1
|
Zhou F, Culjkovic-Kraljacic B, Bach C, Feng L, Mishima Y, Borden KLB, Tenen DG. Posttranscriptional activity of the eukaryotic translation initiation factor eIF4E contributes to HoxA9-driven leukemogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.10.637540. [PMID: 39990322 PMCID: PMC11844429 DOI: 10.1101/2025.02.10.637540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
HoxA9, a homeodomain-containing transcription factor, is mis-expressed in over half of acute myeloid leukemia (AML) cases, and is associated with poor prognosis. Previous studies indicated that HoxA9 binds to the eukaryotic translation initiation factor eIF4E in primary specimens and that HoxA9 stimulated the RNA export and translation efficiency of selected RNAs via eIF4E. However, the relevance of this to its leukemogenic transformation capacity was unknown. Here, we used a double point mutation (HoxA9AA) to disrupt the physical and functional interaction between eIF4E and HoxA9 while retaining the HoxA9 transcriptional signature. Surprisingly, the mutation dramatically increased AML latency from a median of 90 to 280 days and resulted in incomplete penetrance. Re-transplantation of bone marrow cells from leukemic animals demonstrated even more pronounced differences in disease kinetics and penetrance with all animals succumbing to disease by day 60 in the wildtype group, while some HoxA9AA mice never developed leukemia. Collectively, these findings uncover a novel, transcription-independent mechanism of HoxA9-driven leukemogenesis through eIF4E and positions eIF4E as a potential therapeutic target AML patients expressing high levels of HoxA9.
Collapse
Affiliation(s)
- Fang Zhou
- Department of Hematology and Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, P.R. China
- Harvard Medical School Initiative for RNA Medicine, Harvard Medical School, Boston, MA, 02115, USA
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Biljana Culjkovic-Kraljacic
- Department of Pathology and Cell Biology, Institute for Research in Immunology and Cancer, Université de Montréal, Québec, Canada
- Department of Pharmacology and Robert H. Lurie Cancer Centre, Northwestern University, Chicago, Illinois, USA
| | - Christian Bach
- Harvard Medical School Initiative for RNA Medicine, Harvard Medical School, Boston, MA, 02115, USA
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Li Feng
- Harvard Medical School Initiative for RNA Medicine, Harvard Medical School, Boston, MA, 02115, USA
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Yuta Mishima
- Harvard Medical School Initiative for RNA Medicine, Harvard Medical School, Boston, MA, 02115, USA
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, 02115, USA
- Department of Cancer Immunotherapy and Immunology, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Katherine L B Borden
- Department of Pathology and Cell Biology, Institute for Research in Immunology and Cancer, Université de Montréal, Québec, Canada
- Department of Pharmacology and Robert H. Lurie Cancer Centre, Northwestern University, Chicago, Illinois, USA
| | - Daniel G Tenen
- Harvard Medical School Initiative for RNA Medicine, Harvard Medical School, Boston, MA, 02115, USA
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|
2
|
Mars JC, Culjkovic-Kraljacic B, Borden KL. eIF4E orchestrates mRNA processing, RNA export and translation to modify specific protein production. Nucleus 2024; 15:2360196. [PMID: 38880976 PMCID: PMC11185188 DOI: 10.1080/19491034.2024.2360196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 05/22/2024] [Indexed: 06/18/2024] Open
Abstract
The eukaryotic translation initiation factor eIF4E acts as a multifunctional factor that simultaneously influences mRNA processing, export, and translation in many organisms. Its multifactorial effects are derived from its capacity to bind to the methyl-7-guanosine cap on the 5'end of mRNAs and thus can act as a cap chaperone for transcripts in the nucleus and cytoplasm. In this review, we describe the multifactorial roles of eIF4E in major mRNA-processing events including capping, splicing, cleavage and polyadenylation, nuclear export and translation. We discuss the evidence that eIF4E acts at two levels to generate widescale changes to processing, export and ultimately the protein produced. First, eIF4E alters the production of components of the mRNA processing machinery, supporting a widescale reprogramming of multiple mRNA processing events. In this way, eIF4E can modulate mRNA processing without physically interacting with target transcripts. Second, eIF4E also physically interacts with both capped mRNAs and components of the RNA processing or translation machineries. Further, specific mRNAs are sensitive to eIF4E only in particular mRNA processing events. This selectivity is governed by the presence of cis-acting elements within mRNAs known as USER codes that recruit relevant co-factors engaging the appropriate machinery. In all, we describe the molecular bases for eIF4E's multifactorial function and relevant regulatory pathways, discuss the basis for selectivity, present a compendium of ~80 eIF4E-interacting factors which play roles in these activities and provide an overview of the relevance of its functions to its oncogenic potential. Finally, we summarize early-stage clinical studies targeting eIF4E in cancer.
Collapse
Affiliation(s)
- Jean-Clément Mars
- Institute of Research in Immunology and Cancer, Department of Pathology and Cell Biology, Université de Montréal, Montréal, QC, Canada
| | - Biljana Culjkovic-Kraljacic
- Institute of Research in Immunology and Cancer, Department of Pathology and Cell Biology, Université de Montréal, Montréal, QC, Canada
| | - Katherine L.B. Borden
- Institute of Research in Immunology and Cancer, Department of Pathology and Cell Biology, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
3
|
Osborne MJ, Sulekha A, Culjkovic-Kraljacic B, Gasiorek J, Ruediger E, Jolicouer E, Marinier A, Assouline S, Borden KLB. Medicinal Chemistry and NMR Driven Discovery of Novel UDP-glucuronosyltransferase 1A Inhibitors That Overcome Therapeutic Resistance in Cells. J Mol Biol 2024; 436:168378. [PMID: 38043731 PMCID: PMC10841659 DOI: 10.1016/j.jmb.2023.168378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/24/2023] [Accepted: 11/28/2023] [Indexed: 12/05/2023]
Abstract
The UDP glucuronosyltransferases (UGT) deactivate many therapeutics via glucuronidation while being required for clearance of normal metabolites and xenobiotics. There are 19 UGT enzymes categorized into UGT1A and UGT2B families based on sequence conservation. This presents a challenge in terms of targeting specific UGTs to overcome drug resistance without eliciting overt toxicity. Here, we identified for the first time that UGT1A4 is highly elevated in acute myeloid leukemia (AML) patients and its reduction corresponded to objective clinical responses. To develop inhibitors to UGT1A4, we leveraged previous NMR-based fragment screening data against the C-terminal domain of UGT1A (UGT1A-C). NMR and medicinal chemistry strategies identified novel chemical matter based on fragment compounds with the capacity to bind ∼20 fold more tightly to UGT1A-C (Kd ∼ 600 μM vs ∼30 μM). Some compounds differentially inhibited UGT1A4 versus UGT1A1 enzyme activity and restored drug sensitivity in resistant human cancer cells. NMR-based NOE experiments revealed these novel compounds recognised a region distal to the catalytic site suggestive of allosteric regulation. This binding region is poorly conserved between UGT1A and UGT2B C-terminal sequences, which otherwise exhibit high similarity. Consistently, these compounds did not bind to the C-terminal domain of UGT2B7 nor a triple mutant of UGT1A-C replaced with UGT2B7 residues in this region. Overall, we discovered a site on UGTs that can be leveraged to differentially target UGT1As and UGT2Bs, identified UGT1A4 as a therapeutic target, and found new chemical matter that binds the UGT1A C-terminus, inhibits glucuronidation and restores drug sensitivity.
Collapse
Affiliation(s)
- Michael J Osborne
- Institute for Research in Immunology and Cancer and Department of Pathology and Cell Biology, University of Montreal, Montreal, Quebec, Canada
| | - Anamika Sulekha
- Institute for Research in Immunology and Cancer and Department of Pathology and Cell Biology, University of Montreal, Montreal, Quebec, Canada
| | - Biljana Culjkovic-Kraljacic
- Institute for Research in Immunology and Cancer and Department of Pathology and Cell Biology, University of Montreal, Montreal, Quebec, Canada
| | - Jadwiga Gasiorek
- Institute for Research in Immunology and Cancer and Department of Pathology and Cell Biology, University of Montreal, Montreal, Quebec, Canada
| | - Edward Ruediger
- Drug Discovery Unit, Institute for Research in Immunology and Cancer, University of Montreal, Montreal, Quebec, Canada
| | - Eric Jolicouer
- Drug Discovery Unit, Institute for Research in Immunology and Cancer, University of Montreal, Montreal, Quebec, Canada
| | - Anne Marinier
- Drug Discovery Unit, Institute for Research in Immunology and Cancer, University of Montreal, Montreal, Quebec, Canada
| | - Sarit Assouline
- Jewish General Hospital and McGill University, 3755 Cote Ste Catherine, Montreal, Quebec H3T1E2, Canada
| | - Katherine L B Borden
- Institute for Research in Immunology and Cancer and Department of Pathology and Cell Biology, University of Montreal, Montreal, Quebec, Canada
| |
Collapse
|
4
|
Borden KLB. The eukaryotic translation initiation factor eIF4E unexpectedly acts in splicing thereby coupling mRNA processing with translation: eIF4E induces widescale splicing reprogramming providing system-wide connectivity between splicing, nuclear mRNA export and translation. Bioessays 2024; 46:e2300145. [PMID: 37926700 PMCID: PMC11021180 DOI: 10.1002/bies.202300145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/17/2023] [Accepted: 10/24/2023] [Indexed: 11/07/2023]
Abstract
Recent findings position the eukaryotic translation initiation factor eIF4E as a novel modulator of mRNA splicing, a process that impacts the form and function of resultant proteins. eIF4E physically interacts with the spliceosome and with some intron-containing transcripts implying a direct role in some splicing events. Moreover, eIF4E drives the production of key components of the splicing machinery underpinning larger scale impacts on splicing. These drive eIF4E-dependent reprogramming of the splicing signature. This work completes a series of studies demonstrating eIF4E acts in all the major mRNA maturation steps whereby eIF4E drives production of the RNA processing machinery and escorts some transcripts through various maturation steps. In this way, eIF4E couples the mRNA processing-export-translation axis linking nuclear mRNA processing to cytoplasmic translation. eIF4E elevation is linked to worse outcomes in acute myeloid leukemia patients where these activities are dysregulated. Understanding these effects provides new insight into post-transcriptional control and eIF4E-driven cancers.
Collapse
Affiliation(s)
- Katherine L. B. Borden
- Institute for Research in Immunology and Cancer and Department of Pathology and Cell BiologyUniversity of MontrealMontrealQuebecCanada
| |
Collapse
|
5
|
Krenn PW, Aberger F. Targeting cancer hallmark vulnerabilities in hematologic malignancies by interfering with Hedgehog/GLI signaling. Blood 2023; 142:1945-1959. [PMID: 37595276 DOI: 10.1182/blood.2021014761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/14/2023] [Accepted: 08/03/2023] [Indexed: 08/20/2023] Open
Abstract
Understanding the genetic alterations, disrupted signaling pathways, and hijacked mechanisms in oncogene-transformed hematologic cells is critical for the development of effective and durable treatment strategies against liquid tumors. In this review, we focus on the specific involvement of the Hedgehog (HH)/GLI pathway in the manifestation and initiation of various cancer features in hematologic malignancies, including multiple myeloma, T- and B-cell lymphomas, and lymphoid and myeloid leukemias. By reviewing canonical and noncanonical, Smoothened-independent HH/GLI signaling and summarizing preclinical in vitro and in vivo studies in hematologic malignancies, we elucidate common molecular mechanisms by which HH/GLI signaling controls key oncogenic processes and cancer hallmarks such as cell proliferation, cancer stem cell fate, genomic instability, microenvironment remodeling, and cell survival. We also summarize current clinical trials with HH inhibitors and discuss successes and challenges, as well as opportunities for future combined therapeutic approaches. By providing a bird's eye view of the role of HH/GLI signaling in liquid tumors, we suggest that a comprehensive understanding of the general oncogenic effects of HH/GLI signaling on the formation of cancer hallmarks is essential to identify critical vulnerabilities within tumor cells and their supporting remodeled microenvironment, paving the way for the development of novel and efficient personalized combination therapies for hematologic malignancies.
Collapse
Affiliation(s)
- Peter W Krenn
- Department of Biosciences and Medical Biology, Cancer Cluster Salzburg, Paris Lodron University of Salzburg, Salzburg, Austria
| | - Fritz Aberger
- Department of Biosciences and Medical Biology, Cancer Cluster Salzburg, Paris Lodron University of Salzburg, Salzburg, Austria
| |
Collapse
|
6
|
Mazewski C, Platanias LC. A novel approach to overcome drug resistance in acute myeloid leukemia. Haematologica 2023; 108:2889-2890. [PMID: 37165841 PMCID: PMC10620585 DOI: 10.3324/haematol.2023.283099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 05/03/2023] [Indexed: 05/12/2023] Open
Affiliation(s)
- Candice Mazewski
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA; Division of Hematology-Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Leonidas C Platanias
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA; Division of Hematology-Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Department of Medicine, Jesse Brown Veterans Affairs Medical Center, Chicago, IL.
| |
Collapse
|