1
|
Ferraresso F, Strilchuk AW, Juang LJ, Poole LG, Luyendyk JP, Kastrup CJ. Comparison of DLin-MC3-DMA and ALC-0315 for siRNA Delivery to Hepatocytes and Hepatic Stellate Cells. Mol Pharm 2022; 19:2175-2182. [PMID: 35642083 PMCID: PMC9621687 DOI: 10.1021/acs.molpharmaceut.2c00033] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Ionizable cationic lipids are essential for efficient in vivo delivery of RNA by lipid nanoparticles (LNPs). DLin-MC3-DMA (MC3), ALC-0315, and SM-102 are the only ionizable cationic lipids currently clinically approved for RNA therapies. ALC-0315 and SM-102 are structurally similar lipids used in SARS-CoV-2 mRNA vaccines, while MC3 is used in siRNA therapy to knock down transthyretin in hepatocytes. Hepatocytes and hepatic stellate cells (HSCs) are particularly attractive targets for RNA therapy because they synthesize many plasma proteins, including those that influence blood coagulation. While LNPs preferentially accumulate in the liver, evaluating the ability of different ionizable cationic lipids to deliver RNA cargo into distinct cell populations is important for designing RNA-LNP therapies with minimal hepatotoxicity. Here, we directly compared LNPs containing either ALC-0315 or MC3 to knock-down coagulation factor VII (FVII) in hepatocytes and ADAMTS13 in HSCs. At a dose of 1 mg/kg siRNA in mice, LNPs with ALC-0315 achieved a 2- and 10-fold greater knockdown of FVII and ADAMTS13, respectively, compared to LNPs with MC3. At a high dose (5 mg/kg), ALC-0315 LNPs increased markers of liver toxicity (ALT and bile acids), while the same dose of MC3 LNPs did not. These results demonstrate that ALC-0315 LNPs achieves potent siRNA-mediated knockdown of target proteins in hepatocytes and HSCs, in mice, though markers of liver toxicity can be observed after a high dose. This study provides an initial comparison that may inform the development of ionizable cationic LNP therapeutics with maximal efficacy and limited toxicity.
Collapse
Affiliation(s)
- Francesca Ferraresso
- Michael Smith Laboratories and Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, V6T 1Z4, Canada
| | - Amy W Strilchuk
- Michael Smith Laboratories and Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, V6T 1Z4, Canada
| | - Lih Jiin Juang
- Michael Smith Laboratories and Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, V6T 1Z4, Canada
| | - Lauren G. Poole
- Department of Pathobiology and Diagnostic Investigation, Institute for Integrative Toxicology, Michigan State University, East Lansing, MI 48823, United States
| | - James P. Luyendyk
- Department of Pathobiology and Diagnostic Investigation, Institute for Integrative Toxicology, Michigan State University, East Lansing, MI 48823, United States
| | - Christian J Kastrup
- Michael Smith Laboratories and Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, V6T 1Z4, Canada,Blood Research Institute, Versiti, Milwaukee, WI 53226, United States,Departments of Surgery, Biochemistry, Biomedical Engineering, and Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, United States,Corresponding author: Dr. Christian J Kastrup, Versiti Blood Research Institute and Medical College of Wisconsin, 8727 W Watertown Plank Rd, Milwaukee, WI, USA; ., Phone: 1-414-937-6805, Fax: N/A
| |
Collapse
|
2
|
Koneczny I, Tzartos J, Mané-Damas M, Yilmaz V, Huijbers MG, Lazaridis K, Höftberger R, Tüzün E, Martinez-Martinez P, Tzartos S, Leypoldt F. IgG4 Autoantibodies in Organ-Specific Autoimmunopathies: Reviewing Class Switching, Antibody-Producing Cells, and Specific Immunotherapies. Front Immunol 2022; 13:834342. [PMID: 35401530 PMCID: PMC8986991 DOI: 10.3389/fimmu.2022.834342] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/28/2022] [Indexed: 12/24/2022] Open
Abstract
Organ-specific autoimmunity is often characterized by autoantibodies targeting proteins expressed in the affected tissue. A subgroup of autoimmunopathies has recently emerged that is characterized by predominant autoantibodies of the IgG4 subclass (IgG4-autoimmune diseases; IgG4-AID). This group includes pemphigus vulgaris, thrombotic thrombocytopenic purpura, subtypes of autoimmune encephalitis, inflammatory neuropathies, myasthenia gravis and membranous nephropathy. Although the associated autoantibodies target specific antigens in different organs and thus cause diverse syndromes and diseases, they share surprising similarities in genetic predisposition, disease mechanisms, clinical course and response to therapies. IgG4-AID appear to be distinct from another group of rare immune diseases associated with IgG4, which are the IgG4-related diseases (IgG4-RLD), such as IgG4-related which have distinct clinical and serological properties and are not characterized by antigen-specific IgG4. Importantly, IgG4-AID differ significantly from diseases associated with IgG1 autoantibodies targeting the same organ. This may be due to the unique functional characteristics of IgG4 autoantibodies (e.g. anti-inflammatory and functionally monovalent) that affect how the antibodies cause disease, and the differential response to immunotherapies of the IgG4 producing B cells/plasmablasts. These clinical and pathophysiological clues give important insight in the immunopathogenesis of IgG4-AID. Understanding IgG4 immunobiology is a key step towards the development of novel, IgG4 specific treatments. In this review we therefore summarize current knowledge on IgG4 regulation, the relevance of class switching in the context of health and disease, describe the cellular mechanisms involved in IgG4 production and provide an overview of treatment responses in IgG4-AID.
Collapse
Affiliation(s)
- Inga Koneczny
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - John Tzartos
- Neuroimmunology, Tzartos NeuroDiagnostics, Athens, Greece
- 2nd Department of Neurology, “Attikon” University Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Marina Mané-Damas
- Research Group Neuroinflammation and Autoimmunity, Department of Psychiatry and Neuropsychology, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, Netherlands
| | - Vuslat Yilmaz
- Department of Neuroscience, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Maartje G. Huijbers
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
- Department of Neurology, Leiden University Medical Center, Leiden, Netherlands
| | - Konstantinos Lazaridis
- Department of Immunology, Laboratory of Immunology, Hellenic Pasteur Institute, Athens, Greece
| | - Romana Höftberger
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Erdem Tüzün
- Department of Neuroscience, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Pilar Martinez-Martinez
- Research Group Neuroinflammation and Autoimmunity, Department of Psychiatry and Neuropsychology, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, Netherlands
| | - Socrates Tzartos
- Neuroimmunology, Tzartos NeuroDiagnostics, Athens, Greece
- Department of Neurobiology, Hellenic Pasteur Institute, Athens, Greece
| | - Frank Leypoldt
- Neuroimmunology, Institute of Clinical Chemistry and Department of Neurology, UKSH Kiel/Lübeck, Kiel University, Kiel, Germany
| |
Collapse
|
3
|
Plautz WE, Haldeman SH, Dyer MR, Sperry JL, Guyette FX, Loughran PA, Alvikas J, Hassoune A, Hoteit L, Alsaadi N, Zuckerbraun BS, Rollins-Raval MA, Raval JS, Mota RI, Neal MD. Reduced cleavage of von willebrand factor by ADAMTS13 is associated with microangiopathic acute kidney injury following trauma. Blood Coagul Fibrinolysis 2022; 33:14-24. [PMID: 34889809 PMCID: PMC8728687 DOI: 10.1097/mbc.0000000000001089] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 08/30/2021] [Accepted: 09/06/2021] [Indexed: 11/25/2022]
Abstract
Acute kidney injury (AKI) is common after trauma, but contributory factors are incompletely understood. Increases in plasma von Willebrand Factor (vWF) with concurrent decreases in ADAMTS13 are associated with renal microvascular thrombosis in other disease states, but similar findings have not been shown in trauma. We hypothesized that molecular changes in circulating vWF and ADAMTS13 promote AKI following traumatic injury. VWF antigen, vWF multimer composition and ADAMTS13 levels were compared in plasma samples from 16 trauma patients with and without trauma-induced AKI, obtained from the Prehospital Air Medical Plasma (PAMPer) biorepository. Renal histopathology and function, vWF and ADAMTS13 levels were assessed in parallel in a murine model of polytrauma and haemorrhage. VWF antigen was higher in trauma patients when compared with healthy controls [314% (253-349) vs. 100% (87-117)] [median (IQR)], while ADAMTS13 activity was lower [36.0% (30.1-44.7) vs. 100.0% (83.1-121.0)]. Patients who developed AKI showed significantly higher levels of high molecular weight multimeric vWF at 72-h when compared with non-AKI counterparts [32.9% (30.4-35.3) vs. 27.8% (24.6-30.8)]. Murine plasma cystatin C and vWF were elevated postpolytrauma model in mice, with associated decreases in ADAMTS13, and immunohistologic analysis demonstrated renal injury with small vessel plugs positive for fibrinogen and vWF. Following traumatic injury, the vWF-ADAMTS13 axis shifted towards a prothrombotic state in both trauma patients and a murine model. We further demonstrated that vWF-containing, microangiopathic deposits were concurrently produced as the prothrombotic changes were sustained during the days following trauma, potentially contributing to AKI development.
Collapse
Affiliation(s)
| | | | | | - Jason L. Sperry
- Pittsburgh Trauma Research Center and the Department of Surgery
| | - Francis X. Guyette
- Department of Emergency Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | - Jurgis Alvikas
- Pittsburgh Trauma Research Center and the Department of Surgery
| | - Adnan Hassoune
- Pittsburgh Trauma Research Center and the Department of Surgery
| | - Lara Hoteit
- Pittsburgh Trauma Research Center and the Department of Surgery
| | - Nijmeh Alsaadi
- Pittsburgh Trauma Research Center and the Department of Surgery
| | | | - Marian A. Rollins-Raval
- Department of Pathology, University of North Carolina –Chapel Hill, Chapel Hill, North Carolina
- Department of Pathology, University of New Mexico, Albuquerque, New Mexico, USA
| | - Jay S. Raval
- Department of Pathology, University of North Carolina –Chapel Hill, Chapel Hill, North Carolina
- Department of Pathology, University of New Mexico, Albuquerque, New Mexico, USA
| | - Roberto I. Mota
- Pittsburgh Trauma Research Center and the Department of Surgery
| | - Matthew D. Neal
- Pittsburgh Trauma Research Center and the Department of Surgery
| |
Collapse
|
4
|
Boesen EI, Kakalij RM. Autoimmune-mediated renal disease and hypertension. Clin Sci (Lond) 2021; 135:2165-2196. [PMID: 34533582 PMCID: PMC8477620 DOI: 10.1042/cs20200955] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 08/20/2021] [Accepted: 09/06/2021] [Indexed: 12/18/2022]
Abstract
Hypertension is a major risk factor for cardiovascular disease, chronic kidney disease (CKD), and mortality. Troublingly, hypertension is highly prevalent in patients with autoimmune renal disease and hastens renal functional decline. Although progress has been made over the past two decades in understanding the inflammatory contributions to essential hypertension more broadly, the mechanisms active in autoimmune-mediated renal diseases remain grossly understudied. This Review provides an overview of the pathogenesis of each of the major autoimmune diseases affecting the kidney that are associated with hypertension, and describes the current state of knowledge regarding hypertension in these diseases and their management. Specifically, discussion focuses on Systemic Lupus Erythematosus (SLE) and Lupus Nephritis (LN), Immunoglobulin A (IgA) Nephropathy, Idiopathic Membranous Nephropathy (IMN), Anti-Neutrophil Cytoplasmic Antibody (ANCA)-associated glomerulonephritis, and Thrombotic Thrombocytopenic Purpura (TTP). A summary of disease-specific animal models found to exhibit hypertension is also included to highlight opportunities for much needed further investigation of underlying mechanisms and novel therapeutic approaches.
Collapse
Affiliation(s)
- Erika I Boesen
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198, U.S.A
| | - Rahul M Kakalij
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198, U.S.A
| |
Collapse
|