1
|
Rosier M, Krstulović A, Kim HR, Kaur N, Enakireru EM, Symmes D, Dobra K, Chen R, Evans CA, Gad AKB. The Vimentin-Targeting Drug ALD-R491 Partially Reverts the Epithelial-to-Mesenchymal Transition and Vimentin Interactome of Lung Cancer Cells. Cancers (Basel) 2024; 17:81. [PMID: 39796712 PMCID: PMC11720119 DOI: 10.3390/cancers17010081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 12/20/2024] [Accepted: 12/26/2024] [Indexed: 01/13/2025] Open
Abstract
Background: The epithelial-to-mesenchymal transition (EMT) is a common feature in early cancer invasion. Increased vimentin is a canonical marker of the EMT; however, the role of vimentin in EMT remains unknown. Methods: To clarify this, we induced EMT in lung cancer cells with TGF-β1, followed by treatment with the vimentin-targeting drug ALD-R491, live-cell imaging, and quantitative proteomics. Results: We identified 838 proteins in the intermediate filament fraction of cells. TGF-β1 treatment increased the proportion of vimentin in this fraction and the levels of 24 proteins. Variants of fibronectin showed the most pronounced increase (137-fold), followed by regulators of the cytoskeleton, cell motility, and division, such as the mRNA-splicing protein SON. TGF-β1 increased cell spreading and cell migration speed, and changed a positive correlation between cell migration speed and persistence to negative. ALD-R491 reversed these mesenchymal phenotypes to epithelial and the binding of RNA-binding proteins, including SON. Conclusions: These findings present many new interactors of intermediate filaments, describe how EMT and vimentin filament dynamics influence the intermediate filament interactome, and present ALD-R491 as a possible EMT-inhibitor. The observations support the hypothesis that the dynamic turnover of vimentin filaments and their interacting proteins govern mesenchymal cell migration, EMT, cell invasion, and cancer metastasis.
Collapse
Affiliation(s)
- Marieke Rosier
- Department of Oncology-Pathology, Karolinska Institutet, 171 64 Solna, Sweden; (M.R.); (A.K.); (N.K.); (E.M.E.); (K.D.)
| | - Anja Krstulović
- Department of Oncology-Pathology, Karolinska Institutet, 171 64 Solna, Sweden; (M.R.); (A.K.); (N.K.); (E.M.E.); (K.D.)
| | - Hyejeong Rosemary Kim
- Department of Oncology and Metabolism, The Medical School, University of Sheffield, Sheffield S10 2RX, UK;
| | - Nihardeep Kaur
- Department of Oncology-Pathology, Karolinska Institutet, 171 64 Solna, Sweden; (M.R.); (A.K.); (N.K.); (E.M.E.); (K.D.)
| | - Erhumuoghene Mary Enakireru
- Department of Oncology-Pathology, Karolinska Institutet, 171 64 Solna, Sweden; (M.R.); (A.K.); (N.K.); (E.M.E.); (K.D.)
| | - Deebie Symmes
- Aluda Pharmaceuticals, Inc., Menlo Park, CA 94025, USA; (D.S.); (R.C.)
| | - Katalin Dobra
- Department of Oncology-Pathology, Karolinska Institutet, 171 64 Solna, Sweden; (M.R.); (A.K.); (N.K.); (E.M.E.); (K.D.)
| | - Ruihuan Chen
- Aluda Pharmaceuticals, Inc., Menlo Park, CA 94025, USA; (D.S.); (R.C.)
| | - Caroline A. Evans
- School of Materials, Chemical and Biological Engineering, University of Sheffield, Sheffield S10 2TN, UK;
| | - Annica K. B. Gad
- Department of Oncology-Pathology, Karolinska Institutet, 171 64 Solna, Sweden; (M.R.); (A.K.); (N.K.); (E.M.E.); (K.D.)
| |
Collapse
|
2
|
Liu C, Dan L, Li Q, Bajinka O, Yuan X. The mechanisms of Pin1 as targets for cancer therapy. Front Immunol 2024; 15:1482088. [PMID: 39624096 PMCID: PMC11609185 DOI: 10.3389/fimmu.2024.1482088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 10/25/2024] [Indexed: 01/03/2025] Open
Abstract
Targeted therapy has considerable promise for the effective eradication of cancer at the primary tumor site prior to subsequent metastasis. Using this therapeutic approach, gaining an understanding of mechanistic cancer models is essential for facilitating the inhibition or suppression of tumor growth. Among different oncogenes and proteins, the protein interacting with never-in-mitosis kinase-1 (Pin1) is particularly important. The interaction between Pin1 and phosphorylated threonine-proline motifs results in significant alterations in protein structure and function. In this review, we provide a comprehensive summary of the processes involving Pin1 and its mechanisms in the context of cancer therapy. Pin1 enhances signaling pathways in a number of different human cancers and plays a pivotal role in the suppressive mechanisms relevant to cancer treatment. It is essential for the regulation of proline-directed phosphorylation and for modulating tumor suppressors. Inhibitors of Pin1, particularly naturally occurring substances, have been found to inhibit the carcinogenic activity of Pin1, and consequently this protein could represent an excellent candidate for novel cancer treatment strategies, offering a valuable therapeutic target in carcinogenesis and treatment resistance.
Collapse
Affiliation(s)
- Chuanfeng Liu
- Department of Pulmonary and Critical Care Medicine, Lishui Hospital of Traditional Chinese Medicine, Lishui, China
| | - Lingying Dan
- Department of Endocrinology, Lishui Hospital of Traditional Chinese Medicine, Lishui, China
| | - Quan Li
- Department of Pulmonary and Critical Care Medicine, Lishui Hospital of Traditional Chinese Medicine, Lishui, China
| | - Ousman Bajinka
- School of Medicine and Allied Health Sciences, University of The Gambia, Banjul, Gambia
| | - Xingxing Yuan
- Department of Gastroenterology, Heilongjiang Academy of Traditional Chinese Medicine, Harbin, China
| |
Collapse
|
3
|
Ishikawa Y, Ushijima Y, Kiyoi H. Recent advances in AML with mutated NPM1. Int J Hematol 2024; 120:556-565. [PMID: 39174699 DOI: 10.1007/s12185-024-03835-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/05/2024] [Accepted: 08/07/2024] [Indexed: 08/24/2024]
Abstract
Nucleophosmin 1 (NPM1) mutation is one of the most prevalent genetic mutations in adult acute myeloid leukemia (AML) and is particularly predominant in AML with a normal karyotype. NPM1 is a chaperone protein that plays various roles in several cellular processes. Wild-type NPM1 is normally localized to the nucleus, whereas mutant NPM1 proteins exhibit altered cytoplasmic localization. Clinically, AML with mutated NPM1 without FLT3-ITD is associated with a higher complete remission rate and improved overall survival. AML with mutated NPM1 is categorized as a distinct genetic entity in the World Health Organization classification of hematopoietic malignancies due to its unique clinical and biological features. However, the precise roles of NPM1 in normal hematopoiesis and in AML development remain unclear. Recent studies have revealed various clinical applications of NPM1 mutations in AML treatment, particularly in measurable residual disease analyses that target mutant NPM1 transcripts and in potential therapeutic applications of menin inhibitors and XPO-1 inhibitors for AML with mutated NPM1. Thus, NPM1 mutation is highly significant in AML classification, prognosis, response assessment, and molecular targeted therapies. Here, we review recent progress in clinical and biological aspects of AML with mutated NPM1 including molecular targeted therapy.
Collapse
Affiliation(s)
- Yuichi Ishikawa
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8550, Japan.
| | - Yoko Ushijima
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8550, Japan
| | - Hitoshi Kiyoi
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8550, Japan
| |
Collapse
|
4
|
Lu KP, Zhou XZ. Pin1-catalyzed conformational regulation after phosphorylation: A distinct checkpoint in cell signaling and drug discovery. Sci Signal 2024; 17:eadi8743. [PMID: 38889227 PMCID: PMC11409840 DOI: 10.1126/scisignal.adi8743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 05/30/2024] [Indexed: 06/20/2024]
Abstract
Protein phosphorylation is one of the most common mechanisms regulating cellular signaling pathways, and many kinases and phosphatases are proven drug targets. Upon phosphorylation, protein functions can be further regulated by the distinct isomerase Pin1 through cis-trans isomerization. Numerous protein targets and many important roles have now been elucidated for Pin1. However, no tools are available to detect or target cis and trans conformation events in cells. The development of Pin1 inhibitors and stereo- and phospho-specific antibodies has revealed that cis and trans conformations have distinct and often opposing cellular functions. Aberrant conformational changes due to the dysregulation of Pin1 can drive pathogenesis but can be effectively targeted in age-related diseases, including cancers and neurodegenerative disorders. Here, we review advances in understanding the roles of Pin1 signaling in health and disease and highlight conformational regulation as a distinct signal transduction checkpoint in disease development and treatment.
Collapse
Affiliation(s)
- Kun Ping Lu
- Departments of Biochemistry and Oncology, Schulich School of Medicine & Dentistry
- Robarts Research Institute, Schulich School of Medicine & Dentistry
| | - Xiao Zhen Zhou
- Departments of Biochemistry and Oncology, Schulich School of Medicine & Dentistry
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine & Dentistry
- Lawson Health Research Institute, Western University, London, ON N6G 2V4, Canada
| |
Collapse
|
5
|
Bercier P, de Thé H. History of Developing Acute Promyelocytic Leukemia Treatment and Role of Promyelocytic Leukemia Bodies. Cancers (Basel) 2024; 16:1351. [PMID: 38611029 PMCID: PMC11011038 DOI: 10.3390/cancers16071351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
The story of acute promyelocytic leukemia (APL) discovery, physiopathology, and treatment is a unique journey, transforming the most aggressive form of leukemia to the most curable. It followed an empirical route fueled by clinical breakthroughs driving major advances in biochemistry and cell biology, including the discovery of PML nuclear bodies (PML NBs) and their central role in APL physiopathology. Beyond APL, PML NBs have emerged as key players in a wide variety of biological functions, including tumor-suppression and SUMO-initiated protein degradation, underscoring their broad importance. The APL story is an example of how clinical observations led to the incremental development of the first targeted leukemia therapy. The understanding of APL pathogenesis and the basis for cure now opens new insights in the treatment of other diseases, especially other acute myeloid leukemias.
Collapse
Affiliation(s)
- Pierre Bercier
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, 75231 Paris, France;
- GenCellDis, Inserm U944, CNRS UMR7212, Université Paris Cité, 75010 Paris, France
| | - Hugues de Thé
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, 75231 Paris, France;
- GenCellDis, Inserm U944, CNRS UMR7212, Université Paris Cité, 75010 Paris, France
- Hematology Laboratory, Hôpital St Louis, AP/HP, 75010 Paris, France
| |
Collapse
|
6
|
Mohallem R, Aryal UK. Nuclear Phosphoproteome Reveals Prolyl Isomerase PIN1 as a Modulator of Oncogene-Induced Senescence. Mol Cell Proteomics 2024; 23:100715. [PMID: 38216124 PMCID: PMC10864342 DOI: 10.1016/j.mcpro.2024.100715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/05/2023] [Accepted: 01/08/2024] [Indexed: 01/14/2024] Open
Abstract
Mammalian cells possess intrinsic mechanisms to prevent tumorigenesis upon deleterious mutations, including oncogene-induced senescence (OIS). The molecular mechanisms underlying OIS are, however, complex and remain to be fully characterized. In this study, we analyzed the changes in the nuclear proteome and phosphoproteome of human lung fibroblast IMR90 cells during the progression of OIS induced by oncogenic RASG12V activation. We found that most of the differentially regulated phosphosites during OIS contained prolyl isomerase PIN1 target motifs, suggesting PIN1 is a key regulator of several promyelocytic leukemia nuclear body proteins, specifically regulating several proteins upon oncogenic Ras activation. We showed that PIN1 knockdown promotes cell proliferation, while diminishing the senescence phenotype and hallmarks of senescence, including p21, p16, and p53 with concomitant accumulation of the protein PML and the dysregulation of promyelocytic leukemia nuclear body formation. Collectively, our data demonstrate that PIN1 plays an important role as a tumor suppressor in response to oncogenic ER:RasG12V activation.
Collapse
Affiliation(s)
- Rodrigo Mohallem
- Department of Comparative Pathobiology, Purdue University, West Lafayette, USA; Purdue Proteomics Facility, Bindley Bioscience Center, Purdue University, West Lafayette, USA
| | - Uma K Aryal
- Department of Comparative Pathobiology, Purdue University, West Lafayette, USA; Purdue Proteomics Facility, Bindley Bioscience Center, Purdue University, West Lafayette, USA.
| |
Collapse
|
7
|
Wu D, Khan FA, Zhang K, Pandupuspitasari NS, Negara W, Guan K, Sun F, Huang C. Retinoic acid signaling in development and differentiation commitment and its regulatory topology. Chem Biol Interact 2024; 387:110773. [PMID: 37977248 DOI: 10.1016/j.cbi.2023.110773] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/11/2023] [Accepted: 10/20/2023] [Indexed: 11/19/2023]
Abstract
Retinoic acid (RA), the derivative of vitamin A/retinol, is a signaling molecule with important implications in health and disease. It is a well-known developmental morphogen that functions mainly through the transcriptional activity of nuclear RA receptors (RARs) and, uncommonly, through other nuclear receptors, including peroxisome proliferator-activated receptors. Intracellular RA is under spatiotemporally fine-tuned regulation by synthesis and degradation processes catalyzed by retinaldehyde dehydrogenases and P450 family enzymes, respectively. In addition to dictating the transcription architecture, RA also impinges on cell functioning through non-genomic mechanisms independent of RAR transcriptional activity. Although RA-based differentiation therapy has achieved impressive success in the treatment of hematologic malignancies, RA also has pro-tumor activity. Here, we highlight the relevance of RA signaling in cell-fate determination, neurogenesis, visual function, inflammatory responses and gametogenesis commitment. Genetic and post-translational modifications of RAR are also discussed. A better understanding of RA signaling will foster the development of precision medicine to improve the defects caused by deregulated RA signaling.
Collapse
Affiliation(s)
- Di Wu
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China
| | - Faheem Ahmed Khan
- Research Center for Animal Husbandry, National Research and Innovation Agency, Jakarta Pusat, 10340, Indonesia
| | - Kejia Zhang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China
| | | | - Windu Negara
- Research Center for Animal Husbandry, National Research and Innovation Agency, Jakarta Pusat, 10340, Indonesia
| | - Kaifeng Guan
- School of Advanced Agricultural Sciences, Peking University, Beijing, 100871, China.
| | - Fei Sun
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China.
| | - Chunjie Huang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China.
| |
Collapse
|
8
|
Wang SC, Hu XM, Xiong K. The regulatory role of Pin1 in neuronal death. Neural Regen Res 2023; 18:74-80. [PMID: 35799512 PMCID: PMC9241412 DOI: 10.4103/1673-5374.341043] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/14/2021] [Accepted: 02/10/2022] [Indexed: 12/02/2022] Open
Abstract
Regulated cell death predominantly involves apoptosis, autophagy, and regulated necrosis. It is vital that we understand how key regulatory signals can control the process of cell death. Pin1 is a cis-trans isomerase that catalyzes the isomerization of phosphorylated serine or threonine-proline motifs of a protein, thereby acting as a crucial molecular switch and regulating the protein functionality and the signaling pathways involved. However, we know very little about how Pin1-associated pathways might play a role in regulated cell death. In this paper, we review the role of Pin1 in regulated cell death and related research progress and summarize Pin1-related pathways in regulated cell death. Aside from the involvement of Pin1 in the apoptosis that accompanies neurodegenerative diseases, accumulating evidence suggests that Pin1 also plays a role in regulated necrosis and autophagy, thereby exhibiting distinct effects, including both neurotoxic and neuroprotective effects. Gaining an enhanced understanding of Pin1 in neuronal death may provide us with new options for the development of therapeutic target for neurodegenerative disorders.
Collapse
Affiliation(s)
- Shu-Chao Wang
- Center for Medical Research, The Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, Hunan Province, China
| | - Xi-Min Hu
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, Hunan Province, China
| | - Kun Xiong
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, Hunan Province, China
- Hunan Key Laboratory of Ophthalmology, Changsha, Hunan Province, China
| |
Collapse
|
9
|
Zhang JH, Ni SY, Tan YT, Luo J, Wang SC. A bibliometric analysis of PIN1 and cell death. Front Cell Dev Biol 2022; 10:1043725. [PMID: 36393861 PMCID: PMC9659740 DOI: 10.3389/fcell.2022.1043725] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 10/17/2022] [Indexed: 04/05/2025] Open
Abstract
Background: Regulation of cell death plays a key role in numerous diseases. As a proline isomerase, prolyl cis-trans isomerase NIMA-interacting 1 (Pin1) is important for the regulation of signaling pathways. An in-depth understanding of how Pin1 participates in the process of cell death, which affects the occurrence and development of diseases, will aid in the discovery of new disease mechanisms and therapeutic methods. Thus, the purpose of our study was to discover the research trends and hotspots of Pin1 and cell death through bibliometric analyses and to provide insights for understanding the future development of basic research and treatment of diseases. Methods: Documents were extracted from the Web of Science Core Collection on 7 May 2022. We selected articles and reviews published in English from 2000 to 2021, and visual and statistical analyses of countries, institutions, authors, references and keywords were performed using VOSviewer 1.6.18 and CiteSpace 5.8. Results: A total of 395 articles and reviews were selected. Since 2001, the number of articles on Pin1 and cell death has increased annually. Publications come from 43 countries, with the US having the most publications and citations. We identified 510 authors, with Giannino Del Sal having the most articles and Paola Zacchi having the most co-citations. The Journal of Biological Chemistry is the most researched journal, and Nature and its subjournals are the most cited journals. Apoptosis, phosphorylation, and breast cancer were the three most common keywords. Conclusion: The number of documents showed an increasing trend from 2001 to 2014. Stagnant growth after 2014 may be related to the absence of new research hotspots. Cooperative links between core institutions need to be strengthened, and the institution with the highest citation count in recent years is Fujian Medical University in China. The role of Pin1 in cell death requires further research to discover new research hotspots. Before breakthroughs in molecular mechanism or signaling pathway research, future research will focus more on the treatment of diseases represented by Pin1 inhibitors.
Collapse
Affiliation(s)
- Jia-Heng Zhang
- Clinical Medicine Five-year Program, 19 Grade, Xiangya School of Medicine, Central South University, Changsha, China
- Center for Medical Research, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Shi-Yu Ni
- Clinical Medicine Five-year Program, 19 Grade, Xiangya School of Medicine, Central South University, Changsha, China
| | - Ya-Ting Tan
- Center for Medical Research, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Jia Luo
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha, China
| | - Shu-Chao Wang
- Center for Medical Research, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
10
|
Wang R, Xu P, Chang LL, Zhang SZ, Zhu HH. Targeted therapy in NPM1-mutated AML: Knowns and unknowns. Front Oncol 2022; 12:972606. [PMID: 36237321 PMCID: PMC9552319 DOI: 10.3389/fonc.2022.972606] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 09/13/2022] [Indexed: 12/02/2022] Open
Abstract
Acute myeloid leukemia (AML) is a heterogeneous disease characterized by malignant proliferation of myeloid hematopoietic stem/progenitor cells. NPM1 represents the most frequently mutated gene in AML and approximately 30% of AML cases carry NPM1 mutations. Mutated NPM1 result in the cytoplasmic localization of NPM1 (NPM1c). NPM1c interacts with other proteins to block myeloid differentiation, promote cell proliferation and impair DNA damage repair. NPM1 is a good prognostic marker, but some patients ultimately relapse or fail to respond to therapy. It is urgent for us to find optimal therapies for NPM1-mutated AML. Efficacy of multiple drugs is under investigation in NPM1-mutated AML, and several clinical trials have been registered. In this review, we summarize the present knowledge of therapy and focus on the possible therapeutic interventions for NPM1-mutated AML.
Collapse
Affiliation(s)
- Rong Wang
- Department of Hematology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Zhejiang Province Key Laboratory of Hematology Oncology Diagnosis and Treatment, Hangzhou, China
| | - Pan Xu
- Department of Physiology, Medical College of China Three Gorges University, Yichang, China
| | - Lin-Lin Chang
- Department of Physiology, Medical College of China Three Gorges University, Yichang, China
| | - Shi-Zhong Zhang
- Department of Physiology, Medical College of China Three Gorges University, Yichang, China
- *Correspondence: Hong-Hu Zhu, ; Shi-Zhong Zhang,
| | - Hong-Hu Zhu
- Department of Hematology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Zhejiang Province Key Laboratory of Hematology Oncology Diagnosis and Treatment, Hangzhou, China
- Department of Physiology, Medical College of China Three Gorges University, Yichang, China
- Zhejiang University Cancer Center, Hangzhou, China
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Hong-Hu Zhu, ; Shi-Zhong Zhang,
| |
Collapse
|
11
|
Liu J, Wang Y, Mu C, Li M, Li K, Li S, Wu W, Du L, Zhang X, Li C, Peng W, Shen J, Liu Y, Yang D, Zhang K, Ning Q, Fu X, Zeng Y, Ni Y, Zhou Z, Liu Y, Hu Y, Zheng X, Wen T, Li Z, Liu Y. Pancreatic tumor eradication via selective Pin1 inhibition in cancer-associated fibroblasts and T lymphocytes engagement. Nat Commun 2022; 13:4308. [PMID: 35879297 PMCID: PMC9314377 DOI: 10.1038/s41467-022-31928-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 07/11/2022] [Indexed: 02/05/2023] Open
Abstract
Cancer associated fibroblasts (CAFs) support tumors via multiple mechanisms, including maintaining the immunosuppressive tumor microenvironment and limiting infiltration of immune cells. The prolyl isomerase Pin1, whose overexpression in CAFs has not been fully profiled yet, plays critical roles in tumor initiation and progression. To decipher effects of selective Pin1 inhibition in CAFs on pancreatic cancer, here we formulate a DNA-barcoded micellular system (DMS) encapsulating the Pin1 inhibitor AG17724. DMS functionalized with CAF-targeting anti-FAP-α antibodies (antiCAFs-DMS) can selectively inhibit Pin1 in CAFs, leading to efficacious but transient tumor growth inhibition. We further integrate DNA aptamers (AptT), which can engage CD8+ T lymphocytes, to obtain a bispecific antiCAFs-DMS-AptT system. AntiCAFs-DMS-AptT inhibits tumor growth in subcutaneous and orthotopic pancreatic cancer models. Pharmacological inhibition of the prolyl isomerase PIN1, highly expressed in cancer cells and cancer associated fibroblasts (CAF), has been proposed for cancer therapy. Here the authors report the design of a DNA-barcoded micellular system functionalized with antibodies targeting CAFs and a T cell recruiting aptamer to deliver the PIN1 inhibitor AG17724, showing antitumor response in preclinical models of pancreatic cancer.
Collapse
Affiliation(s)
- Jiaye Liu
- Department of Thyroid and Parathyroid Surgery, West China Hospital, Sichuan University, Chengdu, China.,Laboratory of Thyroid and Parathyroid diseases, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China.,State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China.,Respiratory Health Institute, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Yang Wang
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Chunyang Mu
- Department of Liver Surgery & Liver Transplantation Center, West China Hospital, Sichuan University, Chengdu, China
| | - Meng Li
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Bioland Laboratory, Guangzhou, China
| | - Kewei Li
- Department of Pediatric Department, West China Hospital, Sichuan University, Chengdu, China
| | - Shan Li
- Department of Hepatobiliary Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Wenshuang Wu
- Department of Thyroid and Parathyroid Surgery, West China Hospital, Sichuan University, Chengdu, China.,Laboratory of Thyroid and Parathyroid diseases, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Lingyao Du
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoyun Zhang
- Department of Liver Surgery & Liver Transplantation Center, West China Hospital, Sichuan University, Chengdu, China
| | - Chuan Li
- Department of Liver Surgery & Liver Transplantation Center, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Peng
- Department of Liver Surgery & Liver Transplantation Center, West China Hospital, Sichuan University, Chengdu, China
| | - Junyi Shen
- Department of Liver Surgery & Liver Transplantation Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yang Liu
- Department of Thyroid and Parathyroid Surgery, West China Hospital, Sichuan University, Chengdu, China.,Laboratory of Thyroid and Parathyroid diseases, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Dujiang Yang
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Kaixiang Zhang
- Department of Thyroid and Parathyroid Surgery, West China Hospital, Sichuan University, Chengdu, China.,Laboratory of Thyroid and Parathyroid diseases, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Qingyang Ning
- Department of Thyroid and Parathyroid Surgery, West China Hospital, Sichuan University, Chengdu, China.,Laboratory of Thyroid and Parathyroid diseases, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoying Fu
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yu Zeng
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Yinyun Ni
- Respiratory Health Institute, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Zongguang Zhou
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Liu
- Department of Rheumatology and Immunology, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yiguo Hu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Xiaofeng Zheng
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu, China.
| | - Tianfu Wen
- Department of Liver Surgery & Liver Transplantation Center, West China Hospital, Sichuan University, Chengdu, China.
| | - Zhihui Li
- Department of Thyroid and Parathyroid Surgery, West China Hospital, Sichuan University, Chengdu, China. .,Laboratory of Thyroid and Parathyroid diseases, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China.
| | - Yong Liu
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
12
|
EAPB0503, an Imidazoquinoxaline Derivative Modulates SENP3/ARF Mediated SUMOylation, and Induces NPM1c Degradation in NPM1 Mutant AML. Int J Mol Sci 2022; 23:ijms23073421. [PMID: 35408798 PMCID: PMC8998649 DOI: 10.3390/ijms23073421] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/14/2022] [Accepted: 03/18/2022] [Indexed: 12/14/2022] Open
Abstract
Nucleophosmin-1 (NPM1) is a pleiotropic protein involved in numerous cellular processes. NPM1 shuttles between the nucleus and the cytoplasm, but exhibits a predominant nucleolar localization, where its fate and functions are exquisitely controlled by dynamic post-translational modifications (PTM). Sentrin/SUMO Specific Peptidase 3 (SENP3) and ARF are two nucleolar proteins involved in NPM1 PTMs. SENP3 antagonizes ARF-mediated NPM1 SUMOylation, to promote ribosomal biogenesis. In Acute Myeloid Leukemia (AML), NPM1 is frequently mutated, and exhibits an aberrant cytoplasmic localization (NPM1c). NPM1c mutations define a separate AML entity with good prognosis in some AML patients, rendering NPM1c as a potential therapeutic target. SENP3-mediated NPM1 de-SUMOylation induces resistance to therapy in NPM1c AML. Here, we demonstrate that the imidazoquinoxaline EAPB0503 prolongs the survival and results in selective reduction in the leukemia burden of NPM1c AML xenograft mice. Indeed, EAPB0503 selectively downregulates HDM2 expression and activates the p53 pathway in NPM1c expressing cells, resulting in apoptosis. Importantly, we unraveled that NPM1c expressing cells exhibit low basal levels of SUMOylation paralleled with high SENP3 and low ARF basal levels. EAPB0503 reverted these molecular players by inducing NPM1c SUMOylation and ubiquitylation, leading to its proteasomal degradation. EAPB0503-induced NPM1c SUMOylation is concurrent with SENP3 downregulation and ARF upregulation in NPM1c expressing cells. Collectively, these results provide a strong rationale for testing therapies modulating NPM1c post-translational modifications in the management of NPM1c AML.
Collapse
|