1
|
Sato Y, Yoshino H, Ishikawa J, Monzen S, Yamaguchi M, Kashiwakura I. Prediction of hub genes and key pathways associated with the radiation response of human hematopoietic stem/progenitor cells using integrated bioinformatics methods. Sci Rep 2023; 13:10762. [PMID: 37402866 DOI: 10.1038/s41598-023-37981-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/30/2023] [Indexed: 07/06/2023] Open
Abstract
Hematopoietic stem cells (HSCs) are indispensable for the maintenance of the entire blood program through cytokine response. However, HSCs have high radiosensitivity, which is often a problem during radiation therapy and nuclear accidents. Although our previous study has reported that the combination cytokine treatment (interleukin-3, stem cell factor, and thrombopoietin) improves the survival of human hematopoietic stem/progenitor cells (HSPCs) after radiation, the mechanism by which cytokines contribute to the survival of HSPCs is largely unclear. To address this issue, the present study characterized the effect of cytokines on the radiation-induced gene expression profile of human CD34+ HSPCs and explored the hub genes that play key pathways associated with the radiation response using a cDNA microarray, a protein-protein interaction-MCODE module analysis and Cytohubba plugin tool in Cytoscape. This study identified 2,733 differentially expressed genes (DEGs) and five hub genes (TOP2A, EZH2, HSPA8, GART, HDAC1) in response to radiation in only the presence of cytokines. Furthermore, functional enrichment analysis found that hub genes and top DEGs based on fold change were enriched in the chromosome organization and organelle organization. The present findings may help predict the radiation response and improve our understanding of this response of human HSPCs.
Collapse
Affiliation(s)
- Yoshiaki Sato
- Department of Radiation Science, Hirosaki University Graduate School of Health Sciences, Hirosaki, Aomori, 036-8564, Japan
| | - Hironori Yoshino
- Department of Radiation Science, Hirosaki University Graduate School of Health Sciences, Hirosaki, Aomori, 036-8564, Japan
| | - Junya Ishikawa
- Department of Medical Radiologic Technology, Faculty of Health Sciences, Kyorin University, Mitaka, Tokyo, 181-8612, Japan
| | - Satoru Monzen
- Department of Radiation Science, Hirosaki University Graduate School of Health Sciences, Hirosaki, Aomori, 036-8564, Japan
| | - Masaru Yamaguchi
- Department of Radiation Science, Hirosaki University Graduate School of Health Sciences, Hirosaki, Aomori, 036-8564, Japan
| | - Ikuo Kashiwakura
- Department of Radiation Science, Hirosaki University Graduate School of Health Sciences, Hirosaki, Aomori, 036-8564, Japan.
| |
Collapse
|
2
|
Sorimachi Y, Karigane D, Ootomo Y, Kobayashi H, Morikawa T, Otsu K, Kubota Y, Okamoto S, Goda N, Takubo K. p38α plays differential roles in hematopoietic stem cell activity dependent on aging contexts. J Biol Chem 2021; 296:100563. [PMID: 33745970 PMCID: PMC8065231 DOI: 10.1016/j.jbc.2021.100563] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 03/04/2021] [Accepted: 03/17/2021] [Indexed: 12/12/2022] Open
Abstract
Hematopoietic stem cells (HSCs) and their progeny sustain lifetime hematopoiesis. Aging alters HSC function, number, and composition and increases risk of hematological malignancies, but how these changes occur in HSCs remains unclear. Signaling via p38 mitogen-activated kinase (p38MAPK) has been proposed as a candidate mechanism underlying induction of HSC aging. Here, using genetic models of both chronological and premature aging, we describe a multimodal role for p38α, the major p38MAPK isozyme in hematopoiesis, in HSC aging. We report that p38α regulates differentiation bias and sustains transplantation capacity of HSCs in the early phase of chronological aging. However, p38α decreased HSC transplantation capacity in the late progression phase of chronological aging. Furthermore, codeletion of p38α in mice deficient in ataxia–telangiectasia mutated, a model of premature aging, exacerbated aging-related HSC phenotypes seen in ataxia–telangiectasia mutated single-mutant mice. Overall, these studies provide new insight into multiple functions of p38MAPK, which both promotes and suppresses HSC aging context dependently.
Collapse
Affiliation(s)
- Yuriko Sorimachi
- Department of Stem Cell Biology, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan; Department of Life Sciences and Medical BioScience, Waseda University School of Advanced Science and Engineering, Tokyo, Japan
| | - Daiki Karigane
- Department of Stem Cell Biology, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan; Division of Hematology, Department of Medicine, Keio University School of Medicine, Tokyo, Japan.
| | - Yukako Ootomo
- Department of Stem Cell Biology, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan; Department of Life Sciences and Medical BioScience, Waseda University School of Advanced Science and Engineering, Tokyo, Japan
| | - Hiroshi Kobayashi
- Department of Stem Cell Biology, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Takayuki Morikawa
- Department of Stem Cell Biology, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Kinya Otsu
- School of Cardiovascular Medicine and Sciences, King's College London, London, United Kingdom
| | - Yoshiaki Kubota
- Department of Anatomy, Keio University School of Medicine, Tokyo, Japan
| | - Shinichiro Okamoto
- Division of Hematology, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Nobuhito Goda
- Department of Life Sciences and Medical BioScience, Waseda University School of Advanced Science and Engineering, Tokyo, Japan
| | - Keiyo Takubo
- Department of Stem Cell Biology, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan.
| |
Collapse
|