1
|
Zadeh FJ, Fateh A, Saffari H, Khodadadi M, Eslami Samarin M, Nikoubakht N, Dadgar F, Goodarzi V. The vaso-occlusive pain crisis in sickle cell patients: A focus on pathogenesis. Curr Res Transl Med 2025; 73:103512. [PMID: 40220659 DOI: 10.1016/j.retram.2025.103512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 03/10/2025] [Accepted: 03/28/2025] [Indexed: 04/14/2025]
Abstract
Vaso-occlusive pain crisis (VOC) is recognized as a prominent complication of sickle cell disease, accompanied by debilitating pain and serious consequences for patients, making it the primary cause of visits to hospital emergency departments. In the etiology of VOC, the intricate interaction of endothelial cells, hypoxia, inflammation, and the coagulation system is pivotal. Hemoglobin S polymerization under hypoxic conditions leads to the formation of rigid and adhesive red blood cells that interact with vascular endothelial cells and other blood cells, causing occlusion and subsequent inflammation. Hemolysis of red blood cells results in anemia and heightened inflammation, whereas oxidative stress and involvement of the coagulation system further complicate matters. In this review, we strive to examine the pathophysiology of VOC from these mentioned aspects by consolidating findings from various studies, as a comprehensive understanding of the causes of VOC is essential for the development of targeted therapeutic interventions and the prevention and management of pain, ultimately improving the quality of life for patients.
Collapse
Affiliation(s)
| | - Azadeh Fateh
- Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Hamed Saffari
- Hematology, Oncology and Stem Cell Transplantation Research Center, Research Institute for Oncology, Hematology and Cell Therapy, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Mohammadamin Eslami Samarin
- Student Research Committee, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Universal Scientific Education and Research Network(USERN),Tehran,Iran
| | - Nasim Nikoubakht
- Department of Anesthesiology, Hazrat-e Rasool General Hospital, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Dadgar
- Department of Internal Medicine, Lorestan University of Medical Science, Khorramabad, Iran; Student Research Committe, Lorestan University of Medical Science, Khorramabad, Iran
| | - Vahid Goodarzi
- Department of Anesthesiology, Rasoul-Akram Medical Center, Iran University of Medical Sciences (IUMS), Tehran, Iran.
| |
Collapse
|
2
|
Jin J, Guo Q, Yan Z. The Role of Lutheran/Basal Cell Adhesion Molecule in Hematological Diseases and Tumors. Int J Mol Sci 2024; 25:7268. [PMID: 39000374 PMCID: PMC11242806 DOI: 10.3390/ijms25137268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/21/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024] Open
Abstract
Cell adhesion is a dynamic process that plays a fundamental role in cell proliferation, maintenance, differentiation, and migration. Basal cell adhesion molecule (BCAM), also known as Lutheran (Lu), belongs to the immunoglobulin superfamily of cell adhesion molecules. Lu/BCAM, which is widely expressed in red blood cells, endothelial cells, smooth muscle cells and epithelial cells across various tissues, playing a crucial role in many cellular processes, including cell adhesion, cell motility and cell migration. Moreover, Lu/BCAM, dysregulated in many diseases, such as blood diseases and various types of cancer, may act as a biomarker and target for the treatment of these diseases. This review explores the significance of Lu/BCAM in cell adhesion and its potential as a novel target for treating hematological diseases and tumors.
Collapse
Affiliation(s)
| | | | - Zhibin Yan
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (J.J.); (Q.G.)
| |
Collapse
|
3
|
Lee GM, Batchvarova M, Delahunty M, Boateng L, Boyle K, Suggs MA, Telen MJ. Sickle red blood cells directly activate neutrophils. Br J Haematol 2024; 204:e28-e30. [PMID: 38233165 PMCID: PMC10939809 DOI: 10.1111/bjh.19300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/02/2024] [Accepted: 01/04/2024] [Indexed: 01/19/2024]
Affiliation(s)
- Grace M. Lee
- Division of Hematology, Department of Medicine, Duke University School of Medicine, Durham, NC
| | - Milena Batchvarova
- Division of Hematology, Department of Medicine, Duke University School of Medicine, Durham, NC
| | - Martha Delahunty
- Division of Hematology, Department of Medicine, Duke University School of Medicine, Durham, NC
| | | | - Kimberly Boyle
- Division of Hematology, Department of Medicine, Duke University School of Medicine, Durham, NC
| | - Mark A. Suggs
- Division of Hematology, Department of Medicine, Duke University School of Medicine, Durham, NC
| | - Marilyn J. Telen
- Division of Hematology, Department of Medicine, Duke University School of Medicine, Durham, NC
- Department of Pathology, Duke University School of Medicine, Durham, NC
- Duke Comprehensive Sickle Cell Center, Duke University Medical Center, Durham, NC
| |
Collapse
|
4
|
van Dijk MJ, Traets MJM, van Oirschot BA, Ruiter TJJ, de Wilde JRA, Bos J, van Solinge WW, Koziel MJ, Jans JJM, Wani R, van Beers EJ, van Wijk R, Rab MAE. A novel composition of endogenous metabolic modulators improves red blood cell properties in sickle cell disease. EJHAEM 2024; 5:21-32. [PMID: 38406513 PMCID: PMC10887255 DOI: 10.1002/jha2.850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/18/2023] [Accepted: 01/08/2024] [Indexed: 02/27/2024]
Abstract
The most common forms of sickle cell disease (SCD) are sickle cell anemia (SCA; HbSS) and HbSC disease. In both, especially the more dense, dehydrated and adherent red blood cells (RBCs) with reduced deformability are prone to hemolysis and sickling, and thereby vaso-occlusion. Based on plasma amino acid profiling in SCD, a composition of 10 amino acids and derivatives (RCitNacQCarLKHVS; Axcella Therapeutics, USA), referred to as endogenous metabolic modulators (EMMs), was designed to target RBC metabolism. The effects of ex vivo treatment with the EMM composition on different RBC properties were studied in SCD (n = 9 SCA, n = 5 HbSC disease). Dose-dependent improvements were observed in RBC hydration assessed by hemocytometry (MCV, MCHC, dense RBCs) and osmotic gradient ektacytometry (Ohyper). Median (interquartile range [IQR]) increase in Ohyper compared to vehicle was 4.9% (4.0%-5.5%), 7.5% (6.9%-9.4%), and 12.8% (11.5%-14.0%) with increasing 20×, 40×, and 80X concentrations, respectively (all p < 0.0001). RBC deformability (EImax using oxygen gradient ektacytometry) increased by 8.1% (2.2%-12.1%; p = 0.0012), 9.6% (2.9%-15.1%; p = 0.0013), and 13.3% (5.7%-25.5%; p = 0.0007), respectively. Besides, RBC adhesion to subendothelial laminin decreased by 43% (6%-68%; p = 0.4324), 58% (48%-72%; p = 0.0185), and 71% (49%-82%; p = 0.0016), respectively. Together, these results provide a rationale for further studies with the EMM composition targeting multiple RBC properties in SCD.
Collapse
Affiliation(s)
- Myrthe J. van Dijk
- Department of Central Diagnostic Laboratory—Research, University Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands
- Center for Benign Hematology, Thrombosis and Hemostasis—Van CreveldkliniekUniversity Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands
| | - Marissa J. M. Traets
- Department of Central Diagnostic Laboratory—Research, University Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands
| | - Brigitte A. van Oirschot
- Department of Central Diagnostic Laboratory—Research, University Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands
| | - Titine J. J. Ruiter
- Department of Central Diagnostic Laboratory—Research, University Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands
- Section Metabolic Diagnostics, Department of GeneticsUniversity Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands
| | - Jonathan R. A. de Wilde
- Department of Central Diagnostic Laboratory—Research, University Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands
| | - Jennifer Bos
- Department of Central Diagnostic Laboratory—Research, University Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands
| | - Wouter W. van Solinge
- Department of Central Diagnostic Laboratory—Research, University Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands
| | | | - Judith J. M. Jans
- Section Metabolic Diagnostics, Department of GeneticsUniversity Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands
| | - Revati Wani
- Axcella TherapeuticsCambridgeMassachusettsUSA
- Boehringer Ingelheim Pharmaceuticals, Inc.CambridgeMassachusettsUSA
| | - Eduard J. van Beers
- Center for Benign Hematology, Thrombosis and Hemostasis—Van CreveldkliniekUniversity Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands
| | - Richard van Wijk
- Department of Central Diagnostic Laboratory—Research, University Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands
| | - Minke A. E. Rab
- Department of Central Diagnostic Laboratory—Research, University Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands
- Department of HematologyUniversity Medical Center UtrechtUtrechtThe Netherlands
| |
Collapse
|
5
|
Zhang H, Sumbria RK, Chang R, Sun J, Cribbs DH, Holmes TC, Fisher MJ, Xu X. Erythrocyte-brain endothelial interactions induce microglial responses and cerebral microhemorrhages in vivo. J Neuroinflammation 2023; 20:265. [PMID: 37968737 PMCID: PMC10647121 DOI: 10.1186/s12974-023-02932-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/13/2023] [Indexed: 11/17/2023] Open
Abstract
BACKGROUND Cerebral microhemorrhages (CMH) are associated with stroke, cognitive decline, and normal aging. Our previous study shows that the interaction between oxidatively stressed red blood cells (RBC) and cerebral endothelium may underlie CMH development. However, the real-time examination of altered RBC-brain endothelial interactions in vivo, and their relationship with clearance of stalled RBC, microglial responses, and CMH development, has not been reported. METHODS RBC were oxidatively stressed using tert-butylhydroperoxide (t-BHP), fluorescently labeled and injected into adult Tie2-GFP mice. In vivo two-photon imaging and ex vivo confocal microscopy were used to evaluate the temporal profile of RBC-brain endothelial interactions associated with oxidatively stressed RBC. Their relationship with microglial activation and CMH was examined with post-mortem histology. RESULTS Oxidatively stressed RBC stall significantly and rapidly in cerebral vessels in mice, accompanied by decreased blood flow velocity which recovers at 5 days. Post-mortem histology confirms significantly greater RBC-cerebral endothelial interactions and microglial activation at 24 h after t-BHP-treated RBC injection, which persist at 7 days. Furthermore, significant CMH develop in the absence of blood-brain barrier leakage after t-BHP-RBC injection. CONCLUSIONS Our in vivo and ex vivo findings show the stalling and clearance of oxidatively stressed RBC in cerebral capillaries, highlighting the significance of microglial responses and altered RBC-brain endothelial interactions in CMH development. Our study provides novel mechanistic insight into CMH associated with pathological conditions with increased RBC-brain endothelial interactions.
Collapse
Affiliation(s)
- Hai Zhang
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, CA, 92697, USA
| | - Rachita K Sumbria
- Department of Biomedical and Pharmaceutical Sciences, School of Pharmacy, Chapman University, Irvine, CA, 92618, USA.
- Department of Neurology, University of California, Irvine, CA, 92697, USA.
| | - Rudy Chang
- Department of Biomedical and Pharmaceutical Sciences, School of Pharmacy, Chapman University, Irvine, CA, 92618, USA
| | - Jiahong Sun
- Department of Biomedical and Pharmaceutical Sciences, School of Pharmacy, Chapman University, Irvine, CA, 92618, USA
| | - David H Cribbs
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, 92697, USA
| | - Todd C Holmes
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, 92697, USA
- Center for Neural Circuit Mapping, University of California, Irvine, CA, 92697, USA
| | - Mark J Fisher
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, CA, 92697, USA.
- Department of Neurology, University of California, Irvine, CA, 92697, USA.
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, 92697, USA.
- Center for Neural Circuit Mapping, University of California, Irvine, CA, 92697, USA.
- Beckman Laser Institute, University of California, Irvine, CA, 92697, USA.
- Department of Pathology & Laboratory Medicine, University of California, Irvine, CA, 92697, USA.
| | - Xiangmin Xu
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, CA, 92697, USA.
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, 92697, USA.
- Center for Neural Circuit Mapping, University of California, Irvine, CA, 92697, USA.
- Department of Biomedical Engineering, University of California, Irvine, CA, 92697, USA.
| |
Collapse
|
6
|
Nader E, Conran N, Leonardo FC, Hatem A, Boisson C, Carin R, Renoux C, Costa FF, Joly P, Brito PL, Esperti S, Bernard J, Gauthier A, Poutrel S, Bertrand Y, Garcia C, Saad STO, Egée S, Connes P. Piezo1 activation augments sickling propensity and the adhesive properties of sickle red blood cells in a calcium-dependent manner. Br J Haematol 2023. [PMID: 37011913 DOI: 10.1111/bjh.18799] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/07/2023] [Accepted: 03/28/2023] [Indexed: 04/05/2023]
Abstract
Haemoglobin S polymerization in the red blood cells (RBCs) of individuals with sickle cell anaemia (SCA) can cause RBC sickling and cellular alterations. Piezo1 is a mechanosensitive protein that modulates intracellular calcium (Ca2+ ) influx, and its activation has been associated with increased RBC surface membrane phosphatidylserine (PS) exposure. Hypothesizing that Piezo1 activation, and ensuing Gárdos channel activity, alter sickle RBC properties, RBCs from patients with SCA were incubated with the Piezo1 agonist, Yoda1 (0.1-10 μM). Oxygen-gradient ektacytometry and membrane potential measurement showed that Piezo1 activation significantly decreased sickle RBC deformability, augmented sickling propensity, and triggered pronounced membrane hyperpolarization, in association with Gárdos channel activation and Ca2+ influx. Yoda1 induced Ca2+ -dependent adhesion of sickle RBCs to laminin, in microfluidic assays, mediated by increased BCAM binding affinity. Furthermore, RBCs from SCA patients that were homo-/heterozygous for the rs59446030 gain-of-function Piezo1 variant demonstrated enhanced sickling under deoxygenation and increased PS exposure. Thus, Piezo1 stimulation decreases sickle RBC deformability, and increases the propensities of these cells to sickle upon deoxygenation and adhere to laminin. Results support a role of Piezo1 in some of the RBC properties that contribute to SCA vaso-occlusion, indicating that Piezo1 may represent a potential therapeutic target molecule for this disease.
Collapse
Affiliation(s)
- Elie Nader
- Laboratory LIBM EA7424, Vascular Biology and Red Blood Cell Team, University of Lyon, Lyon, France
| | - Nicola Conran
- Hematology and Transfusion Center, University of Campinas, Campinas, Brazil
| | - Flavia C Leonardo
- Hematology and Transfusion Center, University of Campinas, Campinas, Brazil
| | - Aline Hatem
- Sorbonne Université, CNRS, UMR 8227 LBI2M, Station Biologique de Roscoff SBR, Roscoff, France
| | - Camille Boisson
- Laboratory LIBM EA7424, Vascular Biology and Red Blood Cell Team, University of Lyon, Lyon, France
- Service de Biochimie et Biologie Moléculaire, Laboratoire de Biologie Médicale Multi-site, Hospices Civils de Lyon, Lyon, France
| | - Romain Carin
- Laboratory LIBM EA7424, Vascular Biology and Red Blood Cell Team, University of Lyon, Lyon, France
| | - Céline Renoux
- Laboratory LIBM EA7424, Vascular Biology and Red Blood Cell Team, University of Lyon, Lyon, France
- Service de Biochimie et Biologie Moléculaire, Laboratoire de Biologie Médicale Multi-site, Hospices Civils de Lyon, Lyon, France
| | - Fernando F Costa
- Hematology and Transfusion Center, University of Campinas, Campinas, Brazil
| | - Philippe Joly
- Laboratory LIBM EA7424, Vascular Biology and Red Blood Cell Team, University of Lyon, Lyon, France
- Service de Biochimie et Biologie Moléculaire, Laboratoire de Biologie Médicale Multi-site, Hospices Civils de Lyon, Lyon, France
| | - Pamela L Brito
- Hematology and Transfusion Center, University of Campinas, Campinas, Brazil
| | - Sofia Esperti
- Laboratory LIBM EA7424, Vascular Biology and Red Blood Cell Team, University of Lyon, Lyon, France
- Erytech Pharma, Lyon, France
| | - Joelle Bernard
- Service de Biochimie et Biologie Moléculaire, Laboratoire de Biologie Médicale Multi-site, Hospices Civils de Lyon, Lyon, France
| | - Alexandra Gauthier
- Laboratory LIBM EA7424, Vascular Biology and Red Blood Cell Team, University of Lyon, Lyon, France
- Institut d'Hématologique et d'Oncologique Pédiatrique, Hospices Civils de Lyon, Lyon, France
| | - Solene Poutrel
- Laboratory LIBM EA7424, Vascular Biology and Red Blood Cell Team, University of Lyon, Lyon, France
- Service de Médecine Interne, Hôpital Edouard Herriot, Hospices Civils de Lyon, Lyon, France
| | - Yves Bertrand
- Institut d'Hématologique et d'Oncologique Pédiatrique, Hospices Civils de Lyon, Lyon, France
| | - Caroline Garcia
- Service de Biochimie et Biologie Moléculaire, Laboratoire de Biologie Médicale Multi-site, Hospices Civils de Lyon, Lyon, France
| | - Sara T O Saad
- Hematology and Transfusion Center, University of Campinas, Campinas, Brazil
| | - Stéphane Egée
- Sorbonne Université, CNRS, UMR 8227 LBI2M, Station Biologique de Roscoff SBR, Roscoff, France
| | - Philippe Connes
- Laboratory LIBM EA7424, Vascular Biology and Red Blood Cell Team, University of Lyon, Lyon, France
| |
Collapse
|
7
|
Iversen PO, Hankin A, Horn J, Pedersen TH, Borgersen R, Frøen HM. Deep Compartment Syndrome Without Myonecrosis: A Case Report on a Rare Complication of Sickle Cell Disease. Cureus 2022; 14:e29164. [PMID: 36258983 PMCID: PMC9566668 DOI: 10.7759/cureus.29164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/14/2022] [Indexed: 11/13/2022] Open
Abstract
Compartment syndrome is a rare manifestation of vaso-occlusive crisis, a serious complication of sickle cell disease (SCD), which is an inherited hemoglobinopathy. During a visit to Norway, an otherwise healthy, 20-year-old male from Ghana was admitted to Oslo University Hospital (Day 1) because of increasing pain in the hip and thighs that did not respond adequately to non-opioid painkillers. Despite initial treatment with intravenous fluids and opioids, his pain intensified. Careful clinical inspection supported by an MRI examination revealed focal, high-signal-intensity muscle edema of the anterior compartment of the thigh, almost exclusively limited to the vastus intermedius muscles. There were no MRI findings or blood biochemistry evidence for myonecrosis or rhabdomyolysis, and a diagnosis of deep compartment syndrome appeared to be the most likely explanation for his pain. We decided to continue with a conservative treatment approach, and the patient did not undergo a fasciotomy or blood transfusion therapy. On Day 7 after admission, his condition improved markedly, and he was discharged on Day 11 whereupon he returned to Ghana. This case is a reminder that, although rare, deep compartment syndrome can be a severe manifestation of vaso-occlusive crisis in SCD and should be considered in patients with severe, deep muscular pain in the absence of other explanatory factors.
Collapse
|
8
|
Azul M, Vital EF, Lam WA, Wood DK, Beckman JD. Microfluidic methods to advance mechanistic understanding and translational research in sickle cell disease. Transl Res 2022; 246:1-14. [PMID: 35354090 PMCID: PMC9218997 DOI: 10.1016/j.trsl.2022.03.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 12/15/2022]
Abstract
Sickle cell disease (SCD) is caused by a single point mutation in the β-globin gene of hemoglobin, which produces an altered sickle hemoglobin (HbS). The ability of HbS to polymerize under deoxygenated conditions gives rise to chronic hemolysis, oxidative stress, inflammation, and vaso-occlusion. Herein, we review recent findings using microfluidic technologies that have elucidated mechanisms of oxygen-dependent and -independent induction of HbS polymerization and how these mechanisms elicit the biophysical and inflammatory consequences in SCD pathophysiology. We also discuss how validation and use of microfluidics in SCD provides the opportunity to advance development of numerous therapeutic strategies, including curative gene therapies.
Collapse
Affiliation(s)
- Melissa Azul
- Department of Pediatrics, Mayo Clinic, Rochester, Minnesota
| | - Eudorah F Vital
- Wallace H. Coulter Department of Biomedical Engineering and Institute for Electronics and Nanotechnology, Georgia Institute of Technology and Emory University, Atlanta, Georgia
| | - Wilbur A Lam
- Wallace H. Coulter Department of Biomedical Engineering and Institute for Electronics and Nanotechnology, Georgia Institute of Technology and Emory University, Atlanta, Georgia
| | - David K Wood
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota
| | - Joan D Beckman
- Department of Medicine, Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, Minnesota.
| |
Collapse
|
9
|
Oxidative stress-induced endothelial cells-derived exosomes accelerate skin flap survival through Lnc NEAT1-mediated promotion of endothelial progenitor cell function. Stem Cell Res Ther 2022; 13:325. [PMID: 35850692 PMCID: PMC9290268 DOI: 10.1186/s13287-022-03013-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 06/08/2022] [Indexed: 12/14/2022] Open
Abstract
Background Flap transplantation is commonly used in reconstructive surgery. A prerequisite for skin flap survival is sufficient blood supply. However, such approaches remain unclear. This study aimed to explore the underlying mechanisms of exosomes derived from human umbilical vascular endothelial cells (HUVECs) exposed to oxidative stress on endothelial progenitor cells (EPCs) and their subsequent influence on the survival of skin flaps. Methods HUVECs were treated with various concentrations of H2O2 to establish an oxidative stress model. To investigate the effects of H2O2-HUVEC-Exos and HUVEC-Exos, Cell Counting Kit-8, tube formation, invasion assays, and quantitative real-time polymerase chain reaction (qRT-PCR) were performed in EPCs. Microarray analysis was used to reveal the differentially expressed long non-coding RNAs (lncRNAs) in the H2O2-HUVEC-Exos and HUVEC-Exos. In addition, gene silencing and western blotting were employed to determine the mechanism behind lncRNA nuclear enrichment enriched transcript 1 (Lnc NEAT1) in EPCs. Further, a rat skin flap model was used to determine the role of the exosomes in skin flap survival in vivo. Results HUVECs were stimulated with 100 μmol/L H2O2 for 12 h to establish an oxidative stress model. H2O2-HUVEC-Exos promoted the proliferation, tube formation, and invasion of EPCs and remarkably increased skin flap survival compared to the HUVEC-Exos and control groups. Sequencing of exosome RNAs revealed that the Lnc NEAT1 level was dramatically increased in the H2O2-HUVEC-Exos, leading to activation of the Wnt/β-catenin signaling pathway. Comparatively, knockdown of Lnc NEAT1 in HUVEC-Exos and H2O2-HUVEC-Exos significantly inhibits the angiogenic capacity of EPCs, reduced the survival area of skin flap and downregulated the expression levels of Wnt/β-catenin signaling pathway proteins, whereas Wnt agonist partly reversed the negative effect of NEAT1 downregulation on EPCs through the Wnt/β-catenin signaling pathway. Conclusions Exosomes derived from HUVECs stimulated by oxidative stress significantly promoted the pro-angiogenic ability of EPCs through the Wnt/β-catenin signaling pathway mediated by Lnc NEAT1 and hence enhanced random flap survival in vivo. Therefore, the application of H2O2-HUVEC-Exos may serve as an alternative therapy for improving random skin flap survival. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-03013-9.
Collapse
|
10
|
Conran N, Embury SH. Sickle cell vaso-occlusion: The dialectic between red cells and white cells. Exp Biol Med (Maywood) 2021; 246:1458-1472. [PMID: 33794696 DOI: 10.1177/15353702211005392] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The pathophysiology of sickle cell anemia, a hereditary hemoglobinopathy, has fascinated clinicians and scientists alike since its description over 100 years ago. A single gene mutation in the HBB gene results in the production of abnormal hemoglobin (Hb) S, whose polymerization when deoxygenated alters the physiochemical properties of red blood cells, in turn triggering pan-cellular activation and pathological mechanisms that include hemolysis, vaso-occlusion, and ischemia-reperfusion to result in the varied and severe complications of the disease. Now widely regarded as an inflammatory disease, in recent years attention has included the role of leukocytes in vaso-occlusive processes in view of the part that these cells play in innate immune processes, their inherent ability to adhere to the endothelium when activated, and their sheer physical and potentially obstructive size. Here, we consider the role of sickle red blood cell populations in elucidating the importance of adhesion vis-a-vis polymerization in vaso-occlusion, review the direct adhesion of sickle red cells to the endothelium in vaso-occlusive processes, and discuss how red cell- and leukocyte-centered mechanisms are not mutually exclusive. Given the initial clinical success of crizanlizumab, a specific anti-P selectin therapy, we suggest that it is appropriate to take a holistic approach to understanding and exploring the complexity of vaso-occlusive mechanisms and the adhesive roles of the varied cell types, including endothelial cells, platelets, leukocytes, and red blood cells.
Collapse
Affiliation(s)
- Nicola Conran
- Hematology Center, University of Campinas-UNICAMP, Barão Geraldo 13083-8, Campinas, SP, Brazil
| | | |
Collapse
|