1
|
Brattås MK, Görtler F, Johansen S, Rye KP, Hatfield KJ, Reikvam H. Gene Expression Profiling in Acute Myeloid Leukemia Patient Subgroups With High and Low Sensitivity Toward SYK Inhibitors. Hematol Oncol 2025; 43:e70058. [PMID: 40088478 DOI: 10.1002/hon.70058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 02/17/2025] [Accepted: 02/27/2025] [Indexed: 03/17/2025]
Abstract
Acute myeloid leukemia (AML) is a heterogeneous malignancy characterized by the uncontrolled proliferation of myeloid cells, and despite recent treatment advances, patient outcomes remain suboptimal. The cytoplasmic spleen tyrosine kinase (SYK) has emerged as a promising therapeutic target in AML due to its role in promoting leukemic cell survival, proliferation, and chemoresistance. This study investigates in vitro antiproliferative effects of SYK inhibitors on leukemia cells by analyzing 48 primary AML samples treated with five SYK inhibitors: fostamatinib, entospletinib, cerdulatinib, TAK-659, and RO9021. Our findings revealed significant heterogeneity among patients, leading to the identification of two distinct patient sample groups that were identified as having either high or low sensitivity toward SYK inhibitors. Furthermore, gene expression profiling through RNA sequencing of AML patient samples uncovered 97 significantly differentially expressed genes (DEGs) between the two patient groups with high or low in vitro sensitivity toward SYK inhibitors. Pathway enrichment analyses revealed that the high-sensitivity group was enriched in biological processes related to positive gene regulation and significant pathways included cell adhesion molecules and proteoglycans. In contrast, the low-sensitivity group showed enrichment in pathways related to PI3K-Akt signaling and JAK-STAT signaling. Gene set enrichment analysis further highlighted that high-sensitivity patient samples were upregulated in pathways associated with oxidative phosphorylation and MYC targets, whereas low-sensitivity patient samples showed enrichment in TGF beta signaling and IL6 JAK STAT3 signaling. These results identify gene expression profile signatures that may predict sensitivity to SYK inhibition and underscore the potential for personalized therapeutic strategies in AML.
Collapse
Affiliation(s)
- Marte Karen Brattås
- K.G. Jebsen Center for Myeloid Malignancies, Institute of Clinical Science, University of Bergen, Bergen, Norway
- Section for Hematology, Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Franziska Görtler
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway
| | - Silje Johansen
- K.G. Jebsen Center for Myeloid Malignancies, Institute of Clinical Science, University of Bergen, Bergen, Norway
- Section for Hematology, Department of Medicine, Haraldsplass Deaconess Hospital, Bergen, Norway
| | - Kristin Paulsen Rye
- K.G. Jebsen Center for Myeloid Malignancies, Institute of Clinical Science, University of Bergen, Bergen, Norway
| | | | - Håkon Reikvam
- K.G. Jebsen Center for Myeloid Malignancies, Institute of Clinical Science, University of Bergen, Bergen, Norway
- Section for Hematology, Department of Medicine, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
2
|
Priya S, Islam MM, Kasana S, Kurmi BD, Gupta GD, Patel P. Therapeutic potential of chalcone-1,2,3-triazole hybrids as anti-tumour agents: a systematic review and SAR studies. Future Med Chem 2025; 17:449-465. [PMID: 39886772 PMCID: PMC11834451 DOI: 10.1080/17568919.2025.2458450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 01/06/2025] [Indexed: 02/01/2025] Open
Abstract
The study of chalcone-1,2,3-triazole hybrids for anticancer activity is quite a recent area of focus, primarily because of the increasing demand for developing new drugs to treat cancer. The chalcones and 1,2,3-triazole rings in hybrid compounds has recently emerged as a promising strategy for developing novel anticancer agents. The 1,2,3-triazole ring, known for its stability and hydrogen bonding capabilities, enhances the target binding affinity of these hybrids. Chalcones possess an α,β-unsaturated carbonyl system crucial for their anticancer activity The synergistic effect of these two moieties results in compounds with potent anticancer properties. This review explores the structure-activity relationship studies which revealed that the electronic and lipophilic properties of substituents on the phenyl rings of chalcones significantly influence their anticancer activity. Electron-donating and electron-withdrawing groups can affect cellular uptake and target engagement. Incorporating various substituents into the 1,2,3-triazole ring can improve selectivity and potency against specific cancer cell lines. These hybrids often exert their anticancer effects through apoptosis and cell cycle disruption. Recent research indicates 1,2,3-triazole chalcone hybrids hold therapeutic promise as anticancer agents. Further optimization through SAR studies and in-depth mechanistic investigations could lead to the development of highly potent and selective anticancer agents with minimal toxicity.
Collapse
Affiliation(s)
- Sakshi Priya
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, India
| | - Md Mustahidul Islam
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, India
| | - Shivani Kasana
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, India
- IK Gujral Punjab Technical University, Kapurthala, India
| | - Balak Das Kurmi
- IK Gujral Punjab Technical University, Kapurthala, India
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, India
| | | | - Preeti Patel
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, India
- IK Gujral Punjab Technical University, Kapurthala, India
| |
Collapse
|
3
|
Joshi S. New insights into SYK targeting in solid tumors. Trends Pharmacol Sci 2024; 45:904-918. [PMID: 39322438 PMCID: PMC11984332 DOI: 10.1016/j.tips.2024.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/23/2024] [Accepted: 08/23/2024] [Indexed: 09/27/2024]
Abstract
Spleen tyrosine kinase (SYK) is predominantly expressed in hematopoietic cells and has been extensively studied for its pivotal role in B cell malignancies and autoimmune diseases. In epithelial solid tumors, SYK shows a paradoxical role, acting as a tumor suppressor in some cancers while driving tumor growth in others. Recent preclinical studies have identified the role of SYK in the tumor microenvironment (TME), revealing that SYK signaling in immune cells, especially B cells, and myeloid cells, promote immunosuppression, tumor growth, and metastasis across various solid tumors. This review explores the emerging roles of SYK in solid tumors, the mechanisms of SYK activation, and findings from preclinical and clinical studies of SYK inhibitors as either standalone treatments or in combination with immunotherapy or chemotherapy for solid tumors.
Collapse
Affiliation(s)
- Shweta Joshi
- Division of Pediatric Hematology-Oncology, Moores Cancer Center, University of California, San Diego, CA 92093-0815, USA.
| |
Collapse
|
4
|
Gouda MA, Shunyakova J, Naing A, Dumbrava E, Hong DS, Yuan Y, Yang P, Myers A, Liang Y, Peng J, Karp D, Tsimberidou AM, Rodon J, Yap TA, Piha-Paul SA, Meric-Bernstam F, Fu S. A phase I study of TAK-659 and paclitaxel in patients with taxane-refractory advanced solid tumors. ESMO Open 2024; 9:103486. [PMID: 38914452 PMCID: PMC11258623 DOI: 10.1016/j.esmoop.2024.103486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/29/2024] [Accepted: 05/01/2024] [Indexed: 06/26/2024] Open
Abstract
BACKGROUND Paclitaxel resistance limits durability of response in patients with initial clinical benefit. Overexpression of spleen tyrosine kinase (SYK) has been proposed as a possible resistance mechanism. This phase I trial evaluated the safety and preliminary activity of the SYK inhibitor TAK-659 combined with paclitaxel in patients with advanced taxane-refractory solid tumors. PATIENTS AND METHODS Patients with advanced solid tumors and prior progression on taxane-based therapy received intravenous infusion of paclitaxel on days 1, 8, and 15 plus oral TAK-659 daily in 28-day cycles. The dose-escalation phase included six cohorts treated at different dose levels; the dose-expansion phase included patients with ovarian cancer treated at the highest dose level. Toxicity was graded using the National Cancer Institute Common Terminology Criteria for Adverse Events version 5.0. Efficacy was evaluated using Response Evaluation Criteria in Solid Tumors version 1.1. RESULTS Our study included 49 patients. Maximum tolerated dose was not reached, but higher rates of adverse events were observed at higher dose levels. There were no treatment-related deaths. The most common treatment-related adverse events of any grade were increased aspartate aminotransferase (n = 31; 63%), increased alanine aminotransferase (n = 26; 53%), decreased neutrophil count (n = 26; 53%), and decreased white blood cell count (n = 26; 53%). Most adverse events were either grade 1 or 2. In the 44 patients with evaluable disease, 12 (27%) had stable disease as the best overall response, including three patients with prolonged stable disease, and 4 patients (9%) achieved a partial response. CONCLUSIONS The combination of paclitaxel and TAK-659 showed preliminary activity possibly overcoming resistance to taxane-based therapy as well as a tolerable safety profile in patients with advanced solid tumors.
Collapse
Affiliation(s)
- M A Gouda
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston
| | - J Shunyakova
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston
| | - A Naing
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston
| | - E Dumbrava
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston
| | - D S Hong
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston
| | - Y Yuan
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston
| | - P Yang
- Department of Palliative, Rehabilitation, and Integrative Medicine, The University of Texas MD Anderson Cancer Center, Houston
| | - A Myers
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, USA
| | - Y Liang
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston
| | - J Peng
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston
| | - D Karp
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston
| | - A M Tsimberidou
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston
| | - J Rodon
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston
| | - T A Yap
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston
| | - S A Piha-Paul
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston
| | - F Meric-Bernstam
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston
| | - S Fu
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston.
| |
Collapse
|
5
|
Zhao Y, Zhang X, Ding X, Wang Y, Li Z, Zhao R, Cheng HE, Sun Y. Efficacy and safety of FLT3 inhibitors in monotherapy of hematological and solid malignancies: a systemic analysis of clinical trials. Front Pharmacol 2024; 15:1294668. [PMID: 38828446 PMCID: PMC11140126 DOI: 10.3389/fphar.2024.1294668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 04/29/2024] [Indexed: 06/05/2024] Open
Abstract
Introduction: FLT3 mutations are closely associated with the occurrence of hematological and solid malignancies, especially with acute myeloid leukemia. Currently, several FLT3 inhibitors are in clinical trials, and some have been applied in clinic. However, the safety, efficacy and pharmacodynamics of these FLT3 inhibitors have not been systemically analyzed before. Methods: We searched and reviewed clinical trial reports on the monotherapy of 13 FLT3 inhibitors, including sorafenib, lestaurtinib, midostaurin, gilteritinib, quizartinib, sunitinib, crenolanib, tandutinib, cabozantinib, pexidartinib, pacritinib, famitinib, and TAK-659 in patients with hematological and solid malignancies before May 31, 2023. Results: Our results showed the most common adverse events (AEs) were gastrointestinal adverse reactions, including diarrhea, hand-foot syndrome and nausea, while the most common hematological AEs were febrile neutropenia, anemia, and thrombocytopenia. Based on the published data, the mean overall survival (OS) and the mean progression-free survival (PFS) were 9.639 and 5.905 months, respectively. The incidence of overall response rate (ORR), complete remission (CR), partial response (PR), and stable disease (SD) for all these FLT3 inhibitors was 29.0%, 8.7%, 16.0%, and 42.3%, respectively. The ORRs of FLT3 inhibitors in hematologic malignancies and solid tumors were 40.8% and 18.8%, respectively, indicating FLT3 inhibitors were more effective for hematologic malignancies than for solid tumors. In addition, time to maximum plasma concentration (Tmax) in these FLT3 inhibitors ranged from 0.7-12.0 hours, but the elimination half-life (T1/2) range was highly variable, from 6.8 to 151.8 h. Discussion: FLT3 inhibitors monotherapy has shown significant anti-tumor effect in clinic, and the effectiveness may be further improved through combination medication.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hai-En Cheng
- School of Medical Laboratory, Shandong Second Medical University, Weifang, China
| | - Yanli Sun
- School of Medical Laboratory, Shandong Second Medical University, Weifang, China
| |
Collapse
|
6
|
Juric D, Barve M, Vaishampayan U, Roda D, Calvo A, Jañez NM, Trigo J, Greystoke A, Harvey RD, Olszanski AJ, Opyrchal M, Spira A, Thistlethwaite F, Jiménez B, Sappal JH, Kannan K, Riley J, Li C, Li C, Gregory RC, Miao H, Wang S. A phase Ib study evaluating the recommended phase II dose, safety, tolerability, and efficacy of mivavotinib in combination with nivolumab in advanced solid tumors. Cancer Med 2024; 13:10.1002/cam4.6776. [PMID: 38501219 PMCID: PMC10949085 DOI: 10.1002/cam4.6776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 10/25/2023] [Accepted: 11/22/2023] [Indexed: 03/20/2024] Open
Abstract
Mivavotinib (TAK-659/CB-659), a dual SYK/FLT3 inhibitor, reduced immunosuppressive immune cell populations and suppressed tumor growth in combination with anti-PD-1 therapy in cancer models. This dose-escalation/expansion study investigated the safety, pharmacokinetics, pharmacodynamics, and preliminary efficacy of mivavotinib plus nivolumab in patients with advanced solid tumors. Patients received oral mivavotinib 60-100 mg once-daily plus intravenous nivolumab 3 mg/kg on days 1 and 15 in 28-day cycles until disease progression or unacceptable toxicity. The dose-escalation phase evaluated the recommended phase II dose (RP2D; primary endpoint). The expansion phase evaluated overall response rate (primary end point) at the RP2D in patients with triple-negative breast cancer (TNBC). During dose-escalation (n = 24), two dose-limiting toxicities (grade 4 lipase increased and grade 3 pyrexia) occurred in patients who received mivavotinib 80 mg and 100 mg, respectively. The determined RP2D was once-daily mivavotinib 80 mg plus nivolumab 3 mg/kg. The expansion phase was terminated at ~50% enrollment (n = 17) after failing to meet an ad hoc efficacy futility threshold. Among all 41 patients, common treatment-emergent adverse events (TEAEs) included dyspnea (48.8%), aspartate aminotransferase increased, and pyrexia (46.3% each). Common grade ≥3 TEAEs were hypophosphatemia and anemia (26.8% each). Mivavotinib plasma exposure was generally dose-proportional (60-100 mg). One patient had a partial response. Mivavotinib 80 mg plus nivolumab 3 mg/kg was well tolerated with no new safety signals beyond those of single-agent mivavotinib or nivolumab. Low response rates highlight the challenges of treating unresponsive tumor types, such as TNBC, with this combination and immunotherapies in general. TRIAL REGISTRATION ID: NCT02834247.
Collapse
Affiliation(s)
- Dejan Juric
- Termeer Center for Targeted TherapiesMassachusetts General Hospital Cancer CenterBostonMassachusettsUSA
| | - Minal Barve
- Medical OncologyMary Crowley Cancer ResearchDallasTexasUSA
| | - Ulka Vaishampayan
- Internal Medicine/Oncology, Karmanos Cancer InstituteWayne State UniversityDetroitMichiganUSA
| | | | - Aitana Calvo
- Medical OncologyInstituto de Investigación Sanitaria Gregorio MarañónMadridSpain
| | | | - Jose Trigo
- Medical OncologyHospital Universitario Virgen de la VictoriaMálagaSpain
| | | | - R. Donald Harvey
- Hematology and Medical OncologyWinship Cancer Institute of Emory UniversityAtlantaGeorgiaUSA
| | - Anthony J. Olszanski
- Department of Hematology/OncologyFox Chase Cancer CenterPhiladelphiaPennsylvaniaUSA
| | - Mateusz Opyrchal
- Division of OncologyWashington University School of Medicine in St LouisSt LouisMissouriUSA
| | - Alexander Spira
- Medical Oncology, Johns Hopkins School of MedicineJohns Hopkins UniversityBaltimoreMarylandUSA
- Medical Oncology, Virginia Cancer SpecialistsUS Oncology Research, NEXT Oncology VirginiaLeesburgVirginiaUSA
| | - Fiona Thistlethwaite
- Medical OncologyThe Christie NHS Foundation Trust and University of ManchesterManchesterUK
| | - Begoña Jiménez
- Medical OncologyHospital Universitario Virgen de la VictoriaMálagaSpain
| | - Jessica Huck Sappal
- Precision and Translational MedicineTakeda Development Center Americas, Inc. (TDCA)LexingtonMassachusettsUSA
| | - Karuppiah Kannan
- Oncology Therapeutic Area UnitTakeda Development Center Americas, Inc. (TDCA)LexingtonMassachusettsUSA
| | - Jason Riley
- GastroenterologyTakeda Development Center Americas, Inc. (TDCA)LexingtonMassachusettsUSA
| | - Cheryl Li
- Quantitative Clinical PharmacologyTakeda Development Center Americas, Inc. (TDCA)LexingtonMassachusettsUSA
| | - Cong Li
- Statistical and Quantitative SciencesTakeda Development Center Americas, Inc. (TDCA)LexingtonMassachusettsUSA
| | - Richard C. Gregory
- Precision and Translational MedicineTakeda Development Center Americas, Inc. (TDCA)LexingtonMassachusettsUSA
| | - Harry Miao
- Clinical DevelopmentTakeda Development Center Americas, Inc. (TDCA)LexingtonMassachusettsUSA
| | - Shining Wang
- Takeda Oncology Clinical ScienceTakeda Development Center Americas, Inc. (TDCA)LexingtonMassachusettsUSA
| |
Collapse
|
7
|
Li C, Watson K, Wang S, Diderichsen PM, Gupta N. Population Pharmacokinetics of Mivavotinib (TAK-659), a Dual Spleen Tyrosine Kinase and FMS-Like Tyrosine Kinase 3 Inhibitor, in Patients With Advanced Solid Tumors or Hematologic Malignancies. J Clin Pharmacol 2023; 63:326-337. [PMID: 36309821 DOI: 10.1002/jcph.2174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 10/14/2022] [Indexed: 11/07/2022]
Abstract
Mivavotinib (TAK-659), an orally administered, small-molecule, dual inhibitor of spleen tyrosine kinase and FMS-like tyrosine kinase 3 (SYK/FLT3), is under development for the treatment of patients with advanced malignancies. In this analysis, we evaluated the population pharmacokinetics (PK) of mivavotinib and its sources of variability (covariates) in adult patients with advanced solid tumors, or relapsed/refractory B-cell lymphomas or acute myeloid leukemia, using pooled data from 159 patients enrolled in 2 phase 1/2 clinical studies. A 2-compartment model with first-order linear elimination and a first-order absorption rate (and associated lag time) adequately described the PK of mivavotinib in this patient population. The population estimates of apparent clearance (CL/F) and apparent central compartment volume (Vc /F) were 31.6 L/h and 893 L, respectively, resulting in a half-life of ≈20 hours. In the final model, creatinine clearance was included as a covariate of CL/F, and sex as a covariate of Vc /F. Simulations showed that steady-state exposure to mivavotinib increased with decreasing renal function. Expanding eligibility by enrolling patients with moderate renal impairment in phase 1 increased the diversity of patients in early trials and allowed the model to inform dose adjustment in patients with moderate renal impairment in future trials. In addition, simulations showed median steady-state trough concentration of mivavotinib following 70 mg twice daily and 160 mg daily dosing to be commensurate with 100 ng/mL, the level leading to >90% FLT3 inhibition per ex vivo plasma immune assays and considered a potential exposure threshold required for FLT3-driven efficacy.
Collapse
Affiliation(s)
- Cheryl Li
- Takeda Development Center Americas (TDCA), Inc., Lexington, Massachusetts, USA
| | | | - Shining Wang
- Takeda Development Center Americas (TDCA), Inc., Lexington, Massachusetts, USA
| | | | - Neeraj Gupta
- Takeda Development Center Americas (TDCA), Inc., Lexington, Massachusetts, USA
| |
Collapse
|