN, (3) progressive myelofibrosis (MF), (4) acquisition of chronic myelomonocytic leukemia (CMML)-like characteristics in MPN or MDS, (5) development of myeloid sarcoma (MS), (6) lymphoblastic (LB) transformation, (7) histiocytic/dendritic outgrowths. These MN-transformation types exhibit a propensity for extramedullary sites (e.g., skin, lymph nodes, liver), highlighting the importance of lesional biopsies in diagnosis. Gain of distinct mutations/mutational patterns seems to be causative or at least accompanying several of the above-mentioned scenarios. MDS developing MPN features often acquire MPN driver mutations (usually JAK2), and MF. Conversely, MPN gaining MDS features develop, e.g., ASXL1, IDH1/2, SF3B1, and/or SRSF2 mutations. Mutations of RAS-genes are often detected in CMML-like MPN progression. MS ex MN is characterized by complex karyotypes, FLT3 and/or NPM1 mutations, and often monoblastic phenotype. MN with LB transformation is associated with secondary genetic events linked to lineage reprogramming leading to the deregulation of ETV6, IKZF1, PAX5, PU.1, and RUNX1. Finally, the acquisition of MAPK-pathway gene mutations may shape MN toward histiocytic differentiation. Awareness of all these less well-known MN-progression types is important to guide optimal individual patient management.
Collapse
Affiliation(s)
- Carlos Faria
- Department of Anatomical Pathology, Coimbra University Hospital, Coimbra, Portugal
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - Alexandar Tzankov
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
3
|
Barone P, Patel S. Myelodysplastic syndrome: Approach to diagnosis in the era of personalized medicine. Semin Diagn Pathol 2023; 40:172-181. [PMID: 37121781 DOI: 10.1053/j.semdp.2023.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 05/02/2023]
Affiliation(s)
- Paul Barone
- NewYork-Presbyterian Hospital, Weill Cornell Campus, United States of America.
| | - Sanjay Patel
- Weill Cornell Medicine, United States of America
| |
Collapse
|
4
|
Patwardhan PP, Aarabi M, Aggarwal N. Genomics of myelodysplastic/myeloproliferative neoplasm. Semin Diagn Pathol 2023; 40:195-201. [PMID: 37105794 DOI: 10.1053/j.semdp.2023.04.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023]
Abstract
Myelodysplastic/ Myeloproliferative neoplasms (MDS/MPN) demonstrate overlapping pathologic and molecular features of myelodysplastic (MDS) and myeloproliferative (MPN) neoplasms. Diagnosis is difficult based on morphology alone, requiring exclusion of various non-neoplastic causes for CBC abnormalities and morphologic findings and other myeloid neoplasms. Identifying a clonal abnormality by cytogenetics or molecular studies has vastly improved our ability to diagnose MDS/MPN and has been incorporated in the different classification schemas. Currently two separate classification systems are in use- The 5th edition WHO and international consensus classification. The two competing classifications emphasize genetic work-up and are similar on many levels; however, they do introduce diagnostic dilemma when diagnosing certain entities such as chronic myelomonocytic leukemia in the presence of NPM1 mutations. The genetic profile overlaps among different subentities; however, the combination and the incidence of mutations; together with the clinical features and morphology helps in further subclassification. In this review, we discuss the advances in molecular characterization of MDS/MPN. We attempt to summarize the differences between the various classification schemes, and highlight the changes made in the diagnostic criteria.
Collapse
Affiliation(s)
| | - Mahmoud Aarabi
- UPMC Medical Genetics & Genomics Laboratories, UPMC Magee-Womens Hospital, Pittsburgh, PA, 15213, United States of America; Departments of Pathology, and Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, United States of America
| | - Nidhi Aggarwal
- University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America.
| |
Collapse
|
5
|
Bănescu C, Tripon F, Muntean C. The Genetic Landscape of Myelodysplastic Neoplasm Progression to Acute Myeloid Leukemia. Int J Mol Sci 2023; 24:5734. [PMID: 36982819 PMCID: PMC10058431 DOI: 10.3390/ijms24065734] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/12/2023] [Accepted: 03/15/2023] [Indexed: 03/19/2023] Open
Abstract
Myelodysplastic neoplasm (MDS) represents a heterogeneous group of myeloid disorders that originate from the hematopoietic stem and progenitor cells that lead to the development of clonal hematopoiesis. MDS was characterized by an increased risk of transformation into acute myeloid leukemia (AML). In recent years, with the aid of next-generation sequencing (NGS), an increasing number of molecular aberrations were discovered, such as recurrent mutations in FLT3, NPM1, DNMT3A, TP53, NRAS, and RUNX1 genes. During MDS progression to leukemia, the order of gene mutation acquisition is not random and is important when considering the prognostic impact. Moreover, the co-occurrence of certain gene mutations is not random; some of the combinations of gene mutations seem to have a high frequency (ASXL1 and U2AF1), while the co-occurrence of mutations in splicing factor genes is rarely observed. Recent progress in the understanding of molecular events has led to MDS transformation into AML and unraveling the genetic signature has paved the way for developing novel targeted and personalized treatments. This article reviews the genetic abnormalities that increase the risk of MDS transformation to AML, and the impact of genetic changes on evolution. Selected therapies for MDS and MDS progression to AML are also discussed.
Collapse
Affiliation(s)
- Claudia Bănescu
- Center for Advanced Medical and Pharmaceutical Research, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania
- Genetics Department, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania
| | - Florin Tripon
- Center for Advanced Medical and Pharmaceutical Research, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania
- Genetics Department, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania
| | - Carmen Muntean
- Pediatric Department, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania
| |
Collapse
|
6
|
Delio M, Bryke C, Mendez L, Joseph L, Jassim S. JAK2 Mutations Are Rare and Diverse in Myelodysplastic Syndromes: Case Series and Review of the Literature. Hematol Rep 2023; 15:73-87. [PMID: 36810551 PMCID: PMC9944460 DOI: 10.3390/hematolrep15010008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/15/2022] [Accepted: 01/04/2023] [Indexed: 01/20/2023] Open
Abstract
OBJECTIVES To investigate and characterize JAK2 mutations in myelodysplastic syndrome (MDS), we present three cases with diverse JAK2 mutations and review the literature. METHODS The institutional SoftPath software was used to find MDS cases between January 2020 and April 2022. The cases with a diagnosis of a myelodysplastic/myeloproliferative overlap syndrome including MDS/MPN with ring sideroblasts and thrombocytosis were excluded. The cases with molecular data by next generation sequencing looking for gene aberrations commonly seen in myeloid neoplasms were reviewed for the detection of JAK2 mutations including variants. A literature review on the identification, characterization, and significance of JAK2 mutations in MDS was performed. RESULTS Among 107 cases of the MDS reviewed, a JAK2 mutation was present in three cases, representing 2.8% of the overall cases. A JAK2 V617F mutation was found in one case representing slightly less than 1% of all the MDS cases. In addition, we found JAK2 R564L and JAK2 I670V point mutation variants to be associated with a myelodysplastic phenotype. CONCLUSIONS JAK2 mutations in MDS are rare and represent less than 3% of cases. It appears that JAK2 variant mutations in MDS are diverse and further studies are needed to understand their role in the phenotype and prognosis of the disease.
Collapse
Affiliation(s)
- Melissa Delio
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Christine Bryke
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Lourdes Mendez
- Division of Hematology/Oncology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Loren Joseph
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Sarmad Jassim
- Department of Pathology, William Beaumont Hospital, Royal Oak, MI 48073, USA
- Correspondence:
| |
Collapse
|
7
|
Puglianini OC, Peker D, Zhang L, Papadantonakis N. Essential Thrombocythemia and Post-Essential Thrombocythemia Myelofibrosis: Updates on Diagnosis, Clinical Aspects, and Management. Lab Med 2023; 54:13-22. [PMID: 35960786 DOI: 10.1093/labmed/lmac074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Although several decades have passed since the description of myeloproliferative neoplasms (MPN), many aspects of their pathophysiology have not been elucidated. In this review, we discuss the mutational landscape of patients with essential thrombocythemia (ET), prognostic scores and salient pathology, and clinical points. We discuss also the diagnostic challenges of differentiating ET from prefibrotic MF. We then focus on post-essential thrombocythemia myelofibrosis (post-ET MF), a rare subset of MPN that is usually studied in conjunction with post-polycythemia vera MF. The transition of ET to post-ET MF is not well studied on a molecular level, and we present available data. Patients with secondary MF could benefit from allogenic hematopoietic stem cell transplantation, and we present available data focusing on post-ET MF.
Collapse
Affiliation(s)
- Omar Castaneda Puglianini
- H. Lee Moffitt Cancer Center & Research Institute, Department of Blood & Marrow Transplant & Cellular Immunotherapy, Tampa, FL, USA
- Department of Oncologic Sciences, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Deniz Peker
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Linsheng Zhang
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Nikolaos Papadantonakis
- Winship Cancer Institute of Emory University, Department of Hematology and Medical Oncology, Atlanta, GA, USA
| |
Collapse
|
8
|
Acha P, Mallo M, Solé F. Myelodysplastic Syndromes with Isolated del(5q): Value of Molecular Alterations for Diagnostic and Prognostic Assessment. Cancers (Basel) 2022; 14:5531. [PMID: 36428627 PMCID: PMC9688702 DOI: 10.3390/cancers14225531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/30/2022] [Accepted: 11/07/2022] [Indexed: 11/12/2022] Open
Abstract
Myelodysplastic syndromes (MDS) are a group of clonal hematological neoplasms characterized by ineffective hematopoiesis in one or more bone marrow cell lineages. Consequently, patients present with variable degrees of cytopenia and dysplasia. These characteristics constitute the basis for the World Health Organization (WHO) classification criteria of MDS, among other parameters, for the current prognostic scoring system. Although nearly half of newly diagnosed patients present a cytogenetic alteration, and almost 90% of them harbor at least one somatic mutation, MDS with isolated del(5q) constitutes the only subtype clearly defined by a cytogenetic alteration. The results of several clinical studies and the advances of new technologies have allowed a better understanding of the biological basis of this disease. Therefore, since the first report of the "5q- syndrome" in 1974, changes and refinements have been made in the definition and the characteristics of the patients with MDS and del(5q). Moreover, specific genetic alterations have been found to be associated with the prognosis and response to treatments. The aim of this review is to summarize the current knowledge of the molecular background of MDS with isolated del(5q), focusing on the clinical and prognostic relevance of cytogenetic alterations and somatic mutations.
Collapse
Affiliation(s)
- Pamela Acha
- MDS Group, Institut de Recerca Contra la Leucèmia Josep Carreras, ICO-Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, 08916 Badalona, Spain
| | - Mar Mallo
- MDS Group, Institut de Recerca Contra la Leucèmia Josep Carreras, ICO-Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, 08916 Badalona, Spain
- Microarrays Unit, Institut de Recerca Contra la Leucèmia Josep Carreras, ICO-Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, 08916 Badalona, Spain
| | - Francesc Solé
- MDS Group, Institut de Recerca Contra la Leucèmia Josep Carreras, ICO-Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, 08916 Badalona, Spain
- Microarrays Unit, Institut de Recerca Contra la Leucèmia Josep Carreras, ICO-Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, 08916 Badalona, Spain
| |
Collapse
|
9
|
Buesche G, Teoman H, Schneider RK, Ribezzo F, Ebert BL, Giagounidis A, Göhring G, Schlegelberger B, Bock O, Ganser A, Aul C, Germing U, Kreipe H. Evolution of severe (transfusion-dependent) anaemia in myelodysplastic syndromes with 5q deletion is characterized by a macrophage-associated failure of the eythropoietic niche. Br J Haematol 2022; 198:114-130. [PMID: 35362549 DOI: 10.1111/bjh.18163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 02/16/2022] [Accepted: 03/13/2022] [Indexed: 01/01/2023]
Abstract
Evolution of erythrocyte transfusion-dependent (RBC-TD) anaemia associated with haploinsufficiency of the ribosomal protein subunit S14 gene (RPS14) is a characteristic complication of myelodysplastic syndromes (MDS) with del(5q) [MDS.del(5q)]. Evaluating 39 patients with MDS.del(5q), <5% of anaemia progression was attributable to RPS14-dependent alterations of normoblasts, pro-erythroblasts, or CD34+ CD71+ precursors. Ninety-three percent of anaemia progression and 70% of the absolute decline in peripheral blood Hb value were attributable to disappearance of erythroblastic islands (Ery-Is). Ery-Is loss occurred independently of blast excess, TP53 mutation, additional chromosome aberrations and RPS14-dependent alterations of normoblasts and pro-erythroblasts. It was associated with RPS14-dependent intrinsic (S100A8+ ) and extrinsic [tumour necrosis factor α (TNF-α)-overproduction] alterations of (CD169+ ) marrow macrophages (p < 0.00005). In a mouse model of RPS14 haploinsufficiency, Ery-Is disappeared to a similar degree: approximately 70% of Ery-Is loss was related to RPS14-dependent S100A8 overexpression of marrow macrophages, less than 20% to that of CD71high Ter119- immature precursors, and less than 5% to S100A8/p53 overexpression of normoblasts or pro-erythroblasts. Marked Ery-Is loss predicted reduced efficacy (erythrocyte transfusion independence) of lenalidomide therapy (p = 0.0006). Thus, erythroid hypoplasia, a characteristic complication of MDS.del(5q), seems to result primarily from a macrophage-associated failure of the erythropoietic niche markedly reducing the productive capacity of erythropoiesis as the leading factor in anaemia progression and evolution of RBC-TD in MDS.del(5q).
Collapse
Affiliation(s)
- Guntram Buesche
- Institute of Pathology, Hannover Medical School, Hannover, Germany
| | - Huesniye Teoman
- Institute of Pathology, Hannover Medical School, Hannover, Germany
| | - Rebekka K Schneider
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Flavia Ribezzo
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, RWTH Aachen University, Aachen, Germany
| | - Benjamin L Ebert
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Aristoteles Giagounidis
- Department of Oncology, Hematology, and Palliative Treatment, Marien-Hospital, Düsseldorf, Germany
| | - Gudrun Göhring
- Institute of Human Genetics, Hannover Medical School, Hannover, Germany
| | | | - Oliver Bock
- Institute of Pathology, Hannover Medical School, Hannover, Germany
| | - Arnold Ganser
- Department of Hematology, Hemostasis, Oncology, and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Carlo Aul
- Department 2, Oncology and Hematology, St. Johannes Hospital, Duisburg, Germany
| | - Ulrich Germing
- Department of Hematology, Oncology and Clinical Immunology, Heinrich-Heine-University, Duesseldorf, Germany
| | - Hans Kreipe
- Institute of Pathology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
10
|
Kuendgen A, Kasprzak A, Germing U. Hybrid or Mixed Myelodysplastic/Myeloproliferative Disorders - Epidemiological Features and Overview. Front Oncol 2021; 11:778741. [PMID: 34869027 PMCID: PMC8635204 DOI: 10.3389/fonc.2021.778741] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 10/25/2021] [Indexed: 11/25/2022] Open
Abstract
The WHO-category Myelodysplastic/Myeloproliferative neoplasms (MDS/MPNs) recognizes a unique group of clonal myeloid malignancies exhibiting overlapping features of myelodysplastic as well as myeloproliferative neoplasms. The group consists of chronic myelomonocytic leukemia (CMML), atypical chronic myeloid leukemia, BCR-ABL1-negative (aCML), juvenile myelomonocytic leukemia (JMML), myelodysplastic/myeloproliferative neoplasm with ringed sideroblasts and thrombocytosis (MDS/MPN-RS-T), and myelodysplastic/myeloproliferative neoplasms, unclassifiable (MDS/MPN-U). The most frequent entity in this category is CMML, while all other diseases are extremely rare. Thus, only very limited data on the epidemiology of these subgroups exists. An appropriate diagnosis and classification can be challenging since the diagnosis is still largely based on morphologic criteria and myelodysplastic as well as myeloproliferative features can be found in various occurrences. The diseases in this category share several features that are common in this specific WHO-category, but also exhibit specific traits for each disease. This review summarizes published data on epidemiological features and offers a brief overview of the main diagnostic criteria and clinical characteristics of the five MDS/MPN subgroups.
Collapse
Affiliation(s)
- Andrea Kuendgen
- Department of Hematology, Oncology, and Clinical Immunology, Heinrich-Heine-University Hospital Duesseldorf, Duesseldorf, Germany
| | - Annika Kasprzak
- Department of Hematology, Oncology, and Clinical Immunology, Heinrich-Heine-University Hospital Duesseldorf, Duesseldorf, Germany
| | - Ulrich Germing
- Department of Hematology, Oncology, and Clinical Immunology, Heinrich-Heine-University Hospital Duesseldorf, Duesseldorf, Germany
| |
Collapse
|
11
|
Chang YH. Myelodysplastic syndromes and overlap syndromes. Blood Res 2021; 56:S51-S64. [PMID: 33935036 PMCID: PMC8094000 DOI: 10.5045/br.2021.2021010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 12/11/2022] Open
Abstract
Myelodysplastic syndromes (MDS) are a heterogeneous group of clonal hematological neoplasms characterized by ineffective hematopoiesis, morphologic dysplasia, and cytopenia. MDS overlap syndromes include various disorders, such as myelodysplastic/myeloproliferative neoplasms and hypoplastic MDS with aplastic anemia characteristics. MDS overlap syndromes share the characteristics of other diseases, which make differential diagnoses challenging. Advances in genomic studies have led to the discovery of frequent mutations in MDS and overlap syndromes; however, most of the mutations are not specific for the diagnosis of these diseases. The molecular characteristics of the overlap syndromes usually do not show a just "in-between" form but rather heterogeneous features. Established diagnostic criteria for these diseases based on clinical, morphologic, and laboratory features are still useful when combined with genomic data. It is expected that further studies for MDS and overlap syndromes will place emphasis on the roles of mutations as therapeutic targets and prognostic indicators.
Collapse
Affiliation(s)
- Yoon Hwan Chang
- Department of Laboratory Medicine, Seoul National University Hospital, Seoul, Korea
| |
Collapse
|
12
|
Chronic myeloid neoplasms harboring concomitant mutations in myeloproliferative neoplasm driver genes (JAK2/MPL/CALR) and SF3B1. Mod Pathol 2021; 34:20-31. [PMID: 32694616 DOI: 10.1038/s41379-020-0624-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/30/2020] [Accepted: 06/30/2020] [Indexed: 01/10/2023]
Abstract
JAK2, CALR, and MPL are myeloproliferative neoplasm (MPN)-driver mutations, whereas SF3B1 is strongly associated with ring sideroblasts (RS) in myelodysplastic syndrome (MDS). Concomitant mutations of SF3B1 and MPN-driver mutations out of the context of MDS/MPN with RS and thrombocytosis (MDS/MPN-RS-T) are not well-studied. From the cases (<5% blasts) tested by NGS panels interrogating at least 42 myeloid neoplasm-related genes, we identified 18 MDS/MPN-RS-T, 42 MPN, 10 MDS, and 6 MDS/MPN-U cases with an SF3B1 and an MPN-driver mutation. Using a 10% VAF difference to define "SF3B1-dominant," "MPN-mutation dominant," and "no dominance," the majority of MDS/MPN-RS-T clustered in "SF3B1-dominant" and "no dominance" regions. Aside from parameters as thrombocytosis and ≥15% RS required for RS-T, MDS also differed in frequent neutropenia, multilineage dysplasia, and notably more cases with <10% VAF of MPN-driver mutations (60%, p = 0.0346); MPN differed in more frequent splenomegaly, myelofibrosis, and higher VAF of "MPN-driver mutations." "Gray zone" cases with features overlapping MDS/MPN-RS-T were observed in over one-thirds of non-RS-T cases. This study shows that concomitant SF3B1 and MPN-driver mutations can be observed in MDS, MPN, and MDS/MPN-U, each showing overlapping but also distinctively different clinicopathological features. Clonal hierarchy, cytogenetic abnormalities, and additional somatic mutations may in part contribute to different disease phenotypes, which may help in the classification of "gray zone" cases.
Collapse
|
13
|
Kirito K. Myeloid neoplasm with isolated del(5q) and the MPLW515L mutation fulfills the WHO diagnostic criteria for ET. Int J Hematol 2020; 112:238-242. [PMID: 32246278 DOI: 10.1007/s12185-020-02872-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 03/26/2020] [Accepted: 03/26/2020] [Indexed: 11/24/2022]
Abstract
A 70-year-old male was referred to our hospital for marked thrombocytosis without anemia. The patient simultaneously presented with an MPL W515L mutation, one of the major driver mutations in essential thrombocythemia (ET), and deletion of 5q, a characteristic cytogenetic abnormality in myelodysplastic syndrome (MDS). Bone marrow examination showed a combination of both mature hyperlobulated megakaryocytes, as found in ET, and small hypolobulated megakaryocytes, typically found in MDS with del(5q). The present case is consistent with the recently proposed category of myeloid neoplasms with isolated del(5q) and an MPN driver mutation.
Collapse
Affiliation(s)
- Keita Kirito
- Department of Hematology and Oncology, University of Yamanashi, 1110, Shimokato, Chuo, Yamanashi-ken, 409-3898, Japan.
| |
Collapse
|
14
|
Sangiorgio VFI, Orazi A, Arber DA. Myelodysplastic/myeloproliferative neoplasms: are morphology and immunophenotyping still relevant? Best Pract Res Clin Haematol 2019; 33:101139. [PMID: 32460987 DOI: 10.1016/j.beha.2019.101139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 12/23/2019] [Indexed: 01/16/2023]
Abstract
The term myelodysplastic/myeloproliferative neoplasm (MDS/MPN) refers to a group of clonal hematopoietic neoplasms with overlapping clinical, morphologic and genetic myelodysplastic and myeloproliferative features observed at the time of first presentation. Impaired hematopoiesis morphologically associated with evidence of myelodysplasia manifests clinically with cytopenia/s. Simultaneously, myeloproliferation is seen within the bone marrow and leads to cytosis in the peripheral blood. The diagnostic category of MDS/MPN encompasses a heterogeneous group of diseases which share similarities among them, but at the same time have distinct clinical and pathologic features and eventually diverse prognosis; such differences justify their separation in a classification scheme. In the era of genetic and genomic tests, their distinction from conventional myelodysplastic syndromes or myeloproliferative neoplasms still relies on close clinocopathological correlation, with evaluation of both peripheral blood and bone marrow samples being essential in this sense. A multiparametric integration of clinicopathologic data and cytogenetics and molecular genetics results is the preferred diagnostic approach.
Collapse
Affiliation(s)
- V F I Sangiorgio
- Department of Cellular Pathology, The Royal London Hospital, London, UK
| | - A Orazi
- Department of Pathology, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX, USA
| | - D A Arber
- Department of Pathology, University of Chicago, Chicago, IL, USA.
| |
Collapse
|